
Anzo® 5.4 User Guide
Last Updated: 1/29/2024

Online documentation is available at docs.cambridgesemantics.com

© 2024 Cambridge Semantics, Inc.

https://docs.cambridgesemantics.com/

Table of Contents

About This Doc 19

Onboard & Virtualization 20

Onboard Structured Data 21

Adding Data Sources 22

Connecting to a Database 23

Defining a Database Schema 45

Adding an HTTP or SPARQL Data Source 58

Adding a CSV Data Source 60

Adding a JSON Data Source 68

Adding an XML Data Source 75

Adding a SAS Data Source 81

Adding a Parquet Data Source 88

Configuring a CSV or Parquet Source for Incremental Processing 92

Assigning Primary Keys in a Schema 97

Adding Foreign Keys 100

Onboarding Data with the Automated Workflow 105

Creating a Graphmart from a Data Source 105

Adding a Data Source to an Existing Graphmart 108

Direct Load Advanced Settings Reference 112

Onboarding or Virtualizing Data with SPARQL Queries 117

Introduction to the GDI 117

GDI Concepts and Basic Usage 120

Options for Data Types, Data Linking, and Models 189

Advanced Usage by Data Source Type 205

2

GDI Property Reference 339

Onboard Unstructured Data 355

Unstructured Onboarding Process Overview 356

Creating an Unstructured Pipeline 358

Running an Unstructured Pipeline 379

Pipeline Settings Reference 381

Annotator Settings Reference 387

External Service Annotator 387

Keyword and Phrase Annotator 390

Knowledgebase Annotator 393

Regex Annotator 397

Model 401

Model Concepts and Vocabulary 402

Managed Model Concepts 405

Model Requirements 407

Uploading a Model 412

Creating a Model 415

Editing a Custom Model 418

Opening Models in the Editor 419

Changing Model Components 421

Class Editor Reference 424

Property Editor Reference 426

Editing a Managed Model 428

Downloading a Model 434

Defining Resource Templates 438

3

Blend 441

Working with Datasets 442

Adding an Empty Dataset for an Export Step 443

Importing an Existing Dataset (FLDS) 446

Creating a Dataset from RDF Files 451

Managing Dataset Editions 456

Introduction to Editions 456

Creating an Edition 457

Modifying an Edition 460

Deleting a Saved Edition 462

Limiting the Number of Editions in a Dataset 464

Creating a Graphmart from a Dataset 466

Adding a Dataset to a Graphmart 471

Dataset FAQ 475

Working with Graphmarts 481

Creating a Graphmart 482

Copying a Graphmart 483

Graphmart Settings Reference 485

Creating an Elasticsearch Index from a Graphmart 489

Adding Data Layers to Graphmarts 497

Creating a New Layer 497

Cloning a Layer 500

Using Query Contexts 503

Defining Execution Conditions 507

Advanced Data Access Settings 509

Adding Steps to Layers 512

4

Directly Load a Data Source (Direct Load Step) 512

Create an Elasticsearch Index (Elasticsearch Indexing Step) 517

Take a Snapshot of an Index (Elasticsearch Snapshot Step) 521

Export Data to an FLDS (Export Step) 524

Load a Dataset from the Catalog (Load Dataset Step) 531

Pre-Compile a Query (Pre-Compile Query Step) 535

Create a Reusable Query Template 538

Run a Transformation Query (Query Step) 548

Infer New Data (RDFS+ Inference Step) 551

Validate the Data (Validation Step) 562

Construct a View of the Data (View Step) 567

Creating Data on Demand Endpoints 574

Creating an Auto-Generated Endpoint 574

Creating a Custom Endpoint 581

Sharing Access to Graphmarts 592

Sharing Concepts 592

Graphmart FAQ 601

Profiling Datasets and Graphmarts 604

Generating a Dataset Data Profile 605

Generating a Graphmart Data Profile 610

Data Profiling Metrics 614

Access & Analyze 627

Access Data with Hi-Res Analytics Dashboards 628

Introduction to Hi-Res Analytics 629

Getting Started: Explore and Visualize Your Data 637

5

Create a New Dashboard 637

Explore the Data 639

Create Visualizations of the Data 643

Working with Dashboards 648

Creating a Graphmart Dashboard 648

Creating a Network Navigator Dashboard 651

Configuring a Dashboard to Update in Batch Reporting vs. Interactive Mode 676

Capturing User-Defined Values in Dashboards 682

Working with Lenses 697

Creating a Lens 697

Cloning a Lens 821

Exporting a Lens 822

Deleting a Lens 825

Working with Filters 827

Adding a Cloud Filter 827

Adding a Date Range Filter 832

Adding a Hierarchy Filter 837

Adding a Limit Filter 841

Adding a List Filter 845

Adding a Numeric Range Filter 849

Adding a Presence Filter 854

Adding a Quartile Filter 858

Adding a Range Slider Filter 861

Adding a Relative Time Filter 864

Adding a Search Filter 868

Adding a Single Select List Filter 872

6

Adding a Types Filter 876

Calculating Values in Lenses and Filters 881

Combining Data from Multiple Classes 887

Searching for Text in Unstructured Documents 892

Supported Search Syntax 897

Sharing Access to Dashboards and Lenses 899

Configure Dashboard or Lens Permissions 902

Access Data with the Query Builder 906

Running SPARQL Queries in the Query Builder 907

Searching for Quads in the Query Builder 915

Access Data on Demand Endpoints 921

Accessing an Endpoint Programmatically 922

Accessing an Endpoint from an Application 926

Accessing Data via the OData API 928

Downloading the Anzo ODBC and JDBC Drivers 930

JDBC Driver Documentation 936

OData Reference 944

OData URL Conventions 944

Supported Query Operators 945

Access the SPARQL Endpoint 953

Access the HTTP Client Interface 965

Share Access to Artifacts 973

Version and Migrate Artifacts 980

Creating and Restoring Versions of Artifacts 981

Create a Backup Version 981

7

Restore a Backup Version 983

Exporting an Artifact 986

Making Properties Replaceable on Export 991

Importing Exported Versions of Artifacts 992

SPARQL Best Practices and Query Templates 996

SPARQL Best Practices 997

SPARQL Query Templates 1004

Function and Formula Reference 1010

String Functions 1011

BUSINESS_ENTITY_EXCLUDER 1013

CONCATENATE 1014

CONCATURL 1014

CONTAINS 1015

ENCODE_FOR_URI 1015

ESCAPEHTML 1016

FIND 1016

FINDREVERSE 1017

GROUP_CONCAT 1018

GROUPCONCAT 1018

LANG 1019

LANGMATCHES 1020

LCASE 1021

LEFT 1021

LEN 1022

LEVENSHTEIN_DIST 1022

LOWER 1023

8

MD5 1023

MID 1024

REGEX 1024

REGEXP_SUBSTR 1025

REPLACE 1026

RIGHT 1027

SEARCH 1028

SHA1 1028

SHA224 1029

SHA256 1029

SHA384 1030

SHA512 1030

STRAFTER 1031

STRBEFORE 1031

STRDT 1032

STRENDS 1033

STRLANG 1033

STRLEN 1034

STRSTARTS 1034

STRUUID 1035

SUBSTITUTE 1035

SUBSTR 1036

TOURI 1037

TRIM 1037

UCASE 1038

UPPER 1038

9

Math Functions 1040

ABS 1042

ADD 1043

AVERAGEIF 1043

AVERAGEIFS 1044

AVG 1045

CEILING 1045

COS 1046

DIVIDE 1046

EQUAL 1047

EXP 1047

FACT 1048

FLOOR 1048

GE 1049

GT 1050

HAMMING_DIST 1050

HAVERSINE_DIST 1051

LE 1052

LN 1052

LOG 1053

LOG2 1053

LT 1054

MAXVAL 1055

MINVAL 1055

MOD 1056

MULTIPLY 1056

10

NOT_EQUAL 1057

NPV 1057

NUMERIC-ADD 1058

NUMERIC-SUBTRACT 1059

PI 1059

POWER 1060

PRODUCT 1060

QUOTIENT 1061

RAD 1061

RAND 1062

RANDBETWEEN 1062

ROUND 1063

ROUNDDOWN 1063

ROUNDUP 1064

SIN 1064

SQRT 1065

SUBTRACT 1066

SUM 1066

SUMIF 1067

SUMIFS 1068

SUMPRODUCT 1068

SUMSQ 1069

TAN 1069

Aggregate Functions 1071

AVERAGEIF 1072

AVERAGEIFS 1073

11

AVG 1074

CHOOSE_BY_MAX 1075

CHOOSE_BY_MIN 1075

COUNT 1076

COUNT_DISTINCT 1077

COUNTIF 1077

COUNTIFS 1078

GROUP_CONCAT 1079

GROUPCONCAT 1079

MAX 1080

MEDIAN 1081

MIN 1081

MODE 1082

MODEPERCENT 1082

PERCENTILE_CONT 1083

PERCENTILE_DISC 1084

PRODUCT 1084

SAMPLE 1085

STDEV 1085

STDEVP 1086

SUM 1086

SUMIF 1087

SUMIFS 1088

SUMPRODUCT 1088

SUMSQ 1089

VAR 1089

12

VARP 1090

WEIGHTEDAVERAGE 1090

Date and Time Functions 1092

DATE 1094

DATEPART 1094

DATETIME (or xsd:dateTime) 1095

DAY 1095

DAYSFROMDURATION 1096

DUR_TO_MILLIS 1096

DURATION 1097

DURATIONFORMAT 1097

DURATIONPERIODFORMAT 1098

FORMATDATE 1100

HOUR 1100

MASKEDDATETIME 1101

MILLIS 1102

MINUTE 1102

MONTH 1103

NOW 1103

NOWMILLIS 1104

PARSEDATETIME 1104

SECOND 1105

TIME 1106

TIMEPART 1107

TIMEVALUE 1107

TIMEZONE 1108

13

TODAY 1108

TZ 1108

WEEKDAY 1109

WEEKNUM 1110

xsd:date 1110

YEAR 1111

YEARMONTH 1111

Casting Functions 1113

BNODE 1114

BOOLEAN 1115

BYTE 1115

CONCATURL 1116

DATATYPE 1116

DATETIME (or xsd:dateTime) 1117

DATEVALUE 1117

DECIMAL 1118

DOUBLE 1118

DURATION 1119

DURATIONFORMAT 1119

ENCODE_FOR_URI 1120

FLOAT 1121

FORMATDATE 1121

FORMATFRACTION 1122

FORMATNUMBER 1123

INT 1123

INTEGER 1124

14

LONG 1124

PARSEDATETIME 1125

RAD 1126

SERIALIZE 1127

SHORT 1127

STR 1128

TEXT 1128

TIMEVALUE 1129

TOURI 1129

UUID 1130

xsd:date 1130

Logical Functions 1131

AND 1132

BOUND 1132

CASE 1133

COALESCE 1134

EQUAL 1134

IF 1135

IFERROR 1136

IN 1136

NOT 1136

NOT_EQUAL 1137

NOT_IN 1138

OR 1138

PARTITIONINDEX 1139

SAMETERM 1140

15

UNBOUND 1140

Informational or Testing Functions 1142

CONTAINS 1143

GE 1143

GT 1144

ISBLANK 1145

ISDATATYPE 1145

ISERROR 1146

ISIRI 1147

ISLITERAL 1147

ISNUMERIC 1148

ISURI 1148

LANG 1149

LANGMATCHES 1149

LE 1150

LOCALNAME 1150

LT 1151

METADATAGRAPHURI 1152

NAMESPACE 1152

SAMETERM 1153

Hash Functions 1154

MD5 1154

SHA1 1155

SHA224 1155

SHA256 1156

SHA384 1156

16

SHA512 1157

Window Aggregate and Ranking Functions 1158

WINDOW_AVG 1159

WINDOW_COUNT 1161

WINDOW_MAX 1162

WINDOW_MIN 1164

WINDOW_NTILE 1166

WINDOW_PERCENTILE 1167

WINDOW_PERCENTILE_CONT 1167

WINDOW_PERCENTILE_DISC 1168

WINDOW_PRODUCT 1169

WINDOW_QUARTILE 1171

WINDOW_SUM 1172

Develop 1175

Anzo Rest API 1176

Introduction to the API 1177

Viewing the API Documentation 1180

Enabling Cross-Origin Resource Sharing 1181

Step Type Schemas 1183

Direct Load Step 1183

Elasticsearch Indexing Step 1187

Elasticsearch Snapshot Step 1191

Export Step 1195

Load Dataset Step 1202

Pre-Compile Query Step 1207

Query-Driven Templated Step 1211

17

Query Step 1215

RDFS+ Inference Step 1219

Templated Step 1222

Validation Step 1227

Anzo Java SDK 1233

18

About This Doc

This document provides guidance on onboarding, modeling, blending, and accessing data in Anzo.

Tip
You can view the contents of this guide as well as release notes, getting started, deployment,

and administration documentation online at docs.cambridgesemantics.com. You can also find

PDF versions of the getting started, deployment, and administration documentation here.

The following list introduces the sections in this guide.

l Onboard & Virtualization: Provides instructions for connecting to data sources and

onboarding or virtualizing structured and semi-structured data as well as details about

creating pipelines to onboard unstructured data.

l Model: Provides conceptual information about data models, describes model requirements,

and includes instructions for creating, editing, uploading, and downloading models.

l Blend: Includes information about the Datasets catalog and instructions on creating and

managing datasets and editions. Also provides instructions on creating graphmarts, data

layers, steps, Data on Demand endpoints, and managing graphmart permissions, as well as

creating data profiles for datasets and graphmarts.

l Access & Analyze: Discusses the options for accessing and analyzing your data, including

creating Hi-Res Analytics dashboards, using the Query Builder to run SPARQL queries, and

accessing the SPARQL endpoint or Data on Demand endpoints. Also includes information

about sharing, versioning, and migrating artifacts.

l Develop: Includes information for developers about the Anzo REST API and Java SDK.

About This Doc 19

https://docs.cambridgesemantics.com/anzo/v5.4/userdoc/
https://docs.cambridgesemantics.com/anzo/v5.4/userdoc/pdfs.htm

Onboard & Virtualization

The topics in this section provide instructions for onboarding unstructured data and onboarding or

virtualizing structured or semi-structured data. For instructions on importing files that are in RDF

format (Turtle or N-Triple), see Creating a Dataset from RDF Files.

In this section:
Onboard Structured Data 21

Onboard Unstructured Data 355

Onboard & Virtualization 20

Onboard Structured Data

For structured and semi-structured data sources—databases, HTTP REST endpoints, CSV, JSON,

XML, Parquet, and SAS files, and raw data—there are two ways to onboard and/or virtualize the

data:

Automated Direct Data Load

Data from databases and CSV, JSON, XML, Parquet, and SAS files can be onboarded to Anzo via

the automated direct data load workflow. This workflow follows an extract, load, and transform (ELT)

process to ingest data. In the ELT workflow, data sources are extracted and loaded to graphmarts.

Data layers and Direct Load Steps with SPARQL queries are automatically generated to transform

and blend the data to analytics-ready knowledge graphs. The AnzoGraph Graph Data Interface

(GDI) Java plugin is used to connect to the sources, create a model, and generate the data layer

queries. For more information about this workflow, see Onboarding Data with the Automated

Workflow.

Load or Virtualization with SPARQL Queries

Raw data and data from databases, HTTP REST endpoints, and CSV, JSON, XML, Parquet, and

SAS files can be onboarded or virtualized by invoking the Graph Data Interface (GDI) with manually

written SPARQL queries. The GDI is extremely flexible, allowing you to connect directly to sources

and control all aspects of the extract, load, and transform process. You can onboard data into Anzo

by adding a Direct Load Step query. Or you can create a virtual graph by adding a View step query.

By creating views, you can access the source data exactly when it is needed, without requiring you

to ingest all of the data into Anzo up front. For more information about this workflow, see

Onboarding or Virtualizing Data with SPARQL Queries.

Note
Whether you plan to use the automated workflow or manually invoke the GDI, the first step in

the process is to connect your data sources to Anzo and onboard the schemas. Start with

Adding Data Sources.

Onboard Structured Data 21

Adding Data Sources

This topics in this section provide instructions for connecting to structured and semi-structured data

sources and working with schemas.

Tip
For instructions on onboarding RDF files (Turtle or N-Triple files) to Anzo, see Creating a

Dataset from RDF Files.

In this section:
Connecting to a Database 23

Defining a Database Schema 45

Adding an HTTP or SPARQL Data Source 58

Adding a CSV Data Source 60

Adding a JSON Data Source 68

Adding an XML Data Source 75

Adding a SAS Data Source 81

Adding a Parquet Data Source 88

Configuring a CSV or Parquet Source for Incremental Processing 92

Assigning Primary Keys in a Schema 97

Adding Foreign Keys 100

Adding Data Sources 22

Connecting to a Database

The topics in this section provide instructions on configuring connections to the database types that

Anzo and AnzoGraph support by default.

Tip
To connect to other types of databases, first add JDBC drivers to Anzo (see Uploading a

Plugin in the Administration Guide) and AnzoGraph (see Deploy Drivers for Custom Database

Sources in the Deployment Guide). Then you can follow any of the instructions in this section

to configure the connection. All database connections are similar, but settings may vary based

on the JDBC driver.

l Connecting to a Databricks Source

l Connecting to a DB2 Source

l Connecting to an MSSQL Source

l Connecting to an Oracle Source

l Connecting to a PostgreSQL Source

l Connecting to a Snowflake Source

l Connecting to a Sybase Source

Connecting to a Databricks Source

Follow the instructions below to connect to a Databricks database.

1. In the Anzo application, expand the Onboard menu and click Structured Data. Anzo displays
the Data Sources screen, which lists any existing data sources. For example:

Connecting to a Database 23

https://docs.cambridgesemantics.com/anzo/v5.4/userdoc/admin-upload-plugin.htm
https://docs.cambridgesemantics.com/anzo/v5.4/userdoc/admin-upload-plugin.htm
https://docs.cambridgesemantics.com/anzo/v5.4/userdoc/anzograph-post-install.htm#gdi-drivers
https://docs.cambridgesemantics.com/anzo/v5.4/userdoc/anzograph-post-install.htm#gdi-drivers

2. Click the Add Data Source button, select Database, and then select Databricks Database
Data Source. The Create screen is displayed:

3. Complete the required fields and configure any optional settings. The list below describes

each setting.

l Title: The name to give to this data source connection.

l Description: An optional description of the connection.

Connecting to a Database 24

l User: The user name to use for logging in to the database.

l Password: The password for the user name.

l Server: The host name or IP address for the source.

l Database: An optional partition that contains the data to onboard.

l HTTP Path: The Databricks compute resources URL.

The image below shows an example of a completed configuration.

4. Click Save to save the data source connection. The Tables tab is displayed.

Connecting to a Database 25

5. Before proceeding to select or create a schema, you may want to test connectivity to the

database. To do so, click the Overview tab and then click the Test Connection button at the
bottom of the screen.

If the connection fails, adjust the data source details until the connection is successful.

Note
Only the connection between Anzo and the database is tested. Connectivity is not

tested between AnzoGraph and the database. Cambridge Semantics recommends that

you perform a manual test to ensure that AnzoGraph can also connect to the database.

After connecting to the source, the next step is to add one or more schemas. See Defining a

Database Schema for instructions.

Connecting to a DB2 Source

Follow the instructions below to connect to a DB2 database.

1. In the Anzo application, expand the Onboard menu and click Structured Data. Anzo displays
the Data Sources screen, which lists any existing data sources. For example:

Connecting to a Database 26

2. Click the Add Data Source button, select Database, and then select DB2 Database Data
Source. The Create screen is displayed:

3. Complete the required fields and configure any optional settings. The list below describes

each setting.

l Title: The name to give to this data source connection.

l Description: An optional description of the connection.

l User: The user name to use for logging in to the database.

Connecting to a Database 27

l Password: The password for the user name.

l Server: The host name or IP address for the source.

l Database: An optional partition that contains the data to onboard.

The image below shows an example of a completed configuration.

4. Click Save to save the data source connection. The Tables tab is displayed.

5. Before proceeding to select or create a schema, you may want to test connectivity to the

database. To do so, click the Overview tab and then click the Test Connection button at the
bottom of the screen.

Connecting to a Database 28

If the connection fails, adjust the data source details until the connection is successful.

Note
Only the connection between Anzo and the database is tested. Connectivity is not

tested between AnzoGraph and the database. Cambridge Semantics recommends that

you perform a manual test to ensure that AnzoGraph can also connect to the database.

After connecting to the source, the next step is to add one or more schemas. See Defining a

Database Schema for instructions.

Connecting to an MSSQL Source

Follow the instructions below to connect to a SQL Server or MSSQL database.

1. In the Anzo application, expand the Onboard menu and click Structured Data. Anzo displays
the Data Sources screen, which lists any existing data sources. For example:

Connecting to a Database 29

2. Click the Add Data Source button, select Database, and then select MSSQL Database Data
Source. The Create screen is displayed:

3. Complete the required fields and configure any optional settings. The list below describes

each setting.

l Title: The name to give to this data source connection.

l Description: An optional description of the connection.

Connecting to a Database 30

l User: The user name to use for logging in to the database.

l Password: The password for the user name.

l Server: The host name or IP address for the source.

l Database: An optional partition that contains the data to onboard.

l Domain: When using NTLM authentication, this is the domain to authenticate against.

The image below shows an example of a completed configuration.

4. Click Save to save the data source connection. The Tables tab is displayed.

Connecting to a Database 31

5. Before proceeding to select or create a schema, you may want to test connectivity to the

database. To do so, click the Overview tab and then click the Test Connection button at the
bottom of the screen.

If the connection fails, adjust the data source details until the connection is successful.

Note
Only the connection between Anzo and the database is tested. Connectivity is not

tested between AnzoGraph and the database. Cambridge Semantics recommends that

you perform a manual test to ensure that AnzoGraph can also connect to the database.

After connecting to the source, the next step is to add one or more schemas. See Defining a

Database Schema for instructions.

Connecting to an Oracle Source

Follow the instructions below to connect to an Oracle database.

1. In the Anzo application, expand the Onboard menu and click Structured Data. Anzo displays
the Data Sources screen, which lists any existing data sources. For example:

Connecting to a Database 32

2. Click the Add Data Source button, select Database, and then select Oracle Database Data
Source. The Create screen is displayed:

3. Complete the required fields and configure any optional settings. The list below describes

each setting.

l Title: The name to give to this data source connection.

l Description: An optional description of the connection.

l User: The user name to use for logging in to the database.

Connecting to a Database 33

l Password: The password for the user name.

l Server: The host name or IP address for the source.

The image below shows an example of a completed configuration.

4. Click Save to save the data source connection. The Tables tab is displayed.

5. Before proceeding to select or create a schema, you may want to test connectivity to the

database. To do so, click the Overview tab and then click the Test Connection button at the
bottom of the screen.

Connecting to a Database 34

If the connection fails, adjust the data source details until the connection is successful.

Note
Only the connection between Anzo and the database is tested. Connectivity is not

tested between AnzoGraph and the database. Cambridge Semantics recommends that

you perform a manual test to ensure that AnzoGraph can also connect to the database.

After connecting to the source, the next step is to add one or more schemas. See Defining a

Database Schema for instructions.

Connecting to a PostgreSQL Source

Follow the instructions below to connect to a PostgreSQL database.

1. In the Anzo application, expand the Onboard menu and click Structured Data. Anzo displays
the Data Sources screen, which lists any existing data sources. For example:

Connecting to a Database 35

2. Click the Add Data Source button, select Database, and then select PostgreSQL Database
Data Source. The Create screen is displayed:

3. Complete the required fields and configure any optional settings. The list below describes

each setting.

l Title: The name to give to this data source connection.

l Description: An optional description of the connection.

l User: The user name to use for logging in to the database.

Connecting to a Database 36

l Password: The password for the user name.

l Server: The host name or IP address for the source.

l Database: An optional partition that contains the data to onboard.

The image below shows an example of a completed configuration.

4. Click Save to save the data source connection. The Tables tab is displayed.

5. Before proceeding to select or create a schema, you may want to test connectivity to the

database. To do so, click the Overview tab and then click the Test Connection button at the
bottom of the screen.

Connecting to a Database 37

If the connection fails, adjust the data source details until the connection is successful.

Note
Only the connection between Anzo and the database is tested. Connectivity is not

tested between AnzoGraph and the database. Cambridge Semantics recommends that

you perform a manual test to ensure that AnzoGraph can also connect to the database.

After connecting to the source, the next step is to add one or more schemas. See Defining a

Database Schema for instructions.

Connecting to a Snowflake Source

Follow the instructions below to connect to a Snowflake database.

1. In the Anzo application, expand the Onboard menu and click Structured Data. Anzo displays
the Data Sources screen, which lists any existing data sources. For example:

Connecting to a Database 38

2. Click the Add Data Source button, select Database, and then select Snowflake Database
Data Source. The Create screen is displayed:

3. Complete the required fields and configure any optional settings. The list below describes

each setting.

l Title: The name to give to this data source connection.

l Description: An optional description of the connection.

l User: The user name to use for logging in to the database.

Connecting to a Database 39

l Password: The password for the user name.

l Server: The host name or IP address for the source.

l Database: An optional partition that contains the data to onboard.

The image below shows an example of a completed configuration.

4. Click Save to save the data source connection. The Tables tab is displayed.

5. Before proceeding to select or create a schema, you may want to test connectivity to the

database. To do so, click the Overview tab and then click the Test Connection button at the
bottom of the screen.

Connecting to a Database 40

If the connection fails, adjust the data source details until the connection is successful.

Note
Only the connection between Anzo and the database is tested. Connectivity is not

tested between AnzoGraph and the database. Cambridge Semantics recommends that

you perform a manual test to ensure that AnzoGraph can also connect to the database.

After connecting to the source, the next step is to add one or more schemas. See Defining a

Database Schema for instructions.

Connecting to a Sybase Source

Follow the instructions below to connect to a Sybase database.

1. In the Anzo application, expand the Onboard menu and click Structured Data. Anzo displays
the Data Sources screen, which lists any existing data sources. For example:

Connecting to a Database 41

2. Click the Add Data Source button, select Database, and then select Sybase Database Data
Source. The Create screen is displayed:

3. Complete the required fields and configure any optional settings. The list below describes

each setting.

l Title: The name to give to this data source connection.

l Description: An optional description of the connection.

l User: The user name to use for logging in to the database.

Connecting to a Database 42

l Password: The password for the user name.

l Server: The host name or IP address for the source.

l Database: An optional partition that contains the data to onboard.

The image below shows an example of a completed configuration.

4. Click Save to save the data source connection. The Tables tab is displayed.

5. Before proceeding to select or create a schema, you may want to test connectivity to the

database. To do so, click the Overview tab and then click the Test Connection button at the
bottom of the screen.

Connecting to a Database 43

If the connection fails, adjust the data source connection details until the connection is

successful.

Note
Only the connection between Anzo and the database is tested. Connectivity is not

tested between AnzoGraph and the database. Cambridge Semantics recommends that

you perform a manual test to ensure that AnzoGraph can also connect to the database.

After connecting to the source, the next step is to add one or more schemas. See Defining a

Database Schema for instructions.

Connecting to a Database 44

Defining a Database Schema

The schema defines the source data to onboard. There are multiple options available for defining a

database schema. You can import a predefined schema from the database, you can write a static

SQL query that defines the data to onboard, or, if you want to import data incrementally, you can

write an incremental SQL query that ingests a subset of the data.

Note
You can import or create up to 5 schemas per database data source. To include more than 5

schemas, create another data source for the additional schemas.

Tip
By default, Anzo is configured to exclude Views from the list of available Schemas to import.

For information about including Views as tables that can be imported, see Including Views as

Schemas for Database Data Sources in the Administration Guide.

l Import a Predefined Schema

l Create a Schema from an SQL Query

l Create an Incremental Schema

Import a Predefined Schema

1. In the Anzo application, expand the Onboard menu and click Structured Data. Anzo displays
the Data Sources screen, which lists any existing data sources. For example:

Defining a Database Schema 45

https://docs.cambridgesemantics.com/anzo/v5.4/userdoc/views-as-schemas.htm
https://docs.cambridgesemantics.com/anzo/v5.4/userdoc/views-as-schemas.htm

2. Click the database for which you want to import a schema. Anzo displays the Tables tab for

the source. For example, the image below shows the Tables tab before any schemas have

been added:

3. Click the Import Schemas button. Anzo displays the Import Schemas dialog box, which lists
any predefined schemas in the database. For example:

Defining a Database Schema 46

Note
If you do not see a schema that you expect to see, make sure that you have the

appropriate permissions to access to the data source.

4. To import entire schemas, select the checkbox next to each schema name that you want to

import. If you want to import a subset of the tables in a schema, expand the schema and

select the checkbox next to each table that you want to include. For example:

5. When you have finished selecting schemas, click OK. Anzo imports the selected schemas
and lists them on the Tables tab. You can expand a schema to view its tables. Selecting a row

in the schema displays the sample data on the right side of the screen.

Defining a Database Schema 47

Important
The automated data load workflow ignores all changes that are made to the schema on

the Tables screen—except for changes to primary and foreign keys. For example, if you

edit a column heading to change its semantic type, that change is disregarded when the

graphmart is created. Only the original type from the data source is considered. If you

add or change primary and foreign keys on the Tables screen, however, the automated

data load workflow will retain those changes.

For information about creating or changing primary keys and foreign keys, see Assigning Primary

Keys in a Schema and Adding Foreign Keys.

Create a Schema from an SQL Query

1. In the Anzo application, expand the Onboard menu and click Structured Data. Anzo displays
the Data Sources screen, which lists any existing data sources. For example:

Defining a Database Schema 48

2. Click the database for which you want to create a schema. Anzo displays the Tables tab for

the source. For example, the image below shows the Tables tab before any schemas have

been created:

3. Click the Create Schemas From Query button. Anzo displays the Create Schemas dialog
box:

Defining a Database Schema 49

4. In the Create Schemas dialog box, specify a name for this schema in the Schema Name field.

5. In the Table Name field, specify a name for the table in the schema that the query will create.

6. Type the SQL statement in the text box. The statement can include any functionality that the

source database supports. Anzo does not validate the SQL.

Note
If the SQL query requires quotes around values, such as ‘2010-01-01’ or ‘TestValue’,

make sure that you use single quotes ('). For example:

SELECT * FROM Movies WHERE production_day='2021-08-01'

Including double quotes (") in a schema query results in an error when the query is run.

The following example creates a schema named employees. A table named all_employees

will be created in the schema, and the table is created from the following SQL query:

SELECT EmployeeID, FirstName, LastName, Title, Salary, BirthDate, HireDate,

Region, Country

FROM northwind.Employees

WHERE EmployeeID

Defining a Database Schema 50

7. Click Save to save the query. Anzo creates the new schema and adds it to the list of schemas

on the Tables screen. Selecting the schema displays sample data on the right side of the

screen.

Important
The automated data load workflow ignores all changes that are made to the schema on

the Tables screen—except for changes to primary and foreign keys. For example, if you

edit a column heading to change its semantic type, that change is disregarded when the

graphmart is created. Only the original type from the data source is considered. If you

add or change primary and foreign keys on the Tables screen, however, the automated

data load workflow will retain those changes.

Defining a Database Schema 51

8. If you want to create additional tables in the schema, follow these steps:

a. Click the menu icon () in the Actions column for the schema name and select Add

Table. For example:

The Create New Table dialog box is displayed.

b. In the Create New Table dialog box, specify a name for the new table in the Table Name
field.

c. In the Schema Query field, write the SQL query that defines the data for the new table.

d. Click Save to add the table to the schema and return to the Tables screen.

For information about creating or changing primary keys and foreign keys, see Assigning Primary

Keys in a Schema and Adding Foreign Keys.

Create an Incremental Schema

Follow the instructions below to create a schema by writing an SQL query that defines a subset of

the data to onboard in increments.

Defining a Database Schema 52

1. In the Anzo application, expand the Onboard menu and click Structured Data. Anzo displays
the Data Sources screen, which lists any existing data sources. For example:

2. Click the database for which you want to create an incremental schema. Anzo displays the

Tables tab for the source. For example, the image below shows the Tables tab before any

schemas have been created:

3. Click the Create Schemas From Query button. Anzo displays the Create Schemas dialog
box:

Defining a Database Schema 53

4. In the Create Schemas dialog box, specify a name for this schema in the Schema Name field.

5. In the Table Name field, specify a name for the table in the schema that the query will create.

6. At the bottom of the screen, enable the Include increment data option by sliding the slider to
the right. Anzo displays additional settings:

7. Populate the following fields so that you can use the values as a guide for writing the schema

query:

l Incremental Column Name: The source column whose value will be used to increment
the data.

Defining a Database Schema 54

l Value: The value in the column to use as the stopping point for the first import process
and the starting point for the next import.

Note
Do not include quote characters in the Value field. If the SQL query requires
quotes around values, such as ‘2010-01-01’ or ‘TestValue’, include the quotes

around the {INCREMENTVALUE} parameter in the query and not in the Value

field. For example, if the value to increment on is ‘2010-01-01’, specify 2010-01-01
in the Value field and add the quotes to the query like the following example:

SELECT * FROM Orders WHERE OrderData > '{INCREMENTVALUE}'

In addition, make sure that you use single quotes (') in schema queries. Including

double quotes (") in a schema query results in an error when the query is run.

l Comparator: The operator to use for comparing source values against the value above.

8. In the query text field, type the SQL statement that will target the appropriate source data. The

WHERE clause must include the incremental column name, the comparison operator, and an

INCREMENTVALUE parameter. This parameter is substituted with the Value at runtime. For
example, in the query below, the incremental column name is EmployeeID, the comparator is
> (greater than), and the {INCREMENTVALUE} parameter is specified after the comparator.
{INCREMENTVALUE} is replaced with the value in the Value field at runtime:

SELECT EmployeeID, FirstName, LastName, Title, Salary, BirthDate, HireDate,

Region, Country

FROM northwind.Employees

WHERE EmployeeID > {INCREMENTVALUE}

Make sure that the query includes the INCREMENTVALUE parameter and uses the same

Incremental Column Name and Comparator values as the fields below the query. For

example:

Defining a Database Schema 55

9. Click Save to save the query. Anzo creates the new schema and adds it to the list of schemas

on the Tables screen. Selecting the schema displays sample data on the right side of the

screen.

Important
The automated data load workflow ignores all changes that are made to the schema on

the Tables screen—except for changes to primary and foreign keys. For example, if you

edit a column heading to change its semantic type, that change is disregarded when the

graphmart is created. Only the original type from the data source is considered. If you

add or change primary and foreign keys on the Tables screen, however, the automated

data load workflow will retain those changes.

Defining a Database Schema 56

10. If you want to create additional tables in the schema, follow these steps:

a. Click the menu icon () in the Actions column for the schema name and select Add

Table. For example:

The Create New Table dialog box is displayed.

b. In the Create New Table dialog box, specify a name for the new table in the Table Name
field.

Defining a Database Schema 57

c. In the Schema Query field, write the SQL query that defines the data for the new table.

d. Click Save to add the table to the schema and return to the Tables screen.

For information about creating or changing primary keys and foreign keys, see Assigning Primary

Keys in a Schema and Adding Foreign Keys.

When you are ready to onboard the data to Anzo, see Onboarding Data with the Automated

Workflow for next steps. Or, if you want to onboard or virtualize the source by manually writing

SPARQL queries against the Graph Data Interface service, see Onboarding or Virtualizing Data

with SPARQL Queries.

Adding an HTTP or SPARQL Data Source

Follow the instructions below to add a connection to a SPARQL or HTTP endpoint. Though you

cannot use the automated workflow to ingest data to Anzo from an endpoint, as you can from file-

based and database sources, configuring the connection to endpoints adds those sources as

Context Providers so that you can reference context keys in Graph Data Interface (GDI) queries

against the endpoints.

1. In the Anzo application, expand the Onboard menu and click Structured Data. Anzo displays
the Data Sources screen, which lists any existing data sources. For example:

Adding an HTTP or SPARQL Data Source 58

2. Click the Add Data Source button, select HTTP, and then choose the type of endpoint to
connect to. Note that HTTP Datasource and Sparql Datasource can be used interchangeably

at this time. There are no differences in the configuration options. Anzo opens the Create Data

Source screen. For example:

3. At the top of the screen, specify a Title for the source and enter an optional Description.

4. Enter the endpoint connection details:

l Url: The URL for the endpoint. When connecting to an Anzo SPARQL endpoint, make

sure that any URIs, such as a graphmart URI, are URL-encoded. For example:

https://10.0.10.10/sparql/graphmart/http%3A%2F%2Fcambridgesemantics.com%2F

Graphmart%2F1686168b-3eaf-4fdc-9730-1903717b9e62

l User: The user name to use for authentication.

l Password: The password for the user name.

l Confirm Password: Confirm the password for the user.

5. Click Save to save the data source connection. Anzo displays the Overview tab where you

can view the connection details.

Now that the connection to the endpoint is configured, you can write Graph Data Interface (GDI)

queries to virtualize or ingest data from the source. For information about using the GDI, see

Onboarding or Virtualizing Data with SPARQL Queries.

Adding an HTTP or SPARQL Data Source 59

Adding a CSV Data Source

Follow the instructions below to add a CSV data source and import the data from the files.

Tip
If your CSV data source is consistently updated with new or changed files, you can configure

the source to process the data incrementally. For details, see Configuring a CSV or Parquet

Source for Incremental Processing.

1. In the Anzo application, expand the Onboard menu and click Structured Data. Anzo displays
the Data Sources screen, which lists any existing data sources. For example:

2. Click the Add Data Source button and select File > CSV Data Source. Anzo opens the
Create CSV Data Source screen.

Adding a CSV Data Source 60

3. Specify a name for the Data Source in the Title field, and type an optional description in the
Description field. Then click Save. Anzo saves the source and displays the Tables tab.

4. Click the Add New File button. Anzo displays the Add New File dialog box.

5. Follow the appropriate steps below depending on whether the CSV files are on your computer

or the shared File Store:

If the files are on your computer:

Adding a CSV Data Source 61

Note
The From Your Computer option is a convenient way to do a one-time ingestion so you
can quickly get started with your data. It should not be relied upon as part of a regular

onboarding workflow unless the server is configured to store uploaded files on the

shared file store as described in Setting the Default Base File Store Path for File

Uploads in the Administration Guide. Data source files that are routinely updated and re-

ingested should be hosted on a shared file store.

a. As a best practice, check the upload location that is listed in the Upload To field by
hovering your pointer over the value to view the tooltip. Make sure the upload location is

a directory on the shared file store and not in the server installation path. If the file is not

uploaded to the shared file store it is not accessible by applications like AnzoGraph. In

addition, other users cannot create graphmarts from the data source because they

typically do not have access to the file location.

For example, viewing the Upload To location for the screen above shows that the file will

be uploaded to the server installation path, /opt/Anzo/Server/data...

If your Upload To location is configured to upload the file to the server installation path,

click Change and select an upload location that is on the shared file store. For example,
the image below shows the Upload Folder Location dialog box that is presented after

clicking Change. A folder called fileUploads is selected on the shared store.

Adding a CSV Data Source 62

https://docs.cambridgesemantics.com/anzo/v5.4/userdoc/file-upload-path.htm
https://docs.cambridgesemantics.com/anzo/v5.4/userdoc/file-upload-path.htm

b. Drag and drop the files onto the screen or click browse to navigate to the files and select
them. Anzo attaches the files and the Next button becomes active. For example:

c. Click Next. Anzo lists the uploaded files on the left side of the screen with a status of
Pending. For example:

Adding a CSV Data Source 63

If the files are on the File Store:

a. Click the From File Store radio button. Anzo displays the file selection dialog box. For
example:

b. On the left side of the screen, select the file store that hosts the CSV files. On the right

side of the screen, navigate to the directory that contains the files to import. The screen

displays the list of files in the directory.

Adding a CSV Data Source 64

c. Select each file that you want to import. If you have multiple files with the same

schema— the files contain the same columns listed in the same order—and you want

the files to be imported as if they are a single file, you can select the Insert Wildcard
option. Then type a string using asterisks as wildcard characters to find the files with

similar names. Files that match the specified string will be imported as one file. After
typing a string, click Apply to include that string in the Selected list.

Example
The image below shows a directory with several CSV files. For this example,

part.csv and partsupp.csv have the same schema and can be imported as one
file. The Insert Wildcard option is selected, and part*.csv is specified to identify
the two files.

d. When you have finished selecting files, click Next to close the dialog box. Anzo lists the
uploaded files on the left side of the screen with a status of Pending. For example:

Adding a CSV Data Source 65

6. If you do not need to change CSV file options, click the Process Pending Files button to
import all of the pending files. Anzo imports the data and updates the status to Processed.

If you do need to change CSV file options, click the menu icon () in the Actions column for that

file and select Edit. To change the options for multiple files, select the checkbox next to each
file, and then click the Edit button at the bottom of the table. Anzo displays the Edit CSV File

screen. For example, the image below shows the Edit screen for a single file:

Adding a CSV Data Source 66

Change the options as needed and then click Save & Import to import the file or files. Anzo
imports the data and updates the status to Processed.

7. Once the files are processed, you can click a table row on the left side of the screen to display

the schema on the right side of the screen.

Important
The automated data load workflow ignores all changes that are made to the schema on

the Tables screen—except for changes to primary and foreign keys. For example, if you

edit a column heading to change its semantic type, that change is disregarded when the

graphmart is created. Only the original type from the data source is considered. If you

add or change primary and foreign keys on the Tables screen, however, the automated

data load workflow will retain those changes.

For information about creating or changing primary keys and foreign keys, see Assigning Primary

Keys in a Schema and Adding Foreign Keys.

When you are ready to onboard the data to Anzo, see Onboarding Data with the Automated

Workflow for next steps. Or, if you want to onboard or virtualize the source by manually writing

SPARQL queries against the Graph Data Interface service, see Onboarding or Virtualizing Data

with SPARQL Queries.

Adding a CSV Data Source 67

Adding a JSON Data Source

This topic provides instructions for adding a JSON data source.

1. In the Anzo application, expand the Onboard menu and click Structured Data. Anzo displays
the Data Sources screen, which lists any existing data sources. For example:

2. Click the Add Data Source button and select File > JSON Data Source. Anzo opens the
Create JSON Data Source screen.

3. Specify a name for the data source in the Title field, and type an optional description in the
Description field.

Adding a JSON Data Source 68

4. Click the JSON File Location field to open the File Location dialog box.

5. Follow the appropriate steps below depending on whether the file is on your computer or the

shared File Store:

If the file is on your computer:

Note
The From Your Computer option is a convenient way to do a one-time ingestion so you
can quickly get started with your data. It should not be relied upon as part of a regular

onboarding workflow unless the server is configured to store uploaded files on the

shared file store as described in Setting the Default Base File Store Path for File

Uploads in the Administration Guide. Data source files that are routinely updated and re-

ingested should be hosted on a shared file store.

a. As a best practice, check the upload location that is listed in the Upload To field by
hovering your pointer over the value to view the tooltip. Make sure the upload location is

a directory on the shared file store and not in the server installation path. If the file is not

uploaded to the shared file store it is not accessible by applications like AnzoGraph. In

addition, other users cannot create graphmarts from the data source because they

Adding a JSON Data Source 69

https://docs.cambridgesemantics.com/anzo/v5.4/userdoc/file-upload-path.htm
https://docs.cambridgesemantics.com/anzo/v5.4/userdoc/file-upload-path.htm

typically do not have access to the file location.

For example, viewing the Upload To location for the screen above shows that the file will

be uploaded to the server installation path, /opt/Anzo/Server/data...

If your Upload To location is configured to upload the file to the server installation path,

click Change and select an upload location that is on the shared file store. For example,
the image below shows the Upload Folder Location dialog box that is presented after

clicking Change. A folder called fileUploads is selected on the shared store.

b. Drag and drop the file onto the screen or click browse to navigate to the file and select it.
Anzo attaches the file and the OK button becomes active. For example:

Adding a JSON Data Source 70

c. Click OK. Anzo lists the path to the file in the JSON File Location field.

If the file is on the File Store:

a. Click the From File Store radio button.

b. In the File Location dialog box, on the left side of the screen, select the shared file store

that hosts the file. On the right side of the screen, navigate to the directory that contains

the file to import. The screen displays the list of files in the directory. For example:

Adding a JSON Data Source 71

c. Select the file that you want to import and then click OK to close the dialog box. If you

have multiple files with the same schema— the files contain the same arrays in the same

order—you can select the Insert Wildcard option. Then type a string using asterisks as
wildcard characters to find the files with similar names. Files that match the specified

string will be imported as one file. You can specify up to 16,000 files using a wildcard.
After typing a string, click Apply to include that string in the Selected list.

Example
The image below shows a directory with multiple JSON files. For this example,

add-api-signals.json and datafox-api-signals.json have the same schema and
can be imported as one file. The Insert Wildcard option is selected, and
*signals.json is specified to identify the two files.

Adding a JSON Data Source 72

6. Click Save to create the data source. Anzo adds the source and displays the Overview
screen. For example:

7. By default, when the data from this source is ingested, the entire root node is captured; the

node at the root of the hierarchy is loaded to AnzoGraph in its entirety. Building the

hierarchical record for a large file is extremely memory intensive. To increase load

performance and decrease memory usage when onboarding a large file with many repeating

elements, Cambridge Semantics recommends that you configure the Root Element Name
field on the Overview tab. This field designates the element in the hierarchy that should be

treated as the root node. Specifying the desired root node tells the Graph Data Interface to

scan into memory only the data that you are interested in and not the entire file. To set the root

element, follow these steps:

Adding a JSON Data Source 73

a. Click in the Root Element Name field to make it editable.

b. Add the name of the element to designate as the root element. Type the name the same

way it appears in the file. Data is captured from whichever node in the hierarchy matches

the Root Element Name value in its entirety.

Tip
It is not necessary to express the path to an element if it is low in the hierarchy. For

specificity, however, you can use dot notation to supply the path. For example,

specifying "city" captures all city elements anywhere in the file. But specifying

"country.state.city" captures only the city elements that are under state and city in

the hierarchy. You can also include the dollar sign ($) character to anchor the

selector at the root of the file. For example, "data" captures all data elements

anywhere in the file. But "$.data" captures only the data elements that are at the

root of the hierarchy.

As an example, for a file that contains weather data in daily, hourly, minutely, and

currently hierarchies, "hourly" is specified to target only the data under the hourly

hierarchy:

c. Click the checkmark icon () to save the change.

Adding a JSON Data Source 74

For information about creating or changing primary keys and foreign keys, see Assigning Primary

Keys in a Schema and Adding Foreign Keys.

When you are ready to onboard the data to Anzo, see Onboarding Data with the Automated

Workflow for next steps. Or, if you want to onboard or virtualize the source by manually writing

SPARQL queries against the Graph Data Interface service, see Onboarding or Virtualizing Data

with SPARQL Queries.

Adding an XML Data Source

This topic provides instructions for adding an XML data source.

1. In the Anzo application, expand the Onboard menu and click Structured Data. Anzo displays
the Data Sources screen, which lists any existing data sources. For example:

2. Click the Add Data Source button and select File > XML Data Source. Anzo opens the
Create XML Data Source screen.

Adding an XML Data Source 75

3. Specify a name for the data source in the Title field, and type an optional description in the
Description field.

4. Click the File Location field to open the File Location dialog box.

5. Follow the appropriate steps below depending on whether the file is on your computer or the

shared File Store:

If the file is on your computer:

Adding an XML Data Source 76

Note
The From Your Computer option is a convenient way to do a one-time ingestion so you
can quickly get started with your data. It should not be relied upon as part of a regular

onboarding workflow unless the server is configured to store uploaded files on the

shared file store as described in Setting the Default Base File Store Path for File

Uploads in the Administration Guide. Data source files that are routinely updated and re-

ingested should be hosted on a shared file store.

a. As a best practice, check the upload location that is listed in the Upload To field by
hovering your pointer over the value to view the tooltip. Make sure the upload location is

a directory on the shared file store and not in the server installation path. If the file is not

uploaded to the shared file store it is not accessible by applications like AnzoGraph. In

addition, other users cannot create graphmarts from the data source because they

typically do not have access to the file location.

For example, viewing the Upload To location for the screen above shows that the file will

be uploaded to the server installation path, /opt/Anzo/Server/data...

If your Upload To location is configured to upload the file to the server installation path,

click Change and select an upload location that is on the shared file store. For example,
the image below shows the Upload Folder Location dialog box that is presented after

clicking Change. A folder called fileUploads is selected on the shared store.

Adding an XML Data Source 77

https://docs.cambridgesemantics.com/anzo/v5.4/userdoc/file-upload-path.htm
https://docs.cambridgesemantics.com/anzo/v5.4/userdoc/file-upload-path.htm

b. Drag and drop the file onto the screen or click browse to navigate to the file and select it.
Anzo attaches the file and the OK button becomes active.

c. Click OK. Anzo lists the path to the file in the XML File Location field.

If the file is on the File Store:

a. Click the From File Store radio button.

b. In the File Location dialog box, on the left side of the screen, select the appropriate File

Store. On the right side of the screen, navigate to the directory that contains the file to

import. The screen displays the list of files in the directory. For example:

Adding an XML Data Source 78

c. Select the file that you want to import and then click OK to close the dialog box. Anzo

lists the path to the file in the XML File Location field.

Note
If you have multiple files with the same schema— the files contain the same

elements in the same order—and you want the files to be imported as if they are a

single file, you can select the Insert Wildcard option. Then type a string using
asterisks as wildcard characters to find the files with similar names. Files that

match the specified string will be imported as one file and will result in one job
being created in the pipeline to ingest all of the files that are selected by the

specified string. After typing a string, click Apply to include that string in the
Selected list.

6. Click Save to create the data source. Anzo adds the source and displays the Overview
screen. For example:

7. By default, when the data from this source is ingested, the entire root node is captured; the

node at the root of the hierarchy is loaded to AnzoGraph in its entirety. Building the

hierarchical record for a large file is extremely memory intensive. To increase load

performance and decrease memory usage when onboarding a large file with many repeating

elements, Cambridge Semantics recommends that you configure the Root Element Name
field on the Overview tab. This field designates the element in the hierarchy that should be

Adding an XML Data Source 79

treated as the root node. Specifying the desired root node tells the Graph Data Interface to

scan into memory only the data that you are interested in and not the entire file. To set the root

element, follow these steps:

a. Click in the Root Element Name field to make it editable.

b. Add the name of the element to designate as the root element. Type the name the same

way it appears in the file. Data is captured from whichever node in the hierarchy matches

the Root Element Name value in its entirety.

Tip
It is not necessary to express the path to an element if it is low in the hierarchy. For

specificity, however, you can use dot notation to supply the path. For example,

specifying "city" captures all city elements anywhere in the file. But specifying

"country.state.city" captures only the city elements that are under state and city in

the hierarchy. You can also include the dollar sign ($) character to anchor the

selector at the root of the file. For example, "data" captures all data elements

anywhere in the file. But "$.data" captures only the data elements that are at the

root of the hierarchy.

As an example, for a file that contains weather data in daily, hourly, minutely, and

currently hierarchies, "hourly" is specified to target only the data under the hourly

hierarchy:

Adding an XML Data Source 80

c. Click the checkmark icon () to save the change.

For information about creating or changing primary keys and foreign keys, see Assigning Primary

Keys in a Schema and Adding Foreign Keys.

When you are ready to onboard the data to Anzo, see Onboarding Data with the Automated

Workflow for next steps. Or, if you want to onboard or virtualize the source by manually writing

SPARQL queries against the Graph Data Interface service, see Onboarding or Virtualizing Data

with SPARQL Queries.

Adding a SAS Data Source

Follow the instructions below to add a SAS data source and import data from SAS7BDAT files.

1. In the Anzo application, expand the Onboard menu and click Structured Data. Anzo displays
the Data Sources screen, which lists any existing data sources. For example:

2. Click the Add Data Source button and select File > SAS Data Source. Anzo opens the
Create SAS Data Source screen.

Adding a SAS Data Source 81

3. Specify a name for the source in the Title field, and type an optional description in the
Description field. Then click Save. Anzo saves the source and displays the Tables tab.

Adding a SAS Data Source 82

4. Click the Add New File button. Anzo displays the Add New File dialog box.

5. Follow the appropriate steps below depending on whether the SAS files are on your computer

or the shared File Store:

If the files are on your computer:

Note
The From Your Computer option is a convenient way to do a one-time ingestion so you
can quickly get started with your data. It should not be relied upon as part of a regular

onboarding workflow unless the server is configured to store uploaded files on the

shared file store as described in Setting the Default Base File Store Path for File

Uploads in the Administration Guide. Data source files that are routinely updated and re-

ingested should be hosted on a shared file store.

a. As a best practice, check the upload location that is listed in the Upload To field by
hovering your pointer over the value to view the tooltip. Make sure the upload location is

Adding a SAS Data Source 83

https://docs.cambridgesemantics.com/anzo/v5.4/userdoc/file-upload-path.htm
https://docs.cambridgesemantics.com/anzo/v5.4/userdoc/file-upload-path.htm

a directory on the shared file store and not in the server installation path. If the file is not

uploaded to the shared file store it is not accessible by applications like AnzoGraph. In

addition, other users cannot create graphmarts from the data source because they

typically do not have access to the file location.

For example, viewing the Upload To location for the screen above shows that the file will

be uploaded to the server installation path, /opt/Anzo/Server/data...

If your Upload To location is configured to upload the file to the server installation path,

click Change and select an upload location that is on the shared file store. For example,
the image below shows the Upload Folder Location dialog box that is presented after

clicking Change. A folder called fileUploads is selected on the shared store.

b. Drag and drop the files onto the screen or click browse to navigate to the files and select
them. Anzo attaches the files and the Next button becomes active.

c. Click Next. Anzo lists the uploaded files on the left side of the screen with a status of
Pending. For example:

Adding a SAS Data Source 84

If the files are on the File Store:

a. Click the From File Store radio button.

b. In the File Location dialog box, on the left side of the screen, select the appropriate File

Store. On the right side of the screen, navigate to the directory that contains the file to

import. The screen displays the list of files in the directory. For example:

Adding a SAS Data Source 85

c. Select each file that you want to import. When you finish selecting files, click Next to
close the dialog box. Anzo lists the uploaded files on the left side of the screen with a

status of Pending. For example:

6. If you do not need to change SAS file options, click the Process Pending Files button to
import all of the pending files. Anzo imports the data and updates the status to Processed.

If you do need to change SAS file options, click the menu icon () for that file and select Edit.

To change the options for multiple files, select the checkbox next to each of the files, and then

click the Edit button at the bottom of the table. Anzo displays the Edit SAS File screen. For

example, the image below shows the Edit screen for a single file:

Adding a SAS Data Source 86

Change the options as needed and then click Save & Import to import the SAS file or files.

Anzo imports the data and updates the status to Processed.

7. Once the files are processed, you can click a table row on the left side of the screen to display

the schema on the right side of the screen.

Important
The automated data load workflow ignores all changes that are made to the schema on

the Tables screen—except for changes to primary and foreign keys. For example, if you

edit a column heading to change its semantic type, that change is disregarded when the

graphmart is created. Only the original type from the data source is considered. If you

add or change primary and foreign keys on the Tables screen, however, the automated

data load workflow will retain those changes.

Adding a SAS Data Source 87

For information about creating or changing primary keys and foreign keys, see Assigning Primary

Keys in a Schema and Adding Foreign Keys.

When you are ready to onboard the data to Anzo, see Onboarding Data with the Automated

Workflow for next steps. Or, if you want to onboard or virtualize the source by manually writing

SPARQL queries against the Graph Data Interface service, see Onboarding or Virtualizing Data

with SPARQL Queries.

Adding a Parquet Data Source

Follow the instructions below to create a Parquet data source. You can onboard one file or multiple

files with the identical format (schema) per data source.

Tip
If your Parquet source is consistently updated with new or changed files, you can configure

the source to process the data incrementally. For details, see Configuring a CSV or Parquet

Source for Incremental Processing.

1. In the Anzo application, expand the Onboard menu and click Structured Data. Anzo displays
the Data Sources screen, which lists any existing data sources. For example:

Adding a Parquet Data Source 88

2. Click the Add Data Source button and select File > Parquet Data Source. Anzo opens the
Create Parquet Data Source screen.

3. Specify a name for the source in the Title field, and type an optional description in the
Description field. Then click Save. Anzo saves the source and displays the Overview tab. For

example:

Adding a Parquet Data Source 89

4. On the Overview tab, click in the Parquet File field to make the value editable. Then click
Browse to open the File Location dialog box and select the file to import.

5. In the File Location dialog box on the left side of the screen, select the file store for the

Parquet file. On the right side of the screen, navigate to the directory that contains the file to

import. The screen displays the list of files in the directory. For example:

Adding a Parquet Data Source 90

6. Select the file that you want to import. If you have multiple files with the identical format you

can select the Insert Wildcard option. Then type a string using asterisks as wildcard
characters to find the files with similar names. Files that match the specified string will be

imported as one file and will result in one job being created in the pipeline to ingest all of the
files that are selected by the specified string. You can specify up to 16,000 files using a

wildcard. After typing a string, click Apply to include that string in the Selected list.

Example
The image below shows a directory with multiple parquet files. The events.parquet and
events-2.parquet file have the identical format and can be imported as one file. The
Insert Wildcard option is selected, and event* is specified to identify the two files.

7. After selecting the file, click OK to close the File Location dialog box. Then click the
checkmark icon () to save the change to the Parquet File field. Anzo imports the file and

generates a data model.

Adding a Parquet Data Source 91

For information about creating or changing primary keys and foreign keys, see Assigning Primary

Keys in a Schema and Adding Foreign Keys.

When you are ready to onboard the data to Anzo, see Onboarding Data with the Automated

Workflow for next steps. Or, if you want to onboard or virtualize the source by manually writing

SPARQL queries against the Graph Data Interface service, see Onboarding or Virtualizing Data

with SPARQL Queries.

Configuring a CSV or Parquet Source for Incremental Processing

If you have a CSV or parquet data source that is consistently updated with new or changed files, you

can configure the source to process the data incrementally. When a source is set up to onboard

data incrementally and new files are added to the data source directory, those new files are

ingested and added to the existing dataset. This topic describes how incremental processing works,

gives recommendations for organizing the source files, and provides instructions for configuring

incremental processing.

l Incremental Processing Overview

l Organizing the Data Source Directory

l Configuring Incremental Processing

Configuring a CSV or Parquet Source for Incremental Processing 92

Incremental Processing Overview

When you configure file-based incremental processing, there are two methods to choose from:

File Name Strategy

The first method is called the File Name Strategy. When this strategy is chosen, Anzo saves the

names of the files that are onboarded. Subsequent workflow runs ingest any files whose names

are not saved. This method is useful when you know that new files will be added to the data

source directory but the existing files will not be edited. If the contents of a previously ingested file

changes but the file name does not, that file will not be reprocessed during the next run.

Last Modified Strategy

The second method is called the Last Modified Strategy. When this strategy is chosen, Anzo

saves the last modified timestamps for the files that are ingested when the workflow is run.

Subsequent runs ingest any files whose last modified timestamps are greater than the saved

timestamps. Each time an incremental workflow run, the job-specific last modified date will be

updated to the latest modified date of the files processed. This method is useful when you know

that the contents of previously ingested files may change in addition to adding new files. Since

the last modified date is updated when a file is changed, the changes will be processed during

the next run.

Organizing the Data Source Directory

Regardless of the strategy you use to process data incrementally, it is important to consider the

schema when organizing the data source files on the file store. In order to enable incremental

processing, the source files to import must be specified using wildcard characters (*). That means

the list of files that are targeted by the wildcard need to have the same schema.

CSV Data Sources

For CSV data sources, you have two options. You can create one subdirectory per schema and

then add files multiple times, once for each schema. With this structure, you would import the

files in each directory separately and could specify the wildcard like *.csv to import all of the

Configuring a CSV or Parquet Source for Incremental Processing 93

files in a directory. You can also place all of the files into a single directory and use more detailed

text when specifying wildcards. For example, when you add files you apply multiple wildcard

values such as patients_*.csv and medication_*.csv.

Parquet Data Sources

For Parquet data sources, you can only choose one schema per source. You must create a

separate data source for each schema type. You may want to create one directory per schema.

Then each Parquet source can target one directory and specify a wildcard value such as

*.parquet.

Configuring Incremental Processing

When adding or modifying a CSV or Parquet data source, you configure incremental processing

when you are adding files to the source from the file store. This section provides instructions for

adding files to a source and configuring incremental processing. For instructions on adding a new

data source, see Adding a CSV Data Source or Adding a Parquet Data Source.

1. When selecting the source files on the file store, select the Insert Wildcard checkbox.
Enabling the wildcard option activates the Use Incremental Processing option.

2. Below the checkbox, type a string using asterisks (*) as wildcard characters to find the files to

be processed. Then click Apply to apply the string. If you are configuring a CSV data source,

Configuring a CSV or Parquet Source for Incremental Processing 94

you can apply multiple wildcard strings to target files with different schemas. The image below

shows an example for a Parquet source. The string parts* is applied to select all of the files

with names that start with "parts."

3. Next, select the Use Incremental Processing checkbox. The Configure Incremental
Processing dialog box is displayed:

4. Click the Strategy drop-down list and select the strategy to use for incremental processing.
The following list describes the options. For more details about the strategies, see

Incremental Processing Overview above.

l File Name Strategy: Select this option if file names should be used to target the new
source data to process each time the graphmart that contains this source is reloaded or

refreshed.

Configuring a CSV or Parquet Source for Incremental Processing 95

l Last Modified Strategy: Select this option if the last modified date should be used to
target the new source data to process each time the graphmart that contains this source

is reloaded or refreshed.

5. If you chose File Name Strategy, click Apply and then click OK or Next to proceed. The
source is now configured to process data incrementally. If you chose Last Modified
Strategy, proceed to the next step.

6. If you chose Last Modified Strategy, the Baseline options are displayed. The Baseline
determines when the last modified date begins.

7. By default All matching files is selected as the Baseline. This means all files in the directory
that are matched by the wildcard string will be ingested when the graphmart is reloaded or

refreshed. If you have older files that you do not want to be ingested, you can select All
matching files since. Then click the timestamp field and specify the date and time to use as
the Baseline.

8. When you have finished configuring the Strategy, click Apply. Then click OK or Next to
proceed and finish configuring the data source if necessary.

When the graphmart is created, all of the data that matches the wildcard string and meets the

baseline requirements will be onboarded. When new files are added to the data source directory,

reloading or refreshing the graphmart will update the data.

For information about creating or changing primary keys and foreign keys, see Assigning Primary

Keys in a Schema and Adding Foreign Keys.

Configuring a CSV or Parquet Source for Incremental Processing 96

When you are ready to onboard the data to Anzo, see Onboarding Data with the Automated

Workflow for next steps. Or, if you want to onboard or virtualize the source by manually writing

SPARQL queries against the Graph Data Interface service, see Onboarding or Virtualizing Data

with SPARQL Queries.

Assigning Primary Keys in a Schema

If you have a data source without primary keys and you want to be able to create relationships, you

can assign primary keys in the schema. Follow the instructions below to edit a schema and assign

primary keys. For instructions on creating foreign keys, see Adding Foreign Keys.

1. In the Anzo application, expand the Onboard menu and click Structured Data. Anzo displays
the Data Sources screen, which lists any existing data sources. For example:

2. Click the Schemas tab to view the list of all schemas. (You can also access a schema by

selecting the data source that contains the schema.) The image below shows a view of the

Schemas tab:

Assigning Primary Keys in a Schema 97

3. Click the schema for which you want to assign primary keys. Anzo displays the Tables tab for

the data source that contains the schema. For example:

4. On the left side of the screen select the table for which you want to assign a primary key.

5. On the right side of the screen, find the column that you want to label as the primary key.

Hover your pointer over the column name to display additional icons. Edit and Delete icons

replace the data type under the column name. For example:

Assigning Primary Keys in a Schema 98

6. Click the edit icon (). The Edit dialog box is displayed. For example:

7. On the Edit screen, select the Primary Key checkbox. Then click Save to save the change.
The column is now the primary key for the table, and a key icon is displayed next to the

column name. For example:

Repeat the steps above to assign primary keys for additional tables. For instructions on creating

foreign keys, see Adding Foreign Keys.

Assigning Primary Keys in a Schema 99

Adding Foreign Keys

Follow the instructions below to edit a schema to add foreign keys. For instructions on designating

primary keys, see Assigning Primary Keys in a Schema.

1. In the Anzo application, expand the Onboard menu and click Structured Data. Anzo displays
the Data Sources screen, which lists any existing data sources. For example:

2. Click the Schemas tab to view the list of all schemas. (You can also access a schema by

selecting the data source that contains the schema.) The image below shows a view of the

Schemas tab:

Adding Foreign Keys 100

3. Click the schema for which you want to assign foreign keys. Anzo displays the Tables tab for

the data source that contains the schema. For example:

4. Click the Foreign Keys tab on the right side of the screen. The tab lists any existing keys. For
example, the image below shows a schema that does not have keys defined:

Adding Foreign Keys 101

5. To change an existing key, click a row in the table to open the Edit Foreign Key dialog box. To

create a new key, click the Create button to open the Create Foreign Key dialog box.

6. On the Create Foreign Key screen, specify a name for the key in the Name field.

7. Then specify the source and target tables for this key.

l Source Table: The source table is the table where the new foreign key is created. This

table refers to the primary key from the Target Table. Click the Source Table drop-down
list and select the schema table where the foreign key should be created.

l Target Table: The target table is the table that contains the primary key to be referenced
by the Source Table. Click the Target Table drop-down list and select the table that will
pass values to the source table.

8. Next, specify the source and target columns for this key:

l Source Columns: The source column is the column that becomes the foreign key to the
target table's primary key. Click the Select Source Columns drop-down list and select
the source column. To create a composite key by selecting an additional column, click

the Select Source Columns drop-down list again and select a column.

Adding Foreign Keys 102

Tip
By default the screen shows sample values from the selected source column. If

you want to view sample values from all columns in the source table, you can

disable the Only View Selected Columns option by sliding the slider to the left.

l Target Columns: The target column is the primary key column in the target table. Click
the Select Target Columns drop-down list and select the target column. To create a
composite key by selecting an additional column, click the Select Target Columns drop-

down list again and select a column.

Tip
By default the screen shows sample values from the selected target column. If you

want to view sample values from all columns in the target table, you can disable

the Only View Selected Columns option by sliding the slider to the left.

For example, the image below creates a relationship called actedIn where the MovieID
column in the MovieActors table becomes the foreign key and references the values from the

primary key column, MovieID, in the Movies table.

9. When you have finished supplying values, click Save to create the new key and return to the

Foreign Key list. Repeat this process to create additional keys.

Adding Foreign Keys 103

When you onboard the data using this schema, the foreign keys become RDF OWL object

properties in the data model. For example, the image below shows a portion of the model that was

generated after ingesting the schema that has the foreign key in the example above. In the model,

Acted In is an object property in the Movie Actors class:

Adding Foreign Keys 104

Onboarding Data with the Automated Workflow

There are two ways to load a data source with the automated direct data load workflow. You can

build a graphmart from a selected data source or you can add a data source to an existing, activated

graphmart. Both procedures automatically generate data layers to extract, load, and transform the

data to a knowledge graph.

Tip
When you build a new graphmart from a data source, advanced graphmart options are made

available that are not presented when you add a data source to an existing graphmart. See

Graphmart Options for information about the additional options.

l Creating a Graphmart from a Data Source

l Adding a Data Source to an Existing Graphmart

l Direct Load Advanced Settings Reference

Creating a Graphmart from a Data Source

Follow the steps below if you want to create a new graphmart from a data source.

Note
AnzoGraph uses the Graph Data Interface (GDI) Java plugin to connect directly to sources.

For file-based sources, make sure the source files are available to AnzoGraph on the shared

file store. For databases, if you have configured custom drivers to access those sources in

Anzo, the same drivers need to be added to AnzoGraph. For instructions, see Deploy Optional

Drivers for Accessing Custom Database Sources in the Deployment Guide.

1. If necessary, add the data source. See Adding Data Sources for instructions.

2. In the Anzo application, expand the Onboard menu and click Structured Data. Anzo displays
the Data Sources screen, which lists any existing sources. For example:

Onboarding Data with the Automated Workflow 105

https://docs.cambridgesemantics.com/anzo/v5.4/userdoc/anzograph-post-install.htm#gdi-drivers
https://docs.cambridgesemantics.com/anzo/v5.4/userdoc/anzograph-post-install.htm#gdi-drivers

3. Select the checkbox next to the data source that you want to ingest. Options are enabled at

the bottom of the screen. For example:

Tip
Users with the Batch Direct Data Loading permission can select multiple data sources
to ingest.

Creating a Graphmart from a Data Source 106

4. Click the Create Graphmart button. The Create Graphmart dialog box is displayed. For
example:

Note
If the selected data source includes more than one schema, the number of schema

instances is shown at the top of the screen. For example:

Clicking Show displays the selected schemas. For example:

If you would like to exclude one or more schemas, clear the checkbox for each schema

that you want to exclude.

5. On the Create Graphmart dialog box, the Graphmart Name is populated with the name of the
selected source. If multiple sources were selected, the Graphmart Name is blank. Edit the

Graphmart Name if necessary and add an optional Description for the new graphmart.

Creating a Graphmart from a Data Source 107

6. If you would like to configure any of the advanced settings, click Advanced to view the

options. For details about the each of the Advanced settings, see Direct Load Advanced

Settings Reference.

7. When you have finished configuring the workflow, click Create Graphmart. The new
graphmart is created and activated and the data layers and steps are generated according to

the chosen strategy. A managed model is also generated. See Managed Model Concepts for

information. If you chose to export a dataset, the new dataset is also added to the Datasets

catalog.

Once the graphmart is online, the data can be analyzed. See Access & Analyze for next steps. Or

see Working with Graphmarts for information about managing graphmarts.

Adding a Data Source to an Existing Graphmart

Follow the steps below if you want to add a data source to an existing graphmart.

Note
AnzoGraph uses the Graph Data Interface (GDI) Java plugin to connect directly to sources.

For file-based sources, make sure the source files are available to AnzoGraph on the shared

file store. For databases, if you have configured custom drivers to access those sources in

Anzo, the same drivers need to be added to AnzoGraph. For instructions, see Deploy Optional

Drivers for Accessing Custom Database Sources in the Deployment Guide.

1. If necessary, add the data source. See Adding Data Sources for instructions.

2. In the Anzo application, expand the Blend menu and click Graphmarts. Anzo displays a list
of the existing graphmarts. For example:

Adding a Data Source to an Existing Graphmart 108

https://docs.cambridgesemantics.com/anzo/v5.4/userdoc/anzograph-post-install.htm#gdi-drivers
https://docs.cambridgesemantics.com/anzo/v5.4/userdoc/anzograph-post-install.htm#gdi-drivers

3. Click the name of the graphmart that you want to add the data source to. The Overview is

displayed. For example:

4. If necessary, activate the graphmart. Graphmarts must be online to be able to add data

sources to them.

5. Click the Data Layers tab. On the Data Layers tab, click Add on the right side of the screen
and select Data Source. The Select Data Source dialog box is displayed. For example:

Adding a Data Source to an Existing Graphmart 109

6. Select the checkbox next to the data source that you want to add to the graphmart. (Users

with the Batch Direct Data Loading permission can select multiple sources.) The selected
schema or schemas are shown at the bottom of the screen. For example, in the image a

below, a source with two schema instances is selected.

Clicking Show displays the selected schemas. For example:

Adding a Data Source to an Existing Graphmart 110

If you would like to exclude one or more schemas, clear the checkbox for each schema that

you want to exclude.

7. If you want to configure any of the advanced settings, click Advanced to view the options. For

details about the each of the Advanced settings, see Direct Load Advanced Settings

Reference.

8. When you have finished configuring the workflow, click Create Layer & Step. The new layer

is created and the steps are generated according to the chosen strategy. A managed model is

also generated for the layer. See Managed Model Concepts for information.

Once the layer is online, the data can be analyzed. See Access & Analyze for next steps. Or see

Working with Graphmarts for information about managing graphmarts.

Adding a Data Source to an Existing Graphmart 111

Direct Load Advanced Settings Reference

This topic describes the Advanced options that are available when you create or configure the

Direct Data Load workflow to load a data source via auto-generated data layers.

l Graphmart Options

o Export to Dataset

o Find Connections

o Profile Data

l Layer Generation Strategies

o Single Step

o Multiple Steps

o Enabled Layer

l Ontology URI

l Enable Partitioning

l Sampling Limit

Direct Load Advanced Settings Reference 112

Graphmart Options

The Graphmart Options are available when you create a graphmart from a data source (as

described in Creating a Graphmart from a Data Source). They are not available when you add a

data source to an existing graphmart (as described in Adding a Data Source to an Existing

Graphmart).

Export to Dataset

This setting controls whether the automated workflow generates a dataset by exporting the

graphmart. This option does not create an Export Step in the graphmart but it does generate a

dataset in the selected data store and adds the dataset to the Datasets catalog. If you leave Export

to Dataset disabled, a dataset is not automatically generated. For information about creating an

Export Step to export a graphmart to a dataset at a later time, see Export Data to an FLDS (Export

Step). If you enable Export to Dataset, the following settings are displayed. The list below the image

describes the settings.

l Dataset Anzo Data Store: This required setting specifies the Anzo Data Store to export the
dataset to. The data store must be a location on the shared file store that AnzoGraph has

access to.

l Post Dataset Export Action: This required setting specifies how to treat the graphmart after

the Export Step is processed. To leave the graphmart online, select Leave Graphmart
Activated (the default value). To retain the graphmart but disable it and remove the data from

Direct Load Advanced Settings Reference 113

AnzoGraph, select Deactivate Graphmart. And to designate the graphmart as temporary and
remove it after the dataset is exported, select Delete Graphmart.

l Dataset Format: This setting specifies the file format for the RDF TTL files that are
generated, i.e., whether they are compressed or not. The valid options are ttl for
uncompressed and ttl.gz for compressed.

Find Connections

This optional setting specifies whether to find relationships between tables in the schema (or

between data sources if multiple sources are selected). Finding connections is useful if the schema

does not define primary and foreign key relationships and you want the Graph Data Interface to

create the connections.

Note
When Find Connections is enabled, two models are created, one that contains the classes
and properties and one that contains only the connections. To view the complete model, both

models must be added to the Working Set in the Model viewer.

Profile Data

This optional setting specifies whether to generate a Data Profile after the graphmart is activated.

For information about the metrics that are run when a profile is generated, see Data Profiling

Metrics.

Layer Generation Strategies

These settings control the strategy to use for auto-generating the data layer queries in the

graphmart. Each strategy produces the same graph data but uses a different method for structuring

the queries that produce the data. You can select both options if you want and review the resulting

layers and steps. Each option results in a separate layer. However, only one of the resulting layers

can be enabled by default.

Direct Load Advanced Settings Reference 114

Single Step

This is the default strategy. When Single Step is selected, a layer with a single Direct Load Step is
created. The single query loads all tables from the selected schema or schemas. The generated

query is an RDF and Ontology Generator query. See Onboarding Data with a Direct Load Step to

learn more about the GDI RDF and Ontology Generator.

Multiple Steps

When Multiple Steps is selected, the layer has a separate Direct Load Step for each table in the

selected schema or schemas. The generated query in each step is also an RDF and Ontology

Generator query. With this strategy, you can enable and disable certain steps to control which

tables are included in the graphmart.

Enabled Layer

This required setting specifies the data layer that should be enabled by default when the graphmart

is activated.

Ontology URI

This optional setting specifies the custom URI to use for the model that is automatically generated.

The value must be a valid URI without a hash (#) or slash (\) character at the end. If you do not

specify a custom URI, the Graph Data Interface generates a URI in the following format:

http://cambridgesemantics.com/Layer/<layer_ID>/Model

Enable Partitioning

This option specifies whether to enable file partitions for file-based data sources. When file

partitions are enabled, files will be partitioned and ingested in parallel for increased performance.

Note
Multiline CSV files may fail to load when this option is enabled. If the following type of error

message is returned when onboarding files, disable the Enable File Partitions setting:

File uses multiline records and cannot be segmented.

Please disable segmenting for this file.

Direct Load Advanced Settings Reference 115

Sampling Limit

This optional setting specifies the number of rows to scan before inferring the data types for each

column.

Direct Load Advanced Settings Reference 116

Onboarding or Virtualizing Data with SPARQL Queries

The topics in this section provide information about exploring, analyzing, virtualizing, and ingesting

data by writing federated SPARQL queries that invoke the Graph Data Interface (GDI), an

AnzoGraph plugin that enables you to connect directly to sources and control all aspects of the

extract, load, and transform process. Depending on the type of query you write, you can ingest data

into Anzo or create a virtual graph that accesses the source only when it is needed without ingesting

the data.

Tip
This section focuses on writing your own SPARQL queries to read, ingest, or virtualize data

from various sources. The GDI can also be used to automatically generate models, data

layers, and steps with ingestion queries that you can edit. For more information about the

automated workflow, see Onboarding Data with the Automated Workflow.

In this section:
Introduction to the GDI 117

GDI Concepts and Basic Usage 120

Options for Data Types, Data Linking, and Models 189

Advanced Usage by Data Source Type 205

GDI Property Reference 339

Introduction to the GDI

The Graph Data Interface (GDI) (sometimes called the Data Toolkit) is an extremely flexible and

configurable AnzoGraph plugin that enables users to access a variety of data sources via federated

SPARQL queries. Depending on the type of query you write, i.e., whether it is an INSERT query

against the GDI service or a CONSTRUCT query against the view or virtualized service, you can

ingest source data into Anzo or create a virtual graph that accesses the source only when it is

needed without ingesting the data into Anzo.

Onboarding or Virtualizing Data with SPARQL Queries 117

The GDI has built-in, native support for various file format types, HTTP/REST endpoints, and

common database types. Internally, the GDI API has a records-oriented view of data. This view

enables the GDI to bridge graph operations to operations for data in other formats. Though the GDI

views the source as rows in a table, ultimately it has the capability to convert the records to graph

format, enabling the data to be incorporated into data layers to augment existing data.

Tip
When you query a source such as a database, the GDI service leverages that source to

retrieve only the data that it needs for the query. Unlike a JDBC driver, the GDI service does

not need to retrieve all values and then complete an often time-consuming step to filter the

results.

Supported Data Sources

This table below lists the data sources, file systems, and applications that the GDI supports.

Source Description

HTTP/REST
Endpoints

The GDI natively supports reading or ingesting data from HTTP/REST
endpoints.

Databases Cambridge Semantics supplies JDBC drivers for the following databases:

l Databricks

l H2

l IBM DB2

l Microsoft SQL Server

l MariaDB

l Oracle

l PostgreSQL

l SAP Sybase (jTDS)

Introduction to the GDI 118

Source Description

l Snowflake

To extend the service to access other databases, additional JDBC drivers

can be added to AnzoGraph. For information about acquiring additional

JDBC drivers, contact your Cambridge Semantics Customer Success

manager. For instructions on deploying drivers, see Deploy Optional Drivers

for Accessing Custom Database Sources in the Deployment Guide.

File Formats The following file types are supported:

l CSV and TSV

l JSON and NDJSON

l Parquet

l SAS (SAS Transport XPT and SAS7BDAT formats)

l XML

l Raw text format

File Systems The following types of file storage systems are supported:

l Amazon S3

l FTP & FTPS

l Google Cloud Storage

l HDFS (Kerberized HDFS is not supported at this time.)

l NFS

l SFTP

l WebDAV

Applications Queries against Elasticsearch and Kafka applications are supported.

Introduction to the GDI 119

https://docs.cambridgesemantics.com/anzo/v5.4/userdoc/anzograph-post-install.htm#gdi-drivers
https://docs.cambridgesemantics.com/anzo/v5.4/userdoc/anzograph-post-install.htm#gdi-drivers

GDI Concepts and Basic Usage

The topics in this section help you get to know the Graph Data Interface (GDI) by introducing you to

the main concepts and giving a general overview of the query syntax, available properties, and

functionality that is applicable across query and data source types.

l Getting Started with GDI Queries

l Onboarding Data with a Direct Load Step

l Reading a Data Source's Metadata

l Paginating Requests

l Binding and Hierarchy Concepts

l Incremental Onboarding Concepts

Getting Started with GDI Queries

This topic provides details about the structure to use when writing GDI queries. It focuses on the

properties that are common to all types of data sources. It also includes example queries that

demonstrate the data integration capabilities for different types of sources.

Tip
Rather than manually writing complex queries, you can use the GDI to automatically generate

graphs and ontologies by including a few key statements in a relatively simple query. For

information, see Onboarding Data with a Direct Load Step.

l GDI Query Syntax

l GDI Query Examples

GDI Query Syntax

The following query syntax shows the structure of a GDI query. The clauses, patterns, and

placeholders that are links are described below.

PREFIX Clause

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

GDI Concepts and Basic Usage 120

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX anzo: <http://openanzo.org/ontologies/2008/07/Anzo#>

PREFIX zowl: <http://openanzo.org/ontologies/2009/05/AnzoOwl#>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

Result Clause

{

[GRAPH ${targetGraph} {]

triple_patterns

[}]

}

[${usingSources}]

WHERE

{

SERVICE Clause: Include the following service call when reading or inserting data.

SERVICE [TOPDOWN] <http://cambridgesemantics.com/services/DataToolkit>

View SERVICE Clause: Or use the service call below when constructing a view.

SERVICE <http://cambridgesemantics.com/services/DataToolkitView>(${targetGraph})

{

?data a s:source_type ;

Based on the source_type, additional connection and input parameters are

available. The options below are valid for all sources. For source-related

options, see GDI Property Reference.

s:url "string" ;

[s:username "string" ;]

[s:password "string" ;]

[s:timeout int ;]

[s:batching boolean | int ;]

[s:paging [pagination_options ;]

[s:concurrency int | [list_of_properties] ;]

[s:rate int | "string" ;]

[s:locale "string" ;]

[s:sampling int ;]

[s:selector "string" | [list] ;]

[s:model "string" ;]

[s:key ("string") ;]

[s:reference [s:model "string" ; s:using ("string")]

GDI Concepts and Basic Usage 121

[s:formats [datatype_formatting_options] ;]

[s:normalize boolean | [normalization_rules] ;]

[s:count ?variable ;]

[s:offset int ;]

[s:limit int ;]

Mapping variables

?mapping_variable (["binding"] [datatype] ["datetime_format"]) ;

... ;

.

Additional clauses such as BIND, VALUES, FILTER

}

}

Note
For readability, the parameters below exclude the base URI

<http://cambridgesemantics.com/ontologies/DataToolkit#> as well as the s:

prefix. As shown in the examples, however, the s: prefix or full property URI does need to be

included in queries.

Option Type Description

PREFIX Clause N/A The PREFIX clause declares the standard and custom prefixes for
GDI service queries. Generally, queries include the prefixes from
the query template (or a subset of them) plus any data-specific
declarations.

Result Clause N/A The result clause defines the type of SPARQL query to run and the
set of results to return, i.e., whether you want to read (SELECT or
CONSTRUCT) from the source or ingest the data into Anzo
(INSERT).

GRAPH
${targetGraph}

N/A Include the GRAPH keyword and target graph parameter
${targetGraph} when writing an INSERT query to ingest data
into a graphmart. Anzo automatically populates the query with the
appropriate target URIs when the query runs.

GDI Concepts and Basic Usage 122

Option Type Description

${usingSource
s}

N/A Include the source graph parameter ${usingSources} when
writing a "topdown" query that passes values from the data that is
in the graphmart to the data source. Anzo automatically populates
the query with the appropriate FROM clauses when the query
runs. When passing literal values to the remote source, you do not
need to include the source graph parameter. The SERVICE
Clause description below includes more information about passing
input to data sources.

SERVICE
Clause

N/A Include the SERVICE call SERVICE [TOPDOWN]

<http://cambridgesemantics.com/services/DataTool

kit> to invoke the GDI service when you are running a SELECT,
INSERT, or CONSTRUCT query that is not creating a view. When
writing a CONSTRUCT query in a View Step, use the
DataToolkitView service call, as described below in View
SERVICE Clause.

Include the optional TOPDOWN keyword when you want to pass

input values from the graphmart to the data source. When you

include TOPDOWN in the service call, it indicates that the rest of

the query produces values to send to the source. In this case,

the GDI makes repeated calls to pass in each of the specified

values and retrieve the data that is based on those values.

View SERVICE
Clause

N/A When writing a CONSTRUCT query that creates a view of the data
(usually in a View Step), include the following SERVICE call:
SERVICE

<http://cambridgesemantics.com/services/DataTool

kitView>(${targetGraph}). Using the DataToolkitView
call optimizes query execution because it tells the GDI to inspect
the query and determine which filters to push to the data source. It
also limits the result set and retrieves only the data that is needed,

GDI Concepts and Basic Usage 123

Option Type Description

i.e., the source data is fully mapped but all of the mapped data is
not necessarily returned.

source_type object The ?data a s:source_type triple pattern specifies the type
of data source that the query will run against. For example, ?data
a s:DbSource, specifies that the source type is a database. The
list below describes the available types:

l DbSource to connect to any type of database.

l FileSource for flat files. The supported file types are CSV
and TSV, JSON, NDJSON, XML, Parquet, and SAS (SAS

Transport XPT and SAS7BDAT formats). The GDI

automatically determines the file type from the file

extensions. When querying file sources, make sure that

the files are accessible to both Anzo and AnzoGraph.

l HttpSource to connect to HTTP endpoints.

l ElasticSource to connect to Elasticsearch indexes on an
Elasticsearch server.

l KafkaSource to connect to Kafka streaming sources.

l MetadataSource for metadata discovery.

Tip
Certain connection and input parameters are available

based on the specified source type. For details about the

options for your source, see GDI Property Reference.

url string This property specifies the URL for the data source, such as the
database URL, Elasticsearch URL, or HTTP endpoint URL. For
file-based sources, the url property specifies the file system

GDI Concepts and Basic Usage 124

Option Type Description

location of the source file or directory of files. When specifying a
directory (such as s:url "/opt/shared-files/loads/"),
the GDI loads all of the file formats it recognizes. To specify a
directory but limit the number or type of files that are read, you can
include the pattern and/or maxDepth properties described in
FileSource Properties.

Important
For security, it is a best practice to reference connection

information (such as the url, username, and password)

from a Query Context so that the sensitive details are

abstracted from any requests. In addition, using a Query

Context makes connection details reusable across

queries. See Using Query Contexts for more information.

For example, the triple patterns below reference keys from

a Query Context:

?data a s:DbSource ;

s:url "{{@db.eca4bfa8...ff9a.url}}" ;

s:username "{{@db.eca4bfa8...ff9a.user}}"

;

s:password "

{{@db.eca4bfa8...ff9a.password}}" ;

username string If authentication is required to access the source, include this
property to specify the user name.

password string This property lists the password for the given username.

timeout int This property can be used to specify the timeout (in milliseconds)
to use for requests against the source. For example, s:timeout

GDI Concepts and Basic Usage 125

Option Type Description

5000 configures a 5 second timeout.

batching boolean
or int

This property can be used to disable batching, or it can be used to
change the default the batch size. By default, batching is set to
5000 (s:batching 5000). To disable batching, you can include
s:batching false in the query. Typically users do not change
the batching size. However, it can be useful to control the batch
size when performing updates. To configure the size, include
s:batching int in the query. For example, s:batching
3000.

paging RDF list This property can be used to configure paging so that the GDI can
access large amounts of data across a number of smaller
requests. For details about the paging property, see Paginating
Requests.

concurrency int or
RDF list

This property can be included to configure the maximum level of
concurrency for the query. The value can be an integer, such as
s:concurrency 8. If the value is an integer, it configures a
maximum limit on the number of slices that can execute the query.
For finer-grained control over the number of nodes and slices to
use, concurrency can also be included as an object with limit,
nodes, and/or executorsPerNode properties. For example, the
following object configures a concurrency model that allows a
maximum of 24 executors distributed across 4 nodes with 8
executors per node:

s:concurrency [

s:limit 24 ;

s:nodes 4 ;

s:executorsPerNode 8 ;

] ;

GDI Concepts and Basic Usage 126

Option Type Description

rate int or
string

This property can be included to control the frequency with which a
request is sent to the source. The limit applies to the number of
requests a single slice can make. If you specify an integer for the
rate, then the value is treated as the maximum number of requests
to issue per minute. If you specify a string, you have more flexibility
in configuring the rate. The sample values below show the types of
values that are supported:

s:rate "90/minute" ;

s:rate "90 per minute" ;

s:rate "200000 every week" ;

s:rate "10000 every 6 hours" ;

To enforce the rate limit, the GDI introduces a sleep between

requests that is equal to the rate delay. The more executing

slices, the longer the rate delay needs to be to enforce the limit

in aggregate.

Given the example of s:rate "90/minute", the GDI would

optimize the concurrency and only use 1 slice for execution with

a rate delay of 666ms between requests. If s:rate

"240/minute", the GDI would use 3 executors with a rate

delay of 750ms between requests.

locale string This property can be used to specify the locale to use when
parsing locale-dependent data such as numbers, dates, and times.

sampling int This property can be used to configure the number of records in
the source to examine for data type inferencing.

selector string or
RDF list

This property can be used as a binding component to identify the
path to the source objects. For example, s:selector
"Sales.SalesOrderHeader" targets the SalesOrderHeader

GDI Concepts and Basic Usage 127

Option Type Description

table in the Sales schema. For more information about binding
components and the selector property, see Using Binding Trees
and Selector Paths.

model string This property defines the class (or table) name for the type of data
that is generated from the specified data source. For example,
s:model "employees". Model is optional when querying a
single source. If your query targets multiple sources, however, and
you want to define resource templates (primary keys) and object
properties (foreign keys), you must specify the model value for
each source.

key string This property can be used to define the primary key column for the
source file or table. This column is leveraged in a resource
template for the instances that are created from the source. For
example, s:key ("EMPLOYEE_ID"). For more information
about key, see Data Linking Options.

reference RDF list This property can be used to specify a foreign key column. The
reference property is an RDF list that includes the model property
to list the target table and a using property that defines the foreign
key column. For more information about reference, see Data
Linking Options.

formats RDF list To give users control over the data types that are used when
coercing strings to other types, this property can be included in
GDI queries to define the desired types. In addition, it can be used
to describe the formats of date and time values in the source to
ensure that they are recognized and parsed to the appropriate
date, time, and/or dateTime values. For details about the formats
property, see Data Type Formatting Options.

GDI Concepts and Basic Usage 128

Option Type Description

normalize boolean
and/or
RDF list

To give users control over the labels and URIs that are generated,
the GDI offers several options for normalizing the model and/or the
fields that are created from the specified data source(s). For
details about the normalize property, see Model Normalization
Options.

count variable If you want to turn the query into a COUNT query, you can include
this property with a ?variable to perform a count. For example,
s:count ?count.

offset int This property can be used to offset the data that is returned by a
number of rows.

limit int You can include this property to limit the number of results that are
returned. s:limitmaps to the SPARQL LIMIT clause.

mapping_
variable

variable The mapping variables, in ?mapping_variable
(["binding"] [datatype] ["datetime_format"])

format, define the triple patterns to output. When the specified
?variablematches the source column name, the GDI uses the
variable as the source data selector. If you specify an alternate
variable name, a binding needs to be specified to map the new
variable to the source. You also have the option to transform the
data using the datatype and datetime_format options.

Note
The parentheses around the binding, data type, and

format specifications are not required but are included in

this document for readability.

binding string The binding is a literal value that binds a ?mapping_variable to a

GDI Concepts and Basic Usage 129

Option Type Description

source column. If you specify a ?variable that matches the source
column name, then that variable name is the data selector and it is
not necessary to specify a binding. If you specify an alternate
variable name or there is a hierarchical path to the source column,
then the binding is needed to map the new variable to that source
column.

For example for a flat source like CSV, the following pattern

simply binds the source column AIRLINE to the lowercase

variable ?airline: ?airline ("AIRLINE"). For a database

source, this example binds the ?subject variable by navigating to

the SUBJECT column in the FILM table in the dbo schema:

?subject ("dbo.FILM.SUBJECT"). And for an HTTP

source, this example binds the ?time variable to the time object

under the minutely data path: ?time

("minutely.data.time").

Note
For FileSource and HttpSource, periods (.), forward
slashes (/), and brackets ([]) are parsed as path notation.

Therefore, if a source column name includes any of those

characters they must be escaped in the binding. Use two

backslashes (\\) as an escape character. For example, if a

column name is average/day, the variable and binding
pattern could be written as ?averagePerDay

("average\\/day").

For DbSource, database, schema, and table names in
bindings are parsed according to the specific rules for that

database type. You do not need to escape characters in

database names. However, database names with

GDI Concepts and Basic Usage 130

Option Type Description

characters that do not match (_|A-Z|a-z)(_|A-Z|a-

z|0-9)* should be quoted, such as

("'Adventure.Works'.Sales.'Daily.Totals'").

datatype URI The datatype is the data type to convert the column to. If you do
not specify a data type, the GDI infers the type. The GDI supports
the following types:

xsd:int, xsd:long, xsd:float, xsd:double,

xsd:boolean, xsd:time, xsd:dateTime, xsd:date,

xsd:duration, xsd:dayTimeDuration,

xsd:yearMonthDuration, xsd:gMonthDay,

xsd:gMonth, xsd:gYearMonth, xsd:anyURI

datetime_
format

string This option is used to specify the format to use for date and time
data types. The GDI supports Java date and time formats. Specify
days as "d," months as "M," and years as "y." For the time, specify
"H" for hours, "m" for minutes, and "s" for seconds. For example,
"yyyyMMdd HH:mm:ss" or "ddMMMyy" to display date values
such as "01JAN19."

Note
The GDI's default base year is 2000. If the source data has
years with only two digits, such as 02-04-99, the GDI

prepends 20 to the digits. The value 02-04-99 is parsed
to 02-04-2099. To specify an alternate base year to use

for two-digit values, you can include the notation ^nnnn

(e.g., ^1900) in the format value. For example, to set

the base year to 1900 instead of 2000, use a format value

such as xsd:date "dd-MMM-yy^1900" or xsd:date

GDI Concepts and Basic Usage 131

Option Type Description

"dd-MMM-yy^1990". When one of those values is

specified, 02-04-99 is parsed to 02-04-1999.

GDI Query Examples

The query below reads data from a sample HTTP source that compiles worldwide weather statistics.

The source has several models available for retrieving data that is current, daily, historical, etc. To

target current data, the query includes s:selector "currently" as an input parameter. In

addition, the query demonstrates the use of the "topdown" functionality, where the query sends

values to the source to narrow the results. The query includes the TOPDOWN keyword in the GDI

service call, and the VALUES clause specifies the latitude and longitude values for the cities to

return data for. In addition, since this sample source requires parameters to be specified in the

connection URL, the s:url value includes ?lat and ?long as parameters as part of the value.

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX anzo: <http://openanzo.org/ontologies/2008/07/Anzo#>

PREFIX zowl: <http://openanzo.org/ontologies/2009/05/AnzoOwl#>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

PREFIX ex: <http://example.org/ontologies/City#>

SELECT

?city ?state ?summary ?temp ?rainChance

?humidity ?pressure ?windSpeed

WHERE

{

SERVICE TOPDOWN <http://cambridgesemantics.com/services/DataToolkit>

{

?data a s:HttpSource ;

s:url "https://sampleEndpoint.com/forecast/{{?lat}},{{?long}}" ;

s:selector "currently" ;

?lat ("latitude") ;

?long ("longitude") ;

GDI Concepts and Basic Usage 132

?temp ("temperature") ;

?rainChance ("precipProbability") ;

?humidity () ;

?pressure () ;

?windSpeed () .

}

VALUES(?city ?state ?lat ?long)

{

("Lakeway" "TX" 30.374563 -97.975892)

("Boston" "MA" 42.358043 -71.060415)

("Seattle" "WA" 47.590720 -122.307053)

("Chicago" "IL" 41.837741 -87.823296)

("Hilo" "HI" 19.702040 -155.090312)

}

}

ORDER BY ?city

The query returns the following results:

city | state | summary | temp | rainChance | humidity | pressure | windSpeed

--------+-------+---------------+-------+------------+----------+----------+-----------

Boston | MA | Overcast | 79.81 | 0 | 0.6 | 1018.7 | 7.71

Chicago | IL | Clear | 81.7 | 0 | 0.52 | 1021.1 | 5.13

Hilo | HI | Partly Cloudy | 72.6 | 0.13 | 0.79 | 1018.6 | 4.86

Lakeway | TX | Partly Cloudy | 92.43 | 0 | 0.48 | 1013.3 | 10.85

Seattle | WA | Mostly Cloudy | 61.82 | 0 | 0.76 | 1018.2 | 4.57

5 rows

The example below ingests data into a data layer from a database source using an INSERT query in

a Direct Load Step.

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX anzo: <http://openanzo.org/ontologies/2008/07/Anzo#>

PREFIX zowl: <http://openanzo.org/ontologies/2009/05/AnzoOwl#>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

PREFIX : <http://example.com/ontologies/kl_hosp#>

INSERT

{

GDI Concepts and Basic Usage 133

GRAPH ${targetGraph}

{

?InputEvent_cv a :InputEvent_cv ;

:row_id ?row_id ;

:subject_id ?subject_id ;

:hadm_id ?hadm_id ;

:icustay_id ?icustay_id ;

:charttime ?charttime ;

:itemid ?itemid ;

:amount ?amount ;

:amountuom ?amountuom ;

:rate ?rate ;

:rateuom ?rateuom ;

:storetime ?storetime ;

:cgid ?cgid ;

:orderid ?orderid ;

:linkorderid ?linkorderid ;

:stopped ?stopped ;

:newbottle ?newbottle ;

:originalamount ?originalamount ;

:originalamountuom ?originalamountuom ;

:originalroute ?originalroute ;

:originalrate ?originalrate ;

:originalrateuom ?originalrateuom ;

:originalsite ?originalsite .

}

}

WHERE

{

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

?data a s:DbSource ;

s:url "{{@db.eca4bfa83481f3638b93ab5fdf93ff9a.url}}" ;

s:username "{{@db.eca4bfa83481f3638b93ab5fdf93ff9a.user}}"

s:password "{{@db.eca4bfa83481f3638b93ab5fdf93ff9a.password}}"

s:selector "kl_hosp_schema.inputevents_cv" ;

?row_id (xsd:int) ;

?subject_id (xsd:int) ;

?hadm_id (xsd:int) ;

?icustay_id (xsd:int) ;

?charttime (xsd:dateTime) ;

?itemid (xsd:int) ;

?amount (xsd:float) ;

GDI Concepts and Basic Usage 134

?amountuom (xsd:string) ;

?rate (xsd:float) ;

?rateuom (xsd:string) ;

?storetime (xsd:dateTime) ;

?cgid (xsd:int) ;

?orderid (xsd:int) ;

?linkorderid (xsd:int) ;

?stopped (xsd:string) ;

?newbottle (xsd:int) ;

?originalamount (xsd:float) ;

?originalamountuom (xsd:string) ;

?originalroute (xsd:string) ;

?originalrate (xsd:float) ;

?originalrateuom (xsd:string) ;

?originalsite (xsd:string) ;

BIND(IRI("http://example.com/inputevent_cv/{{?row_id}}") AS ?InputEvent_cv)

BIND(IRI("http://example.com/patients/{{?subject_id}}") AS ?patient)

BIND(IRI("http://example.com/admissions/{{?hadm_id}}") AS ?admission)

}

}

The following query ingests airport-related data from a CSV file.

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX anzo: <http://openanzo.org/ontologies/2008/07/Anzo#>

PREFIX zowl: <http://openanzo.org/ontologies/2009/05/AnzoOwl#>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

INSERT

{

GRAPH ${targetGraph}

{

?code a <http://anzograph.com/airport> ;

<http://anzograph.com/airport/name> ?name ;

<http://anzograph.com/airport/city> ?city ;

<http://anzograph.com/airport/state> ?state ;

<http://anzograph.com/airport/latitude> ?lat;

<http://anzograph.com/airport/longitude> ?long.

}

GDI Concepts and Basic Usage 135

}

WHERE

{

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

?data a s:FileSource ;

s:url "/opt/shared-files/airports.csv" ;

?iata_code ("IATA_CODE" xsd:string) ;

?name ("AIRPORT" xsd:string) ;

?city ("CITY" xsd:string) ;

?state ("STATE" xsd:string) ;

?lat ("LATITUDE" xsd:double) ;

?long ("LONGITUDE" xsd:double).

BIND(IRI("http://anzograph.com/airport/{{?iata_code}}") as ?code)

}

}

The query below creates a view of a database source.

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX anzo: <http://openanzo.org/ontologies/2008/07/Anzo#>

PREFIX zowl: <http://openanzo.org/ontologies/2009/05/AnzoOwl#>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

PREFIX ont: <http://cambridgesemantics.com/ont/autogen/Rh/MIMIC-III-Data_Source/mimic_

iii_schema#>

CONSTRUCT

{

?caregiversURI a ont:caregivers ;

ont:caregivers_cgid ?cgid ;

ont:caregivers_description ?description ;

ont:caregivers_label ?label .

}

WHERE

{

GRAPH ?g

{

SERVICE <http://cambridgesemantics.com/services/DataToolkitView>(${targetGraph})

{

GDI Concepts and Basic Usage 136

{

?data a s:DbSource ;

s:url "{{@db.eca4bfa83481f3638b93ab5fdf93dd9a.url}}" ;

s:username "{{@db.eca4bfa83481f3638b93ab5fdf93dd9a.user}}"

s:password "{{@db.eca4bfa83481f3638b93ab5fdf93dd9a.password}}"

s:selector "mimic_iii_schema.caregivers" ;

?row_id (xsd:int) ;

?cgid (xsd:int) ;

?label (xsd:string) ;

?description (xsd:string) .

BIND(IRI("http://cambridgesemantics.com/class/caregivers/{{?row_id}}") AS

?caregiversURI) }

}

}

}

Onboarding Data with a Direct Load Step

With no mapping required, Anzo's Direct Load Step functionality automatically generates a graph

and an ontology (model) for a data source. Using a relatively simple SPARQL query, the direct load

option invokes the Graph Data Interface (GDI) RDF and Ontology Generators. The GDI Generators

recognize the structure of a data source and automatically generate the necessary statements.

Invoking the Generators is preferable to producing a hand-written query, especially when the

structure of the data is very complex, such as a JSON data source with many inner repeating

structures or a database with many tables and keys. When the source contains complex structures,

the GDI will generate only the required statements and avoid cross-products, optimizing query

execution and memory usage. In addition, the GDI Generator parallelizes the load across the

AnzoGraph cluster so that a data source (such as a database) can be ingested with a single query.

This topic provides details about invoking the GDI RDF and Ontology Generators. The Generators

can be used with all of the supported data source types.

l How to Use the GDI Generator

l GDI Generator Query Syntax

l GDI Generator Example Queries

GDI Concepts and Basic Usage 137

How to Use the GDI Generator

To invoke the GDI Generator in a data layer, you add a Direct Load Step to the layer. In the Direct
Load Step, you compose a SPARQL query that incorporates the GDI Generator parameters as

detailed below in GDI Generator Query Syntax.

Tip
For instructions on adding steps to layers, see Adding Steps to Layers.

Why Use a Direct Load Step?

It is important to use a Direct Load Step with the RDF and Ontology Generators because it is the

only type of step with the ability to manage the generated ontologies (models). An ontology that is

generated in a Direct Load Step is automatically registered in Anzo. The registered model is linked

to and managed by the data layer that contains the step. If an Ontology Generator query is changed,

additional Direct Load Steps are added to the same layer, or the underlying source schema

changes, the managed model is automatically updated when the graphmart is reloaded or

refreshed. See Managed Model Details below for important details about layer-managed models.

Managed Model Details

Though an ontology that is generated in a Direct Load Step is registered in Anzo and is available for

viewing in the Model editor, the model is owned and managed by the data layer that contains
the Direct Load Step. That means any manual changes made to the model outside of the step,
such as from the Model editor, will be overwritten any time the graphmart or layer is refreshed or

reloaded. Do not modify generated managed models except by editing (or adding) Direct
Load Step queries. For information on updating managed models, see Editing a Managed Model.

There is only one managed model per layer. If you include multiple Direct Load Steps in the
same layer, they will all update the same ontology. This functionality can be useful if you want to

align the data and generated model across multiple steps. If you have multiple sources that are not

intended to align or update the same model, create separate layers.

GDI Concepts and Basic Usage 138

If you delete a layer that includes a managed model, the model is also deleted. Use caution
when referencing a managed model outside of a graphmart. For example, if you create a dataset

and reference a managed model when you select the ontology, the reference will break if the data

layer that manages the model is deleted.

GDI Generator Query Syntax

The following query syntax shows the structure of a GDI Generator query. The clauses, patterns,

and placeholders that are links are described below.

PREFIX Clause

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

#Result Clause

INSERT {

GRAPH ${targetGraph} {

?s ?p ?o .

}

}

WHERE

{

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

?data a s:source_type ;

Based on the source_type, additional connection and input parameters are

available. The options below are valid for all sources. For source-related

options, see GDI Property Reference.

s:url "string" ;

[s:model "class_name_for_this_source" ;]

[s:username "string" ;]

[s:password "string" ;]

[s:timeout int ;]

[s:maxConnections int ;]

[s:batching boolean | int ;]

[s:paging [pagination_options ;]

[s:concurrency int | [list_of_properties] ;]

[s:rate int | "string" ;]

[s:locale "string" ;]

GDI Concepts and Basic Usage 139

[s:sampling int ;]

[s:selector "string" | [list] ;]

[s:key ("string") ;]

[s:reference [s:model "string" ; s:using ("string")]

[s:formats [datatype_formatting_options] ;]

[s:normalize boolean | [source_normalization_rules] ;]

[s:count ?variable ;]

[s:offset int ;]

[s:limit int ;] .

Multiple data sources can be merged if they project a similar set

of output variables. Make sure each source has a unique subject variable.

[?unique_variable a s:source_type ;

...

.]

?rdf a s:RdfGenerator, s:OntologyGenerator ;

s:as (?s ?p ?o);

s:ontology ontology_uri ;

s:base base_uri ;

[s:normalize boolean | [global_normalization_rules] ;]

.

Additional clauses such as BIND, FILTER

}

}

Note
For readability, the parameters below exclude the base URI

<http://cambridgesemantics.com/ontologies/DataToolkit#> as well as the s:

prefix. As shown in the examples, however, the s: prefix or full property URI does need to be

included in queries.

Option Type Description

PREFIX Clause N/A The PREFIX clause declares the standard and custom
prefixes for GDI service queries. Generally, queries
include the prefixes from the query template (or a subset
of them) plus any data-specific declarations.

GDI Concepts and Basic Usage 140

Option Type Description

Result Clause N/A The result clause for Direct Load Steps is typically an
INSERT query with the graph pattern in the template
above.

Note
It is important to include the GRAPH keyword and

target graph parameter ${targetGraph} when
you are writing an INSERT query. Anzo

automatically replaces the ${targetGraph)

parameter with the appropriate target URI(s)

when the query runs.

source_type object The ?data a s:source_type triple pattern specifies
the type of data source that the query will run against. For
example, ?data a s:DbSource, specifies that the
source type is a database. The list below describes the
available types:

l DbSource to connect to any type of database.

l FileSource for flat files. The supported file types
are CSV and TSV, JSON, NDJSON, XML,

Parquet, and SAS (SAS Transport XPT and

SAS7BDAT formats). The GDI automatically

determines the file type from the file extensions.

When querying file sources, make sure that the

files are accessible to both Anzo and AnzoGraph.

l HttpSource to connect to HTTP endpoints.

l ElasticSource to connect to Elasticsearch
indexes on an Elasticsearch server.

GDI Concepts and Basic Usage 141

Option Type Description

l KafkaSource to connect to Kafka streaming
sources.

Tip
Certain connection and input parameters are

available based on the specified source type. For

details about the options for your source, see GDI

Property Reference.

url string This property specifies the URL for the data source, such
as the database URL, Elasticsearch URL, or HTTP
endpoint URL. For file-based sources, the url property
specifies the file system location of the source file or
directory of files. When specifying a directory (such as
s:url "/opt/shared-files/loads/"), the GDI
loads all of the file formats it recognizes. To specify a
directory but limit the number or type of files that are read,
you can include the pattern and/or maxDepth
properties described in FileSource Properties.

Important
For security, it is a best practice to reference

connection information (such as the url,

username, and password) from a Query Context

so that the sensitive details are abstracted from

any requests. In addition, using a Query Context

makes connection details reusable across

queries. See Using Query Contexts for more

information. For example, the triple patterns

below reference keys from a Query Context:

GDI Concepts and Basic Usage 142

Option Type Description

?data a s:DbSource ;

s:url "{{@db.eca4bfa8...ff9a.url}}"

;

s:username "

{{@db.eca4bfa8...ff9a.user}}" ;

s:password "

{{@db.eca4bfa8...ff9a.password}}" ;

model string This property defines the class (or table) name for the
type of data that is generated from the specified data
source. For example, s:model "employees". Model
is optional when querying a single source. If your query
targets multiple sources, however, and you want to
define resource templates (primary keys) and object
properties (foreign keys), you must specify the model
value for each source.

username string If authentication is required to access the source, include
this property to specify the user name.

password string This property lists the password for the given username.

timeout int This property can be used to specify the timeout (in
milliseconds) to use for requests against the source. For
example, s:timeout 5000 configures a 5 second
timeout.

maxConnections int For database sources, this property can be used to set a
limit on the maximum number of active connections to the
source. For example, s:maxConnections 16 sets the

GDI Concepts and Basic Usage 143

Option Type Description

limit to 16 connections. The default value is 10.

batching boolean or
int

This property can be used to disable batching, or it can
be used to change the default the batch size. By default,
batching is set to 5000 (s:batching 5000). To disable
batching, you can include s:batching false in the
query. Typically users do not change the batching size.
However, it can be useful to control the batch size when
performing updates. To configure the size, include
s:batching int in the query. For example,
s:batching 3000.

paging RDF list This property can be used to configure paging so that the
GDI can access large amounts of data across a number
of smaller requests. For details about the paging
property, see Paginating Requests.

concurrency int or RDF
list

This property can be included to configure the maximum
level of concurrency for the query. The value can be an
integer, such as s:concurrency 8. If the value is an
integer, it configures a maximum limit on the number of
slices that can execute the query. For finer-grained
control over the number of nodes and slices to use,
concurrency can also be included as an object with
limit, nodes, and/or executorsPerNode properties.
For example, the following object configures a
concurrency model that allows a maximum of 24
executors distributed across 4 nodes with 8 executors
per node:

s:concurrency [

s:limit 24 ;

s:nodes 4 ;

GDI Concepts and Basic Usage 144

Option Type Description

s:executorsPerNode 8 ;

] ;

rate int or string This property can be included to control the frequency
with which a request is sent to the source. The limit
applies to the number of requests a single slice can
make. If you specify an integer for the rate, then the value
is treated as the maximum number of requests to issue
per minute. If you specify a string, you have more
flexibility in configuring the rate. The sample values
below show the types of values that are supported:

s:rate "90/minute" ;

s:rate "90 per minute" ;

s:rate "200000 every week" ;

s:rate "10000 every 6 hours" ;

To enforce the rate limit, the GDI introduces a sleep

between requests that is equal to the rate delay. The

more executing slices, the longer the rate delay needs

to be to enforce the limit in aggregate.

Given the example of s:rate "90/minute", the GDI

would optimize the concurrency and only use 1 slice for

execution with a rate delay of 666ms between

requests. If s:rate "240/minute", the GDI would

use 3 executors with a rate delay of 750ms between

requests.

locale string This property can be used to specify the locale to use
when parsing locale-dependent data such as numbers,
dates, and times.

GDI Concepts and Basic Usage 145

Option Type Description

sampling int This property can be used to configure the number of
records in the source to examine for data type
inferencing.

selector string or
RDF list

This property can be used as a binding component to
identify the path to the source objects. For example,
s:selector "Sales.SalesOrderHeader" targets
the SalesOrderHeader table in the Sales schema. For
more information about binding components and the
selector property, see Using Binding Trees and Selector
Paths.

key string This property can be used to define the primary key
column for the source file or table. This column is
leveraged in a resource template for the instances that
are created from the source. For example, s:key
("EMPLOYEE_ID"). For more information about key,
see Data Linking Options.

reference RDF list This property can be used to specify a foreign key
column. The reference property is an RDF list that
includes the model property to list the target table and a
using property that defines the foreign key column. For
more information about reference, see Data Linking
Options.

formats RDF list To give users control over the data types that are used
when coercing strings to other types, this property can be
included in GDI queries to define the desired types. In
addition, it can be used to describe the formats of date
and time values in the source to ensure that they are
recognized and parsed to the appropriate date, time,

GDI Concepts and Basic Usage 146

Option Type Description

and/or dateTime values. For details about the formats
property, see Data Type Formatting Options.

normalize RDF list To give users control over the labels and URIs that are
generated, the GDI offers several options for normalizing
the model and/or the fields that are created from the
specified data source(s). For details about the
normalize property, see Model Normalization Options.

count variable If you want to turn the query into a COUNT query, you
can include this property with a ?variable to perform a
count. For example, s:count ?count.

offset int This property can be used to offset the data that is
returned by a number of rows.

limit int You can include this property to limit the number of
results that are returned. s:limitmaps to the SPARQL
LIMIT clause.

RdfGenerator object Include this property to invoke the RDF Generator. If you
only want to generate a model without RDF, you can
exclude RdfGenerator.

OntologyGenerator object Include this property to invoke the Ontology Generator. If
you only want to generate RDF without a model, you can
exclude OntologyGenerator.

as N/A This property provides the variable bindings for the RDF
Generator's projection to RDF. Typically the value is
s:as (?s ?p ?o) to match the variables in the result
clause.

GDI Concepts and Basic Usage 147

Option Type Description

ontology URI This property specifies the URI to use as the base URI for
any generated ontology artifacts. For example,
s:ontology

<http://abc.com/ontologies/MyOntology>.

Note
In the graphmart, the data layer ID is appended to

the ontology URI that is generated. The complete

URI is based on the layer and cannot be

customized.

base URI This property specifies the base URI for instance data.
The base value should NOT end in #. The Generator will
add a trailing slash (/) if one does not exist. For example,
s:base <http://abc.com/>.

GDI Generator Example Queries

This section includes sample queries that may be useful as a starting point for writing your own RDF

and Ontology Generator queries.

l Basic Query that Generates RDF and Ontology for a JSON File

l Basic Query that Generates an Ontology for a Directory of CSV Files

l Query that Normalizes and Generates RDF and Ontology for a Database

l Query with Query Context that Normalizes and Generates RDF and Ontology for a Database

l Query for Multiple Sources that Generates RDF and Ontology with Resource Templates and

Object Properties

GDI Concepts and Basic Usage 148

Basic Query that Generates RDF and Ontology for a JSON File

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

INSERT {

GRAPH ${targetGraph} {

?s ?p ?o .

}

}

WHERE {

SERVICE <http://cambridgesemantics.com/services/DataToolkit> {

?data a s:FileSource ;

s:model "People" ;

s:url "/opt/shared-files/json/people.json" .

?rdf a s:RdfGenerator , s:OntologyGenerator ;

s:as (?s ?p ?o) ;

s:ontology <http://cambridgesemantics.com/ontologies/People> ;

s:base <http://cambridgesemantics.com/data/> .

}

}

Basic Query that Generates an Ontology for a Directory of CSV Files

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

INSERT {

GRAPH ${targetGraph} {

?s ?p ?o .

}

}

WHERE {

SERVICE <http://cambridgesemantics.com/services/DataToolkit> {

?data a s:FileSource ;

s:model "Sales" ;

s:url "/opt/shared-files/csv/sales" ;

s:format [

s:delimiter "," ;

s:headers true ;

s:comment "#" ;

GDI Concepts and Basic Usage 149

s:quote "\"" ;

s:maxColumns 22 ;

] .

?rdf a s:OntologyGenerator ;

s:as (?s ?p ?o) ;

s:ontology <http://cambridgesemantics.com/ontologies/Sales> ;

s:base <http://cambridgesemantics.com/data/> .

}

}

Query that Normalizes and Generates RDF and Ontology for a Data-
base

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

INSERT {

GRAPH ${targetGraph} {

?s ?p ?o .

}

}

WHERE {

SERVICE <http://cambridgesemantics.com/services/DataToolkit> {

?data a s:DbSource ;

s:url "jdbc:mysql://10.11.12.9/emrdbbig" ;

s:username "root" ;

s:password "sql1@#" ;

s:normalize [

s:model [

s:removeStart "emr_" ;

s:words "activity 'patient complaint' medication observation patient

specialty study" ;

] ;

s:field [

s:removePartialPrefix true ;

s:words "provider description start end drug complaint date medication

normal code

observation product active dose generic route admin strength

collection

activity home first last status first year birth death directed

complex

GDI Concepts and Basic Usage 150

period age flag gender language" ;

] ;

] .

?rdf a s:RdfGenerator , s:OntologyGenerator ;

s:as (?s ?p ?o) ;

s:ontology <http://cambridgesemantics.com/ontologies/EMR> ;

s:base <http://cambridgesemantics.com/EMR> .

}

}

Query with Query Context that Normalizes and Generates RDF and
Ontology for a Database

The query below references a Query Context to supply the username and password for the

database connection.

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

INSERT {

GRAPH ${targetGraph} {

?s ?p ?o .

}

}

WHERE {

SERVICE <http://cambridgesemantics.com/services/DataToolkit> {

?data a s:DbSource ;

s:url "jdbc:sqlserver://localhost;databaseName=AdventureWorks2012" ;

s:username "{{@db.username}}" ;

s:password "{{@db.password}}" ;

s:schema "Production", "HumanResources", "Person", "Sales", "Purchasing" ;

s:normalize [

s:model [

s:localNamePrefix "C_" ;

s:localNameSeparator "_" ;

s:match [s:pattern "(.+)Enlarged" ; s:replace "$1"] ;

] ;

s:field [

s:localNamePrefix "P_" ;

s:localNameSeparator "_" ;

s:ignore "rowguid ModifiedDate" ;

GDI Concepts and Basic Usage 151

s:match (

[s:pattern "(.+)GUID$" ; s:replace "$1"]

[s:pattern "(.+)ID$" ; s:replace "$1"]

) ;

] ;

] .

?rdf a s:RdfGenerator, s:OntologyGenerator ;

s:as (?s ?p ?o) ;

s:ontology <http://cambridgesemantics.com/ontologies/AdventureWorks> ;

s:base <http://cambridgesemantics.com/AdventureWorks> .

}

}

Query for Multiple Sources that Generates RDF and Ontology with
Resource Templates and Object Properties

This query also includes global normalization rules for normalizing the data across all Data Sources.

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

INSERT {

GRAPH ${targetGraph} {

?s ?p ?o .

}

}

WHERE {

SERVICE <http://cambridgesemantics.com/services/DataToolkit> {

?event a s:FileSource ;

s:model "event" ;

s:url "/opt/shared-files/csv/events.csv" ;

s:key ("EVENT_ID") .

?listing a s:FileSource ;

s:model "listing" ;

s:url " /opt/shared-files/csv/listings.csv" ;

s:key ("LIST_ID") ;

s:reference [s:model "event" ; s:using ("EVENT_ID") ; s:key ("EVENT_ID")] .

?date a s:FileSource ;

s:model "date" ;

GDI Concepts and Basic Usage 152

s:url "/opt/shared-files/csv/event_dates.csv" ;

s:key ("DATE_ID") ;

s:reference [s:model "event" ; s:using ("EVENT_ID") ; s:key ("EVENT_ID")] .

?venue a s:FileSource ;

s:model "venue" ;

s:url " /opt/shared-files/csv/venues.csv" ;

s:key ("VENUE_ID") ;

s:reference [s:model "event" ; s:using ("EVENT_ID") ; s:key ("EVENT_ID")] .

?sale a s:FileSource ;

s:model "sale" ;

s:url " /opt/shared-files/csv/sales.csv" ;

s:key ("SALE_ID") ;

s:reference [s:model "event" ; s:using ("EVENT_ID") ; s:key ("EVENT_ID")] ;

s:reference [s:model "listing" ; s:using ("LIST_ID") ; s:key ("LIST_ID")] .

?rdf a s:RdfGenerator, s:OntologyGenerator ;

s:as (?s ?p ?o) ;

s:ontology <http://cambridgesemantics.com/tickets> ;

s:base <http://cambridgesemantics.com/data> ;

s:normalize [

s:all [

s:casing s:UPPER ;

s:localNameSeparator "_" ;

] ;

] .

}

}

Reading a Data Source's Metadata

If you want to retrieve instance data from a source but are unsure about the data model, schema, or

the exact names of columns and their data types, you can use the Graph Data Interface (GDI) to

explore the source's metadata. The GDI can be used to return a list of the catalogs (schemas),

models, columns, data types, and other data source information. This topic describes the metadata

query syntax and provides several example queries.

l Metadata Query Syntax

l Metadata Query Examples

GDI Concepts and Basic Usage 153

Metadata Query Syntax

The following query syntax shows the structure of a metadata query. The clauses, patterns, and

placeholders in blue are described below.

PREFIX Clause

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX anzo: <http://openanzo.org/ontologies/2008/07/Anzo#>

PREFIX zowl: <http://openanzo.org/ontologies/2009/05/AnzoOwl#>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

Result Clause

SELECT *

WHERE

{

SERVICE Clause: Include the following service call

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

[] s:select ?metadata .

?data a s:source_type ;

s:url "string" ;

[s:username "string" ;]

[s:password "string" ;]

?metadata a s:MetadataSource ;

s:from ?data ;

The metadata selector below specifies the type of metadata to return.

?catalogs | ?fields | ?models [

?metadata_type datatype ;

... ;

] .

}

}

GDI Concepts and Basic Usage 154

Option Type Description

PREFIX
Clause

N/A The PREFIX clause declares the standard and custom prefixes for
GDI service queries. Generally, queries include the prefixes from
the query template (or a subset of them) plus any data-specific
declarations.

Result
Clause

N/A The result clause defines the results to return. For metadata
queries, the result clause is typically SELECT *.

SERVICE
Clause

Include the required GDI SERVICE call in the WHERE clause. The
rest of the WHERE clause defines the patterns to look for in the
source.

[] s:select
?metadata

N/A Include this required triple pattern in metadata queries. The select
property specifies the source that should be used to return data.

source_type object The ?data a s:source_type triple pattern specifies the type of
data source that the query will run against. For example, ?data a

s:DbSource, specifies that the source type is a database. The list
below describes the available types:

l DbSource to connect to any type of database.

l FileSource for flat files. The supported file types are CSV
and TSV, JSON, NDJSON, XML, Parquet, and SAS (SAS

Transport XPT and SAS7BDAT formats). The GDI

automatically determines the file type from the file

extensions. When querying file sources, make sure that

the files are accessible to both Anzo and AnzoGraph.

l HttpSource to connect to HTTP endpoints.

l ElasticSource to connect to Elasticsearch indexes on an
Elasticsearch server.

GDI Concepts and Basic Usage 155

Option Type Description

l KafkaSource to connect to Kafka streaming sources.

Tip
Certain connection and input parameters are available

based on the specified source type. For details about the

options for your source, see GDI Property Reference.

url string This property specifies the URL for the data source, such as the
database URL, Elasticsearch URL, or HTTP endpoint URL. For
file-based sources, the url property specifies the file system
location of the source file or directory of files.

Important
For security, it is a best practice to reference connection

information (such as the url, username, and password)

from a Query Context so that the sensitive details are

abstracted from any requests. In addition, using a Query

Context makes connection details reusable across

queries. See Using Query Contexts for more information.

For example, the triple patterns below reference keys from

a Query Context:

?data a s:DbSource ;

s:url "{{@db.eca4...93ff9a.url}}" ;

s:username "{{@db.eca4...93ff9a.user}}" ;

s:password "

{{@db.eca4...93ff9a.password}}" ;

username string If authentication is required to access the source, include this
property to specify the user name.

GDI Concepts and Basic Usage 156

Option Type Description

password string This property lists the password for the given username.

catalogs variable This selector narrows the results to schema-related metadata such
as the schema names. Even when additional metadata types
(metadata_type datatype) are specified as objects, only catalog
(schema) information is returned.

fields variable This selector is the broadest and most flexible option. Using the
fields selector enables users to return any and all of the source
metadata information, depending on the specified metadata types
(metadata_type datatype).

models variable This selector narrows the results to model-related metadata such
as the model names. Even when additional metadata types
(metadata_type datatype) are specified as objects, only model
information is returned.

metadata_
type
datatype

N/A The triple patterns in the array for the metadata selector specify the
type of metadata to return as well as the data type for the return
value. The following list shows all of the valid options. You can
include any combination of properties. The results that are returned
depend on the type of data source and whether the information
exists in the source. The parentheses around the data type are not
required but are included in this document for readability.

l ?model (xsd:string): Returns model names in string
format. For file sources, this property returns file names.

l ?field (xsd:string): Returns column names.

l ?catalog (xsd:string): Returns schema names.

l ?datatype (owl:Thing): Returns the data types of the
columns.

GDI Concepts and Basic Usage 157

Option Type Description

l ?keys (xsd:string): Returns primary and foreign key
columns. For compound keys, the GDI returns a comma-

separated list of columns comprising the key.

l ?format (xsd:string): Returns the format of the source.

l ?cardinality (xsd:string): Returns the cardinality of
relationships between tables: optional, many, or required.

l ?count (xsd:int): Returns the number of times the field
appears in the source.

l ?order (xsd:int): Returns the order in which the field was
encountered.

Metadata Query Examples

This section includes sample metadata queries that run against different types of data sources.

l List Database Schemas

l Explore a Database Schema

l Explore a Directory of SAS Files

l Explore an HTTP Endpoint

l Explore a Directory of CSV Files

List Database Schemas

The query below sends a metadata query to a MySQL database to return a list of the schemas that

are available:

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

GDI Concepts and Basic Usage 158

PREFIX anzo: <http://openanzo.org/ontologies/2008/07/Anzo#>

PREFIX zowl: <http://openanzo.org/ontologies/2009/05/AnzoOwl#>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT *

WHERE

{

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

[] s:select ?metadata .

?data a s:DbSource ;

s:url "jdbc:mysql://10.100.2.9:5555/?user=root&password=Mysql1@#" .

?metadata a s:MetadataSource ;

s:from ?data ;

?catalogs [

?catalog (xsd:string) ;

?order (xsd:int) ;

] .

}

}

ORDER BY ?catalog

The query returns the following results:

catalog | order

----------------------+-------

BANKTEST_DB | 1

EMR | 4

GOLFCLUB_DB | 8

NORTHWIND | 10

SPORTDB | 13

SQLPOCKET_DB | 14

WORDPRESS_DB | 16

classicmodels | 2

crm_national_patients | 3

emrdbbig | 5

emrdbsmall | 6

emrnational_schema | 7

mysql | 9

optum | 11

performance_schema | 12

GDI Concepts and Basic Usage 159

sys | 15

16 rows

Explore a Database Schema

Using the list of schemas that were returned in the example above (List Database Schemas), the

query below returns metadata about the columns in one of the schemas. To narrow the results to a

schema, the schema name (NORTHWIND) is added to the connection URL.

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX anzo: <http://openanzo.org/ontologies/2008/07/Anzo#>

PREFIX zowl: <http://openanzo.org/ontologies/2009/05/AnzoOwl#>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT *

WHERE

{

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

[] s:select ?metadata .

?data a s:DbSource ;

s:url "jdbc:mysql://10.100.2.9:5555/NORTHWIND?user=root&password=Mysql1@#" .

?metadata a s:MetadataSource ;

s:from ?data ;

?fields [

?model (xsd:string) ;

?field (xsd:string) ;

?datatype (owl:Thing) ;

] .

}

}

ORDER BY ?model

The query returns the following results:

GDI Concepts and Basic Usage 160

model | field | datatype

-------------------------------+----------------------+--------------------------------

Alphabetical list of products | CategoryID |

http://www.w3.org/2001/XMLSchema#int

Alphabetical list of products | Discontinued |

http://www.w3.org/2001/XMLSchema#boolean

Alphabetical list of products | SupplierID |

http://www.w3.org/2001/XMLSchema#int

Alphabetical list of products | UnitPrice |

http://www.w3.org/2001/XMLSchema#decimal

Alphabetical list of products | ProductName |

http://www.w3.org/2001/XMLSchema#string

Alphabetical list of products | QuantityPerUnit |

http://www.w3.org/2001/XMLSchema#string

Alphabetical list of products | UnitsOnOrder |

http://www.w3.org/2001/XMLSchema#short

Alphabetical list of products | CategoryName |

http://www.w3.org/2001/XMLSchema#string

Alphabetical list of products | ProductID |

http://www.w3.org/2001/XMLSchema#int

Alphabetical list of products | ReorderLevel |

http://www.w3.org/2001/XMLSchema#short

Alphabetical list of products | UnitsInStock |

http://www.w3.org/2001/XMLSchema#short

Categories | CategoryID |

http://www.w3.org/2001/XMLSchema#int

Categories | Description |

http://www.w3.org/2001/XMLSchema#string

Categories | Picture |

http://www.w3.org/2001/XMLSchema#base64Binary

Categories | CategoryName |

http://www.w3.org/2001/XMLSchema#string

Categories | categoryid |

Category Sales for 1997 | CategoryName |

http://www.w3.org/2001/XMLSchema#string

Category Sales for 1997 | CategorySales |

http://www.w3.org/2001/XMLSchema#double

Current Product List | ProductName |

http://www.w3.org/2001/XMLSchema#string

Current Product List | ProductID |

http://www.w3.org/2001/XMLSchema#int

...

GDI Concepts and Basic Usage 161

201 rows

Explore a Directory of SAS Files

The query below explores a directory of SAS files to return the model, catalog (schema), field, data

type, and cardinality information. The query also orders the results by model name, which is the file

name for file sources of a data model does not exist.

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX anzo: <http://openanzo.org/ontologies/2008/07/Anzo#>

PREFIX zowl: <http://openanzo.org/ontologies/2009/05/AnzoOwl#>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT *

WHERE

{

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

[] s:select ?metadata .

?data a s:FileSource ;

s:url "/opt/shared-files/sas" .

?metadata a s:MetadataSource ;

s:from ?data ;

?fields [

?model (xsd:string) ;

?field (xsd:string) ;

?catalog (xsd:string) ;

?datatype (owl:Thing) ;

?cardinality (xsd:string) ;

] .

}

}

ORDER BY ?model

The query returns the following results:

GDI Concepts and Basic Usage 162

model | field | catalog | datatype | cardinality

--------+-------------+---------+---+------------

-

demand | P1 | les/sas | http://www.w3.org/2001/XMLSchema#double | REQUIRED

demand | P2 | les/sas | http://www.w3.org/2001/XMLSchema#double | REQUIRED

demand | P3 | les/sas | http://www.w3.org/2001/XMLSchema#double | REQUIRED

demand | Y | les/sas | http://www.w3.org/2001/XMLSchema#double | REQUIRED

demand | Q1 | les/sas | http://www.w3.org/2001/XMLSchema#double | REQUIRED

demand | Q2 | les/sas | http://www.w3.org/2001/XMLSchema#double | REQUIRED

demand | Q3 | les/sas | http://www.w3.org/2001/XMLSchema#double | REQUIRED

demo | YEAR | les/sas | http://www.w3.org/2001/XMLSchema#long | REQUIRED

demo | QTR | les/sas | http://www.w3.org/2001/XMLSchema#long | REQUIRED

demo | GDP | les/sas | http://www.w3.org/2001/XMLSchema#double | REQUIRED

demo | PR | les/sas | http://www.w3.org/2001/XMLSchema#double | REQUIRED

demo | M1 | les/sas | http://www.w3.org/2001/XMLSchema#double | REQUIRED

demo | RS | les/sas | http://www.w3.org/2001/XMLSchema#double | REQUIRED

airline | YEAR | les/sas | http://www.w3.org/2001/XMLSchema#long | REQUIRED

airline | Y | les/sas | http://www.w3.org/2001/XMLSchema#double | REQUIRED

airline | W | les/sas | http://www.w3.org/2001/XMLSchema#double | REQUIRED

airline | R | les/sas | http://www.w3.org/2001/XMLSchema#double | REQUIRED

airline | L | les/sas | http://www.w3.org/2001/XMLSchema#double | REQUIRED

airline | K | les/sas | http://www.w3.org/2001/XMLSchema#double | REQUIRED

cars | MPG | les/sas | http://www.w3.org/2001/XMLSchema#long | REQUIRED

cars | CYL | les/sas | http://www.w3.org/2001/XMLSchema#long | REQUIRED

...

50 rows

Explore an HTTP Endpoint

The query below explores the metadata for a sample HTTP source that compiles worldwide weather

statistics.

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX anzo: <http://openanzo.org/ontologies/2008/07/Anzo#>

PREFIX zowl: <http://openanzo.org/ontologies/2009/05/AnzoOwl#>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT *

GDI Concepts and Basic Usage 163

WHERE

{

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

[] s:select ?metadata .

?data a s:HttpSource ;

s:url "https://sampleEndpoint.com/forecast/30.374563,-97.975892" .

?metadata a s:MetadataSource ;

s:from ?data ;

?fields [

?model (xsd:string) ;

?field (xsd:string) ;

?datatype (owl:Thing) ;

?cardinality (xsd:string) ;

?order (xsd:int) ;

] .

}

}

ORDER BY ?model ?order

The query returns the following results:

model | field | datatype |

cardinality | order

----------+-----------------------------+---+----

---------+-------

currently | time | http://www.w3.org/2001/XMLSchema#int |

REQUIRED | 6

currently | summary | http://www.w3.org/2001/XMLSchema#string |

REQUIRED | 7

currently | icon | http://www.w3.org/2001/XMLSchema#string |

REQUIRED | 8

currently | nearestStormDistance | http://www.w3.org/2001/XMLSchema#int |

REQUIRED | 9

currently | nearestStormBearing | http://www.w3.org/2001/XMLSchema#int |

REQUIRED | 10

currently | precipIntensity | http://www.w3.org/2001/XMLSchema#int |

REQUIRED | 11

currently | precipProbability | http://www.w3.org/2001/XMLSchema#int |

REQUIRED | 12

GDI Concepts and Basic Usage 164

currently | temperature | http://www.w3.org/2001/XMLSchema#float |

REQUIRED | 13

currently | apparentTemperature | http://www.w3.org/2001/XMLSchema#float |

REQUIRED | 14

currently | dewPoint | http://www.w3.org/2001/XMLSchema#float |

REQUIRED | 15

currently | humidity | http://www.w3.org/2001/XMLSchema#float |

REQUIRED | 16

currently | pressure | http://www.w3.org/2001/XMLSchema#float |

REQUIRED | 17

currently | windSpeed | http://www.w3.org/2001/XMLSchema#float |

REQUIRED | 18

currently | windGust | http://www.w3.org/2001/XMLSchema#float |

REQUIRED | 19

currently | windBearing | http://www.w3.org/2001/XMLSchema#int |

REQUIRED | 20

currently | cloudCover | http://www.w3.org/2001/XMLSchema#float |

REQUIRED | 21

currently | uvIndex | http://www.w3.org/2001/XMLSchema#int |

REQUIRED | 22

currently | visibility | http://www.w3.org/2001/XMLSchema#int |

REQUIRED | 23

currently | ozone | http://www.w3.org/2001/XMLSchema#float |

REQUIRED | 24

daily | summary | http://www.w3.org/2001/XMLSchema#string |

REQUIRED | 75

daily | icon | http://www.w3.org/2001/XMLSchema#string |

REQUIRED | 76

daily | data | |

MANY | 77

data | time | http://www.w3.org/2001/XMLSchema#int |

REQUIRED | 29

data | precipIntensity | http://www.w3.org/2001/XMLSchema#float |

REQUIRED | 30

data | precipProbability | http://www.w3.org/2001/XMLSchema#float |

REQUIRED | 31

data | summary | http://www.w3.org/2001/XMLSchema#string |

OPTIONAL | 32

...

81 rows

The following query retrieves the model, field, and data type metadata for the United States from the

publicly available Data API Covid Tracking Project.

GDI Concepts and Basic Usage 165

https://covidtracking.com/data/api

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX anzo: <http://openanzo.org/ontologies/2008/07/Anzo#>

PREFIX zowl: <http://openanzo.org/ontologies/2009/05/AnzoOwl#>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT *

WHERE

{

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

[] s:select ?metadata .

?data a s:HttpSource ;

s:url "https://covidtracking.com/api/v1/us/current.csv" .

?metadata a s:MetadataSource ;

s:from ?data ;

?fields [

?model (xsd:string) ;

?field (xsd:string) ;

?datatype (owl:Thing) ;

] .

}

}

The query returns the following results:

model | field | datatype

------+--------------------------+---

us | date | http://www.w3.org/2001/XMLSchema#string

us | states | http://www.w3.org/2001/XMLSchema#string

us | positive | http://www.w3.org/2001/XMLSchema#string

us | negative | http://www.w3.org/2001/XMLSchema#string

us | pending | http://www.w3.org/2001/XMLSchema#string

us | hospitalizedCurrently | http://www.w3.org/2001/XMLSchema#string

us | hospitalizedCumulative | http://www.w3.org/2001/XMLSchema#string

us | inIcuCurrently | http://www.w3.org/2001/XMLSchema#string

us | inIcuCumulative | http://www.w3.org/2001/XMLSchema#string

GDI Concepts and Basic Usage 166

us | onVentilatorCurrently | http://www.w3.org/2001/XMLSchema#string

us | onVentilatorCumulative | http://www.w3.org/2001/XMLSchema#string

us | recovered | http://www.w3.org/2001/XMLSchema#string

us | dateChecked | http://www.w3.org/2001/XMLSchema#string

us | death | http://www.w3.org/2001/XMLSchema#string

us | hospitalized | http://www.w3.org/2001/XMLSchema#string

us | lastModified | http://www.w3.org/2001/XMLSchema#string

us | total | http://www.w3.org/2001/XMLSchema#string

us | totalTestResults | http://www.w3.org/2001/XMLSchema#string

us | posNeg | http://www.w3.org/2001/XMLSchema#string

us | deathIncrease | http://www.w3.org/2001/XMLSchema#string

us | hospitalizedIncrease | http://www.w3.org/2001/XMLSchema#string

us | negativeIncrease | http://www.w3.org/2001/XMLSchema#string

us | positiveIncrease | http://www.w3.org/2001/XMLSchema#string

us | totalTestResultsIncrease | http://www.w3.org/2001/XMLSchema#string

us | hash | http://www.w3.org/2001/XMLSchema#string

25 rows

Explore a Directory of CSV Files

The query below explores a directory of CSV files to return the model, field, and data type. The

query also orders the results by model name, which is the file name for file sources of a data model

does not exist. In addition, the query includes s:sampling true, which means the GDI will scan

the entire file or files before returning results.

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX anzo: <http://openanzo.org/ontologies/2008/07/Anzo#>

PREFIX zowl: <http://openanzo.org/ontologies/2009/05/AnzoOwl#>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT *

WHERE

{

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

[] s:select ?metadata .

?data a s:FileSource ;

GDI Concepts and Basic Usage 167

s:url "/opt/shared-files/movie-csv" .

?metadata a s:MetadataSource ;

s:from ?data ;

Sample the whole file

s:sampling true ;

Sample the first N records

s:sampling 1000 ;

?fields [

?model (xsd:string) ;

?field (xsd:string) ;

?datatype (owl:Thing) ;

] .

}

}

ORDER BY ?model

The query returns the following results:

model | field | datatype

-----------------------+---------------------------+-----------------------------------

MovieActors1 | MovieID |

http://www.w3.org/2001/XMLSchema#int

MovieActors1 | MovieTitle |

http://www.w3.org/2001/XMLSchema#string

MovieActors1 | ActorID |

http://www.w3.org/2001/XMLSchema#int

MovieActors1 | ActorName |

http://www.w3.org/2001/XMLSchema#string

MovieActors2 | MovieID |

http://www.w3.org/2001/XMLSchema#int

MovieActors2 | MovieTitle |

http://www.w3.org/2001/XMLSchema#string

MovieActors2 | ActorID |

http://www.w3.org/2001/XMLSchema#int

MovieActors2 | ActorName |

http://www.w3.org/2001/XMLSchema#string

MovieActors2 | ActorCategory |

http://www.w3.org/2001/XMLSchema#string

GDI Concepts and Basic Usage 168

MovieCategory | MovieID |

http://www.w3.org/2001/XMLSchema#int

MovieCategory | MovieTitle |

http://www.w3.org/2001/XMLSchema#string

MovieCategory | MoveCategoryID |

http://www.w3.org/2001/XMLSchema#int

MovieCategory | MovieCategory |

http://www.w3.org/2001/XMLSchema#string

MovieCinematographers | MovieID |

http://www.w3.org/2001/XMLSchema#int

MovieCinematographers | MovieTitle |

http://www.w3.org/2001/XMLSchema#string

MovieCinematographers | MovieCinematographerID |

http://www.w3.org/2001/XMLSchema#int

MovieCinematographers | MovieCinematographerName |

http://www.w3.org/2001/XMLSchema#string

MovieComposers | MovieID |

http://www.w3.org/2001/XMLSchema#int

MovieComposers | MovieTitle |

http://www.w3.org/2001/XMLSchema#string

MovieComposers | MovieComposerID |

http://www.w3.org/2001/XMLSchema#int

MovieComposers | MovieComposerName |

http://www.w3.org/2001/XMLSchema#string

MovieDirectors | MovieID |

http://www.w3.org/2001/XMLSchema#int

MovieDirectors | MovieTitle |

http://www.w3.org/2001/XMLSchema#string

...

79 rows

The following example shows a query that returns metadata for an Elasticsearch source.

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX anzo: <http://openanzo.org/ontologies/2008/07/Anzo#>

PREFIX zowl: <http://openanzo.org/ontologies/2009/05/AnzoOwl#>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

PREFIX ex: <http://example.org/ontologies/City#>

PREFIX es: <http://elastic.co/search/>

GDI Concepts and Basic Usage 169

PREFIX : <http://example.org/cities/>

SELECT *

WHERE {

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

[] s:select ?_fields .

?data a es:ElasticSource ;

es:url "http://localhost:9200/" ;

es:index "account" ;

?account_number xsd:long ;

?age (xsd:long) ;

?balance (xsd:long) ;

?address (xsd:string) ;

?city (xsd:string) ;

?state (xsd:string) ;

?email (xsd:string) ;

?employer (xsd:string) ;

?firstname (xsd:string) ;

?lastname (xsd:string) ;

?gender (xsd:string) .

?_fields a s:MetadataSource ;

s:from ?data ;

?fields [

?catalog () ;

?model () ;

?field () ;

?cardinality () ;

?datatype () ;

?type () ;

?object () ;

] .

}

}

ORDER BY ?catalog ?model ?field

For instructions on querying the instance data based on the data source metadata, see Getting

Started with GDI Queries.

GDI Concepts and Basic Usage 170

Paginating Requests

The GDI exposes paging models that enable you to access large amounts of data across a number

of smaller requests. Paging is configured by including the paging property in a query and
configuring a combination of the pagination options described below. The GDI supports keyset-

based, page-based, cursor-based, and offset-based pagination. Paging is supported for all data

source types.

l Paging Syntax

l Paging Examples

Paging Syntax

s:paging [

s:key (?variable) ;

s:page ?variable ;

s:cursor ?variable ;

s:offset ?variable ;

s:size int ;

s:limit ?variable ;

] ;

Option Type Description

key variable Include this property if you want to configure keyset-based pagination
where a key is specified to act as a delimiter of the page. The s:key
value is a variable that is bound to an expression that defines how to
delimit the data. It is usually calculated by an aggregate expression
and/or filter that can be pushed to the source. The aggregate
expression is typically MAX, but MIN can also be used to page through
data in reverse order, such as when working with temporal data. See
Key-Based Examples below for examples that configure paging using
the s:key property.

page variable Include this property if you want to configure page-based pagination
where the set is divided into pages. The s:page property value is a
variable that the GDI can use to track the current page across requests.

GDI Concepts and Basic Usage 171

Option Type Description

See Page-Based Example below for an example that configures
paging using the s:page property.

cursor variable Include this property if you want to configure cursor-based pagination.
The s:cursor property value is a variable that is bound against the
source to capture the "cursor" value. The GDI uses this value as input
to the source to deliver the next page of data. See Cursor-Based
Example below for an example that configures paging with the
s:cursor property.

offset variable Include this property along with the limit property if you want to
configure offset-based pagination. The s:offset property value is a
variable that the GDI can use to track the current offset across
requests. See Offset-Based Example below for an example that
configures paging using the s:offset property.

size int This property can be included with any of the paging models to
configure the maximum size of each page. For example, s:size
5000 limits the page size to 5,000 rows.

limit variable This property can be included to define the variable that the GDI should
use to push the page size back to the source.

Paging Examples

l Key-Based Examples

l Page-Based Example

l Cursor-Based Example

l Offset-Based Example

GDI Concepts and Basic Usage 172

Key-Based Examples

The example SERVICE clause below pages data based on the ?LastID key, which is calculated by

finding the maximum value of SalesOrderID and binding it to ?LastID. A FILTER is used to filter

for data where the SalesOrderID is greater than ?LastID.

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

BIND(MAX(?SalesOrderID) AS ?LastID)

FILTER(?SalesOrderID > ?LastID)

?SalesOrderHeaderEnlarged a s:DbSource ;

s:url "jdbc:sqlserver://..." ;

s:table "Sales.SalesOrderHeaderEnlarged" ;

s:paging [

s:key (?LastID) ;

s:size 5000 ;

] ;

?SalesOrderID (xsd:int) ;

?RevisionNumber (xsd:int) ;

?OrderDate ("OrderDate" xsd:dateTime) ;

?DueDate (xsd:dateTime) .

}

The SERVICE clause below shows an example where key-based paging is configured to page

through temporal data in reverse order. The s:limit property is configured on the s:HttpSource

to limit the overall number of results returned across all pages. This query retrieves at most 1000

records (s:limit 1000), 100 rows (s:size 100) at a time.

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

BIND(MIN(?Timestamp) AS ?LastTimestamp)

?api a s:HttpSource ;

s:url "http://slack.com/api/messages/latest" ;

s:parameter [s:name "before" ; s:value ?LastTimestamp] ;

s:parameter [s:name "limit" ; s:value ?limit] ;

s:limit 1000 ;

s:paging [

s:key (?LastTimestamp) ;

s:limit ?limit ;

GDI Concepts and Basic Usage 173

s:size 100 ;

] ;

?Message (xsd:string) ;

?Author (xsd:string) ;

?Timestamp (xsd:dateTime) .

}

Page-Based Example

The SERVICE clause below shows an example that uses the s:page property to configure page-

based paging where the page size is 100 rows. This query retrieves at most 1000 records (s:limit

1000), 100 rows (s:size 100) at a time.

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

?api a s:HttpSource ;

s:url "http://slack.com/api/messages" ;

s:parameter [s:name "page" ; s:value ?page] ;

s:parameter [s:name "size" ; s:value ?limit] ;

s:limit 1000 ;

s:paging [

s:page ?page ;

s:limit ?limit ;

s:size 100 ;

] ;

?Message (xsd:string) ;

?Author (xsd:string) ;

?Timestamp (xsd:dateTime) .

}

Cursor-Based Example

The SERVICE clause below shows an example that uses the s:cursor property to configure

cursor-based paging.

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

?api a s:HttpSource ;

s:url "http://slack.com/api/messages" ;

s:parameter [s:name "cursor" ; s:value ?cursor] ;

s:parameter [s:name "limit" ; s:value ?limit] ;

GDI Concepts and Basic Usage 174

s:limit 1000 ;

s:paging [

s:cursor ?cursor ;

s:limit ?limit ;

s:size 100 ;

] ;

?Message (xsd:string) ;

?Author (xsd:string) ;

?Timestamp (xsd:dateTime) ;

?cursor ("next_cursor" xsd:string) .

}

Offset-Based Example

The SERVICE clause below shows an example that uses the s:offset property to configure

offset-based paging.

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

?api a s:HttpSource ;

s:url "http://slack.com/api/messages" ;

s:parameter [s:name "offset" ; s:value ?offset] ;

s:parameter [s:name "limit" ; s:value ?limit] ;

s:limit 1000 ;

s:paging [

s:offset ?offset ;

s:limit ?limit ;

s:size 100 ;

] ;

?Message (xsd:string) ;

?Author (xsd:string) ;

?Timestamp (xsd:dateTime) .

}

Binding and Hierarchy Concepts

As part of the Graph Data Interface's (GDI) flexibility, there are multiple ways to express binding

hierarchies in queries. This topic describes the options for expressing hierarchies.

l Using Binding Trees and Selector Paths

l Unpacking JSON with Bindings and Arrays

GDI Concepts and Basic Usage 175

l Returning Hierarchies as JSON Strings

Using Binding Trees and Selector Paths

One way to express hierarchies in queries is to use brackets ([]) to group objects into binding

trees. For example, the WHERE clause snippet below organizes mapping variable objects into an

hourly/data hierarchy by nesting the ?data patterns inside the ?hourly [] tree:

WHERE

{

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

?data a s:HttpSource;

s:url "https://sampleEndpoint.com/forecast/" ;

?latitude (xsd:double) ;

?longitude (xsd:double) ;

?timezone (xsd:string) ;

?hourly

[

?data

[

?time (xsd:long) ;

?summary (xsd:string) ;

?rainIntensity ("precipIntensity" xsd:double) ;

?rainProbability ("precipProbability" xsd:double) ;

?temperature (xsd:double) ;

?feelsLike ("apparentTemperature" xsd:double) ;

?humidity (xsd:double) ;

?pressure (xsd:double) ;

?windSpeed (xsd:double) ;

] ;

] .

}

}

When constructing object binding trees, if you choose to introduce the hierarchy with a variable

name that is not an exact match to the source label, include a selector property to list the value from
the source. For example, in the WHERE clause snippet below, s:selector is included to select

eventHeader in the source as ?event in the query and statLocation as ?location.

WHERE

{

GDI Concepts and Basic Usage 176

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

?data a s:FileSource ;

s:url "/mnt/data/json/part_1.json" ;

?event

[

s:selector "eventHeader" ;

?eventId (xsd:string) ;

?eventName (xsd:string) ;

?eventVersion (xsd:string) ;

?eventTime (xsd:dateTime) ;

] ;

?location

[

s:selector "statLocation" ;

?locationId (xsd:string) ;

?lineNo (xsd:int) ;

?statNo (xsd:int) ;

?statId (xsd:int) ;

] .

}

}

As an alternative to grouping objects in binding trees, the selector property also supports using dot
notation to specify paths. For example, the WHERE clause snippet below rewrites the first example

query to express the same hourly/data hierarchy as a path in the s:selector value:

WHERE

{

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

?data a s:HttpSource;

s:url "https://sampleEndpoint.com/forecast/" ;

?latitude (xsd:double) ;

?longitude (xsd:double) ;

?timezone (xsd:string) ;

s:selector: "hourly.data" ;

?time (xsd:long) ;

?summary (xsd:string) ;

?rainIntensity ("precipIntensity" xsd:double) ;

?rainProbability ("precipProbability" xsd:double) ;

?temperature (xsd:double) ;

?feelsLike ("apparentTemperature" xsd:double) ;

GDI Concepts and Basic Usage 177

?humidity (xsd:double) ;

?pressure (xsd:double) ;

?windSpeed (xsd:double) .

}

}

You can also include the $ character to anchor the selector at the root of the file. For example,

s:selector "data" captures all data elements anywhere in the file. But s:selector

"$.data" captures only the data elements that are at the root of the hierarchy.

Unpacking JSON with Bindings and Arrays

In addition to object binding trees and selectors, the GDI offers additional syntax for reading or

ingesting JSON sources with nested objects and arrays. For example, following the JSON sample

file below is a query that captures each value in the arrays:

{

"payload" :

{

"IBP_IndEvent_MSR" :

{

"unit" : "ms",

"value" : [0, 1]

},

"IBP_IndEvent_RMF" :

{

"unit" : "-",

"value" : [0.012, 1.398, 3.1415]

}

}

}

To read the JSON file above, the following query uses an object binding (?values []) to drill

down to the value arrays in the source. An @ selector is specified in the ?value variable binding

(?value ("@" xsd:double)) to retrieve each of the array values. For an array of primitive

values, the @ selector captures each value in the array. If the source value was an array of

objects, the @ selector would retrieve a JSON representation for each object in the array. In

addition to creating a new binding context for the primitive array values, the ?values object binding

also includes ?index ("!array::index") to capture the index array with the primitive value.

GDI Concepts and Basic Usage 178

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT *

WHERE {

SERVICE <http://cambridgesemantics.com/services/DataToolkit> {

?data a s:FileSource ;

s:url "/mnt/data/json/array-index.json" ;

s:selector "payload.*" ;

?unit (xsd:string) ;

?values [

s:selector "value" ;

?value ("@" xsd:double) ;

?index ("!array::index") ;

] .

}

}

The results of the query are shown below:

unit | value | index

-----+--------+-------

ms | 0 | 0

ms | 1 | 1

- | 0.012 | 0

- | 1.398 | 1

- | 3.1415 | 2

If you do not want to retrieve all of the values in an array, you can include the specific index number

to retrieve instead of using the @ symbol. In the variable binding, the index number is appended in

brackets ([]) to the binding column name. For example, the following variable binding retrieves the

second index value (the third value in the array) from a "projects" array: ?project ("projects

[2]"). The next example uses the following JSON file:

{

"field1" : "value1" ,

"arrayfield" : [

"arrayvalue1",

"arrayvalue2"

]

}

GDI Concepts and Basic Usage 179

To retrieve only the second value in the array, the following query appends the index value 1 to the

array column name, arrayfield:

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

SELECT *

WHERE {

SERVICE <http://cambridgesemantics.com/services/DataToolkit> {

?json a s:FileSource ;

s:url "/mnt/data/json/array-index-2.json" ;

?field1 (xsd:string) ;

?arrayval ("arrayfield[1]" xsd:string) .

}

}

The results of the query are shown below:

field1 | arrayval

---------+----------

value1 |arrayvalue2

Returning Hierarchies as JSON Strings

When working with schema-less sources, you can also capture a tree of data as a JSON string. For

example, the query snippet below targets an HTTP endpoint. In this case, the properties under the

hourly class of data are unknown. So the query binds all of the data below hourly to the ?hourly
variable by including empty parentheses. As a result, the GDI returns a JSON string representation

of all of the properties and instance data under hourly:

WHERE

{

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

?data a s:HttpSource;

s:url "https://sampleEndpoint.com/forecast/" ;

?latitude (xsd:double) ;

?longitude (xsd:double) ;

?timezone (xsd:string) ;

?hourly () .

}

}

For example, the results look like this:

GDI Concepts and Basic Usage 180

latitude | longitude | timezone | hourly

-----------+------------+-----------------+----------------------------

30.374563 | -97.975892 | America/Chicago | {"summary":"\"Humid and partly cloudy

throughout the day.\"","icon":"\"partly-cloudy-day\"","data":[{"time":"1595559600",

summary":"\"Clear\"","icon":"\"clear-night\"","precipIntensity":"0",

"precipProbability":"0","temperature":"88.39","apparentTemperature":"91.72",

"dewPoint":"67.42","humidity":"0.5","pressure":"1011.7","windSpeed":"7.48",

"windGust":"16.71","windBearing":"109","cloudCover":"0.06","uvIndex":"0",

"visibility":"10","ozone":"285.2"},{"time":"1595563200","summary":"\"Clear\"",

"icon":"\"clear-night\"","precipIntensity":"2.0E-4","precipProbability":"0.01",

"precipType":"\"rain\"","temperature":"86.69","apparentTemperature":"90.1",

"dewPoint":"67.84","humidity":"0.54","pressure":"1012","windSpeed":"7.05",

"windGust":"17.56","windBearing":"110","cloudCover":"0.12","uvIndex":"0",

"visibility":"10","ozone":"284.9"},...

Similar to the example above, you can write a query that specifically captures some of the

properties in a hierarchy and then returns the rest of the properties and their values as a JSON

string representation. To do so, use "@" as the binding path. For example:

WHERE

{

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

?data a s:HttpSource;

s:url

"https://api.darksky.net/forecast/bdbe3f638eb908c9b94919537dad5945/30.374563,-

97.975892" ;

?latitude (xsd:double) ;

?longitude (xsd:double) ;

?timezone (xsd:string) ;

?hourly [

s:selector "hourly.data" ;

?time (xsd:long) ;

?summary (xsd:string) ;

?hourly_data ("@") ;

] .

}

}

Sample results are shown below:

latitude | longitude | timezone | time | summary | hourly_data

GDI Concepts and Basic Usage 181

-----------+------------+-----------------+------------+------------------+------------

30.374563 | -97.975892 | America/Chicago | 1595559600 | Clear |

{"time":"1595559600","summary":"\"Clear\"",

"icon":"\"clear-

night\"","precipIntensity":"0","precipProbability":"0","temperature":"88.39",

"apparentTemperature":"91.72","dewPoint":"67.42","humidity":"0.5","pressure":"1011.7","

windSpeed":"7.48",

"windGust":"16.71","windBearing":"109","cloudCover":"0.06","uvIndex":"0","visibility":"

10","ozone":"285.2"}

30.374563 | -97.975892 | America/Chicago | 1595563200 | Clear |

{"time":"1595563200","summary":"\"Clear\"",

"icon":"\"clear-night\"","precipIntensity":"2.0E-

4","precipProbability":"0.01","precipType":"\"rain\"","temperature":"86.69",

"apparentTemperature":"90.1","dewPoint":"67.84","humidity":"0.54","pressure":"1012","wi

ndSpeed":"7.05","windGust":"17.56",

"windBearing":"110","cloudCover":"0.12","uvIndex":"0","visibility":"10","ozone":"284.

9"}

30.374563 | -97.975892 | America/Chicago | 1595566800 | Partly Cloudy |

{"time":"1595566800","summary":"\"Partly Cloudy\"",

"icon":"\"partly-cloudy-night\"","precipIntensity":"3.0E-4","precipProbability":"0.01",

"precipType":"\"rain"","temperature":"85.63","apparentTemperature":"89.21",

"dewPoint":"68.33","humidity":"0.56","pressure":"1012.6","windSpeed":"6.48","windGust":

"17.92","windBearing":"110",

"cloudCover":"0.34","uvIndex":"0","visibility":"10","ozone":"284.5"}

...

Incremental Onboarding Concepts

When loading data from a database or file-based data source with a Graph Data Interface (GDI)

query, you can add a few statements to the query to load a portion of the data incrementally rather

than all of the data at once. As data is added or changed in the source, new data can be ingested

without having to reload all of the previously ingested data. Because incremental ingestion is

GDI Concepts and Basic Usage 182

configured as a filter in a SPARQL query, it is extremely flexible, allowing for various conditions to

be defined for diverse data sources. When the data is ingested, the GDI evaluates the current state

of the data and then loads only the data that meets the conditions defined in the query.

This topic provides example incremental queries to get you started and includes instructions for

configuring a Data Layer as an incremental ingestion workflow.

l Incremental DbSource Example

l Incremental FileSource Example

l Setting Up a Data Layer to Ingest Data Incrementally

Incremental DbSource Example

The following query from a Direct Load Step ingests data from a database. All of the values for the

requested columns in the ORDER_DETAILS table will be loaded.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

INSERT {

GRAPH ${targetGraph} {

?s ?p ?o .

}

}

${usingSources}

WHERE {

SERVICE <http://cambridgesemantics.com/services/DataToolkit> {

?data a s:DbSource ;

s:url "jdbc:oracle:thin:@10.10.10.10:1111/XE" ;

s:username "northwind" ;

s:password "NORTHWIND123" ;

s:schema "NORTHWIND" ;

s:table "ORDER_DETAILS" ;

?database ("!") ;

?schema ("!") ;

?table ("!") ;

?OrderID (xsd:int) ;

GDI Concepts and Basic Usage 183

?ProductID (xsd:int) ;

?UnitPrice (xsd:double) ;

?Quantity (xsd:short) ;

?Discount xsd:double .

BIND(IRI("http://cambridgesemantics.com/orders/{{?OrderID}}") AS ?resource)

?rdf a s:RdfGenerator, s:OntologyGenerator ;

s:as (?s ?p ?o) ;

s:ontology <http://cambridgesemantics.com/ontologies/northwind> ;

s:base <http://cambridgesemantics.com/data> .

}

}

The query below adds statements that configure the same Direct Load Step to ingest data

incrementally. It captures the maximum order ID as the incremental value. When the source is

updated with records that increase the order ID, only the records with larger order IDs than the

previous maximum value will be ingested when the Graphmart is refreshed or reloaded. In the

query:

l A ?MaxID variable is bound to the result of MAX(?OrderID): BIND (MAX(?OrderID) AS

?MaxID).

l The ?MaxID variable is defined as the incremental value: ?MaxID a

s:IncrementalValue.

l A filter clause is added to create a condition that ingests only the records where the order ID is

greater than the previously ingested maximum ID: FILTER (?OrderID > ?MaxID).

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

INSERT {

GRAPH ${targetGraph} {

?s ?p ?o .

}

}

${usingSources}

GDI Concepts and Basic Usage 184

WHERE {

SERVICE <http://cambridgesemantics.com/services/DataToolkit> {

?MaxID a s:IncrementalValue .

FILTER (?OrderID > ?MaxID)

BIND (MAX(?OrderID) AS ?MaxID)

?data a s:DbSource ;

s:url "jdbc:oracle:thin:@10.10.10.10:1111/XE" ;

s:username "northwind" ;

s:password "NORTHWIND123" ;

s:schema "NORTHWIND" ;

s:table "ORDER_DETAILS" ;

?database ("!") ;

?schema ("!") ;

?table ("!") ;

?OrderID (xsd:int) ;

?ProductID (xsd:int) ;

?UnitPrice (xsd:double) ;

?Quantity (xsd:short) ;

?Discount xsd:double .

BIND(IRI("http://cambridgesemantics.com/orders/{{?OrderID}}") AS ?resource)

?rdf a s:RdfGenerator, s:OntologyGenerator ;

s:as (?s ?p ?o) ;

s:ontology <http://cambridgesemantics.com/ontologies/northwind> ;

s:base <http://cambridgesemantics.com/data> .

}

}

Incremental FileSource Example

The following query from a Direct Load Step ingests data from all of the CSV files in the

/nfs/data/fmcsa directory:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

DELETE {

GDI Concepts and Basic Usage 185

GRAPH ${targetGraph} {

}

}

INSERT {

GRAPH ${targetGraph} {

?s ?p ?o .

}

}

WHERE {

SERVICE <http://cambridgesemantics.com/services/DataToolkit> {

?data a s:FileSource ;

s:model "fmcsa" ;

s:url "/nfs/data/fmcsa" ;

s:pattern "*.csv" .

?rdf a s:RdfGenerator , s:OntologyGenerator ;

s:as (?s ?p ?o) ;

s:ontology <http://cambridgesemantics.com/ontologies/fmcsa> ;

s:base <http://cambridgesemantics.com/data/> .

}

}

The query below adds statements that configure the same Direct Load Step to ingest data

incrementally. It uses a "last modified" strategy to determine what files are new or modified and

should be ingested the next time the Graphmart is refreshed or reloaded. In the query:

l The modified timestamp metadata on the files is captured with ?Modified ("!").

l The ?LastRun variable is bound to the result of the NOW() function: BIND (NOW() AS

?LastRun).

l A filter clause is added to check whether the modified timestamp is later than the timestamp

from the last time the query was run: FILTER (?Modified > ?LastRun).

l ?LastRun is defined as the incremental value: ?LastRun a s:IncrementalValue.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

GDI Concepts and Basic Usage 186

DELETE {

GRAPH ${targetGraph} {

}

}

INSERT {

GRAPH ${targetGraph} {

?s ?p ?o .

}

}

WHERE {

SERVICE <http://cambridgesemantics.com/services/DataToolkit> {

?LastRun a s:IncrementalValue .

FILTER (?Modified > ?LastRun)

BIND (NOW() AS ?LastRun)

?data a s:FileSource ;

s:model "fmcsa" ;

s:url "/nfs/data/fmcsa" ;

s:pattern "*.csv" ;

?Modified ("!") .

?rdf a s:RdfGenerator , s:OntologyGenerator ;

s:as (?s ?p ?o) ;

s:ontology <http://cambridgesemantics.com/ontologies/fmcsa> ;

s:base <http://cambridgesemantics.com/data/> .

}

}

Setting Up a Data Layer to Ingest Data Incrementally

1. Create a new empty dataset in the Anzo Data Store. For instructions, see Adding an Empty

Dataset for an Export Step.

2. In the graphmart where you want to add a GDI query that ingests data incrementally, add a

new layer.

3. In the new layer, add a Load Dataset Step as the first step. The Linked Dataset for this step

should be the empty dataset that you created in the first step.

4. Now, add a Direct Load Step as the next step in the layer. Edit the query template in the step

to compose the incremental query.

GDI Concepts and Basic Usage 187

5. As the last step in the layer, add an Export Step. The Target FLDS for the step should also be

the empty dataset that you created in the first step. For example, the image below shows a

graphmart with a layer that is set up to ingest data incrementally.

6. Activate the graphmart to ingest the data and export it to an FLDS. Once the graphmart is

activated, enable the Load Dataset Step.

GDI Concepts and Basic Usage 188

Options for Data Types, Data Linking, and Models

The topics in this section describe the options that are available across data source types for

controlling the way that strings are coerced to other data types, the relationships that define

connections across multiple sources, and the way label and URI values are generated in the data

model.

l Data Type Formatting Options

l Data Linking Options

l Model Normalization Options

Data Type Formatting Options

To give you control over the data types that are used when coercing strings to other types, the

formats property can be included in GDI queries to define the desired types. In addition, formats
can be used to describe the formats of date and time values in the source to ensure that they are

recognized and parsed to the appropriate date, time, and/or dateTime values. You can also use the

formats property to suppress the conversion so that the generated values are typed the same way

as the source.

Tip
The GDI takes locale into account when formatting the generated date and time values.

For sources that do not include data type specifications and natively treat values as strings, the GDI

Generator automatically converts the values to the appropriate type. For example, if a CSV file

includes the value "Feb-18-2022," the GDI parses the string to an xsd:date with the format "2022-

02-18". A column with numbers is converted to an xsd:int type and a column with a decimal value

is converted to xsd:float. The formats property usage is described below.

l Formats Syntax

l Formats Examples

Options for Data Types, Data Linking, and Models 189

Formats Syntax

s:formats [

s:strict boolean ; [

xsd:data_type "format"

| xsd:data_type boolean ;

[... ;]

]

] ;

Option Type Description

strict boolean This property enables or disables the automatic type conversion
feature. By default, strict is set to false (s:strict false),
meaning the GDI's automatic type conversion feature is enabled.
When strict is false, any formats specified in s:formats []

augment the GDI's built-in date and time formats. You can
selectively disable certain type conversions, however, by including
xsd:data_type false. For example, xsd:dateTime false

disables the parsing of strings to dateTime.

When strict is true (s:strict true), the auto conversion logic

is essentially disabled and the generated data will be represented

the same way it is in the source. When strict is true, you can

selectively enable certain conversions by including xsd:data_

type true or by defining xsd:data_type "format". In this

case, values that do not match any of the formats provided will be

typed as xsd:string.

xsd:data_
type
"format"

N/A Include xsd:data_type "format" when you want to describe
the formats of date and time values in the source. The GDI supports
Java date and time format notation. For example, if dates in the
source are formatted like "yyyy-MM-dd," include the statement
xsd:date "yyyy-MM-dd". If the source uses multiple formats for
dates, e.g., 18-MAR-1978 and 03/18/1978, you can list multiple
formats for xsd:date, such as xsd:date "dd-MMM-yyyy",

Options for Data Types, Data Linking, and Models 190

Option Type Description

"MM/dd/yyyy".

Note
The GDI's default base year is 2000. If the source data has
years with only two digits, such as 02-04-99, the GDI

prepends 20 to the digits. The value 02-04-99 is parsed to
02-04-2099. To specify an alternate base year to use for

two-digit values, you can include the notation ^nnnn

(e.g., ^1900) in the format value. For example, to set

the base year to 1900 instead of 2000, use a format value

such as xsd:date "dd-MMM-yy^1900" or xsd:date

"dd-MMM-yy^1990". When one of those values is

specified, 02-04-99 is parsed to 02-04-1999.

xsd:data_
type
boolean

N/A When strict is false or not set, you can disable specific type
conversions by listing data types and setting their values to
false.For example, if you want the GDI to convert strings to
integers or floats when possible but you want the dates in the
source to be preserved as strings, you can include xsd:date
false to disable the conversion of strings to dates.

When strict is true, you can enable specific type conversions by

listing data types and setting their values to true. For example, if

you want the GDI to preserve the strings in the source except for

when the string is a number, you can include xsd:int true to

enable the conversion of strings to integers.

Formats Examples

The example below sets strict to true and forces the GDI to parse values only to the data types that

are enabled with true. It also defines the format to look for when converting strings to dateTime:

Options for Data Types, Data Linking, and Models 191

s:formats [

s:strict true ;

xsd:int true ;

xsd:dateTime true ;

xsd:dateTime "yyyy-MM-dd-HH-mm-ss" ;

] ;

The example below does not set strict, so the default value of false is used. The data type

definitions specify the formats of the values to parse as date, time, and dateTime values. The

example also disables the conversion from string to long:

s:formats [

xsd:date "MM/dd/yyyy", "MMM dd", "MMM dd yyyy" ;

xsd:time "HH[:mm][:ss][]a" ;

xsd:dateTime "M/d/yyyy HH:mm:ss a", "yyyy-MM-dd-HH-mm-ss" ;

xsd:long false ;

] ;

Data Linking Options

When a data source does not define keys (such as a CSV or JSON source), the GDI provides

properties that enable you to create a connected knowledge graph by defining relationships,

resource templates (primary keys) and object properties (foreign keys), when you are loading data

from multiple sources. The properties that are available are described below.

l Data Linking Syntax

l Data Linking Examples

Data Linking Syntax

s:key ("column_name") ;

s:reference [

s:model "table_to_reference" ;

s:using ("foreign_key_column")

]

Option Type Description

key string Include this property when you want to define the primary key column
for the source file or table. This column is leveraged in a resource

Options for Data Types, Data Linking, and Models 192

Option Type Description

template for the instances that are created from the source. For
example, s:key ("EMPLOYEE_ID"). If none of the columns contain
unique values, you can specify a combination of columns that would
create a unique value. For example, s:key ("FlightNumber",

"TailNumber").

reference RDF list Include this property when you want to specify a foreign key column.
The reference property is an RDF list that includes the model property
to list the target table and a using property that defines the foreign
key column in the source table.

s:reference [

s:model "table_to_reference" ;

s:using ("foreign_key_column")

]

Tip
You can also include an optional key property within the

s:reference list that defines the key column in the target

table and can be used as a way to expose additional metadata

that helps inform the GDI how to name the object property. For

example:

s:reference [s:model "Employees" ; s:using

("EMPLOYEE_ID") ; s:key ("EMPLOYEE_ID")]

Data Linking Examples

For example, the query snippet below defines two data sources. The s:model property defines the

table/class for each source, and the s:key defines the primary key for each table/class. The

s:reference property for the "venue" table defines a foreign key relationship from

venue.EVENT_ID to event.EVENT_ID.

Options for Data Types, Data Linking, and Models 193

?event a s:FileSource ;

s:model "event" ;

s:url "/opt/shared-files/csv/events.csv" ;

s:key ("EVENT_ID") .

?venue a s:FileSource ;

s:model "venue" ;

s:url " /opt/shared-files/csv/venues.csv" ;

s:key ("VENUE_ID") ;

s:reference [s:model "event" ; s:using ("EVENT_ID")] .

The following query for multiple file sources generates RDF and an ontology with resource

templates and object properties. The query also includes global normalization rules for normalizing

the data across all sources (see Model Normalization Options for information about normalization).

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

INSERT {

GRAPH ${targetGraph} {

?s ?p ?o .

}

}

WHERE {

SERVICE <http://cambridgesemantics.com/services/DataToolkit> {

?event a s:FileSource ;

s:model "event" ;

s:url "/opt/shared-files/csv/events.csv" ;

s:key ("EVENT_ID") .

?listing a s:FileSource ;

s:model "listing" ;

s:url " /opt/shared-files/csv/listings.csv" ;

s:key ("LIST_ID") ;

s:reference [s:model "event" ; s:using ("EVENT_ID") ; s:key ("EVENT_ID")] .

?date a s:FileSource ;

s:model "date" ;

s:url "/opt/shared-files/csv/event_dates.csv" ;

s:key ("DATE_ID") ;

s:reference [s:model "event" ; s:using ("EVENT_ID") ; s:key ("EVENT_ID")] .

?venue a s:FileSource ;

Options for Data Types, Data Linking, and Models 194

s:model "venue" ;

s:url " /opt/shared-files/csv/venues.csv" ;

s:key ("VENUE_ID") ;

s:reference [s:model "event" ; s:using ("EVENT_ID") ; s:key ("EVENT_ID")] .

?sale a s:FileSource ;

s:model "sale" ;

s:url " /opt/shared-files/csv/sales.csv" ;

s:key ("SALE_ID") ;

s:reference [s:model "event" ; s:using ("EVENT_ID") ; s:key ("EVENT_ID")] ;

s:reference [s:model "listing" ; s:using ("LIST_ID") ; s:key ("LIST_ID")] .

?rdf a s:RdfGenerator, s:OntologyGenerator ;

s:as (?s ?p ?o) ;

s:ontology <http://cambridgesemantics.com/tickets> ;

s:base <http://cambridgesemantics.com/data> ;

s:normalize [

s:all [

s:casing s:UPPER ;

s:localNameSeparator "_" ;

] ;

] .

}

}

Model Normalization Options

To give users control over the labels and URIs that are generated in the data model, the GDI offers

several options for normalizing the class and property fields that are created from the specified data

source(s). Normalization rules can be specified at the source level to normalize the data from each

source independently, or they can be used at the RDF Generator level to apply global rules across

all specified data sources.

Note
Normalization rules are applied only at the model level. The rules to do affect the instance

data values that are ingested.

Options for Data Types, Data Linking, and Models 195

Including the normalize parameter is optional. If you include it, you can specify any combination of
rules. See Default Normalization Behavior below for details about the Generator's default behavior

when normalization rules are not specified in your query.

l Default Normalization Behavior

l Normalize Syntax

l Normalize Examples

Default Normalization Behavior

The GDI Generator normalizes data according to the following rules by default. If you do not include

the s:normalize parameter in your query, these are the rules that are applied:

s:normalize [

s:all [

s:removePrefix true ;

s:removePartialPrefix false ;

s:allowWhiteSpace false ;

s:allowPunctuation false ;

s:allowSymbols false ;

s:separator " " ;

s:singularize false ;

s:casing s:UpperCamel ;

s:localNameSeparator "." ;

]

]

Normalize Syntax

s:normalize boolean | [

s:model | s:field | s:all

[

s:removeStart "string" ;

s:removeEnd "string" ;

s:removePrefix boolean ;

s:removePartialPrefix boolean ;

s:match [s:pattern "java_regex" ; s:replace "java_regex"] ;

s:disambiguationLevel int ;

s:ignore "string" ;

s:words "string" ;

s:preserve "string" ;

Options for Data Types, Data Linking, and Models 196

s:split "string" ;

s:allowWhiteSpace boolean ;

s:allowPunctuation boolean ;

s:allowSymbols boolean ;

s:singularize boolean ;

s:casing property ;

s:separator "string" ;

s:localNamePrefix "string" ;

s:localNameSeparator "string" ;

] ;

] ;

Property Type Description

boolean N/A Normalize is enabled by default for all GDI Generator
queries. If you want to disable normalization, you can
include s:normalize false. If normalization is
disabled, the names in the source will be used verbatim
both for labeling and in generating the local names for
property and class URIs. However, when normalization
is disabled, the labels in the data source are used
verbatim. In addition, the Generator creates hard-to-
read, URL-encoded local names for property and class
URIs.

s:model | s:field | s:all N/A This property defines whether the specified
normalization rules should be applied across the model
or only to the classes or properties. The list below
describes each option:

l s:model: Applies the rules to the file/table/class
names only.

l s:fields: Applies the rules to the
column/property/field names only.

l s:all: (Default) Applies the rules to both the
class and property names. This is the default

Options for Data Types, Data Linking, and Models 197

Property Type Description

value if not specified.

removeStart string If you want to remove text from the beginning of
identifiers, include the removeStart rule to specify the
string to remove. For example, s:removeStart
"temp_".

removeEnd string If you want to remove text from the end of identifiers,
include the removeEnd rule to specify the string to
remove. For example, s:removeEnd "NEW".

removePrefix boolean If there are property identifiers that share a prefix with
the class, the RDF Generator automatically removes
the shared prefix from the property name; the
removePrefix rule is set to true by default. For
example, if there is an EMPLOYEE class with an
EMPLOYEE_ID column, the shared prefix
"EMPLOYEE" is removed from the generated property
so that it becomes "ID." If you do not want the
Generator to remove prefixes, you can include
s:removePrefix false.

removePartialPrefix boolean If there are property identifiers that share a partial prefix
with the class, you can enable removePartialPrefix to
remove the partial prefix from the property name. The
removePartialPrefix rule is set to false by default. If
you want the Generator to remove partial prefixes, you
can include s:removePrefix true.

match RDF list This rule provides a way to use regular expressions
(REGEX) to match a pattern against source identifiers
and replace the matched text in the normalized name.

Options for Data Types, Data Linking, and Models 198

Property Type Description

The s:pattern property defines the Java REGEX

pattern to match against, and s:replace defines the

Java REGEX replacement pattern. As shown in the

example below, the match rule can also be configured

with an rdf:List of objects to perform match

evaluation in a certain order:

s:match (

[s:pattern "(.+)GUID$" ; s:replace

"$1" ;]

[s:pattern "(.+)ID$" ; s:replace "$1"

;]

)

disambiguationLevel int This rule specifies the number of levels to use to
resolve ambiguities between similarly named elements
in a hierarchical source. For example, an element
named "Data" appears in two contexts: "Currently" and
"Hourly." By default, the Generator retains all levels,
meaning two classes are generated: "Currently Data"
and "Hourly Data." If s:disambiguationLevel is set
to 0, a single class named "Data" is generated and both
the Currently and Hourly classes have a "Data"
property. The disambiguationLevel value is also used
to determine the number of hierarchy levels to use
when encoding the local name of the generated URI.

ignore string This rule can be used to list identifiers that should be
ignored. Properties and classes will not be generated
for identifiers that match the specified string(s). The
ignore rule is a multi-valued property. For simplicity,

Options for Data Types, Data Linking, and Models 199

Property Type Description

you can enter a list by separating words with a space,
rather than quoting each term and separating them with
a comma. For multi-word identifiers, use single quotes.
For example, s:ignore "sample example 'test

column' old".

words string Since many sources do not encode word boundaries
very well, thewords rule can be used to list the set of
words that should be separate identifiers. This rule tells
the Generator which words may be encountered. The
words rule is a multi-valued property. For simplicity, you
can enter a list by separating words with a space, rather
than quoting each term and separating them with a
comma. For multi-word identifiers, use single quotes.
For example:

s:words "activity 'patient complaint'

medication observation patient signal

specialty study" ;

preserve string This rule can be used to identify any words whose
casing should be preserved in the input identifiers. For
example, if casing is set to lower but you want
preserve the original upper casing of certain words, you
can specify the words to preserve. The preserve rule is
a multi-valued property. For simplicity, you can enter a
list by separating words with a space, rather than
quoting each term and separating them with a comma.
For multi-word identifiers, use single quotes. For
example: s:preserve "ABC 'Laundry List'

TriG". The preserve rule is case-insensitive. You do
not have to match the casing of the words to preserve.

Options for Data Types, Data Linking, and Models 200

Property Type Description

split string This rule specifies the string that should be used to split
source identifiers into individual terms. If neither split
nor words is specified, input identifiers are split on
casing changes and character class changes.

allowWhiteSpace boolean This rule specifies whether or not white space should
be preserved in identifiers after they have been split
into individual terms. This rule is set to false by
default, meaning white space is not preserved. You can
specify s:allowWhiteSpace true to preserve
spaces.

allowPunctuation boolean This rule specifies whether or not punctuation should
be preserved in identifiers after they have been split
into individual terms. This rule is set to false by
default, meaning punctuation is not preserved. You can
specify s:allowPunctuation true to preserve
punctuation.

allowSymbols boolean This rule specifies whether or not symbols should be
preserved in identifiers after they have been split into
individual terms. This rule is set to false by default,
meaning symbols are not preserved. You can specify
s:allowSymbols true to preserve symbols.

singularize boolean This rule specifies whether or not to change any plural
identifiers to singular. This rule is set to false by
default, meaning plural identifiers are preserved. You
can specify s:singularize true to change plural
terms to the singular version of the term.

casing object This rule specifies how the generated labels should be

Options for Data Types, Data Linking, and Models 201

Property Type Description

cased. By default, the Generator outputs labels in
upper camel case (s:casing s:UpperCamel). To
use a different casing, specify any of the following
properties:

l default: This object preserves the casing from
the source. Labels will not be converted.

l UPPER: This object converts all characters to
uppercase. For example, "uppercase" becomes

"UPPERCASE."

l lower: This object converts all characters to
lowercase. For example, "Lower Case"

becomes "lower case".

l UpperCamel: This is the default casing value
and converts labels to upper camel case, where

terms are concatenated and the first letter of

each word is capitalized. For example, "upper

camel case" becomes "UpperCamelCase."

l lowerCamel: This object converts labels to
lower camel case, where terms are

concatenated and the first letter of the first word

is lower case. The first letter of subsequent

terms is capitalized. For example, "lower camel

case" becomes "lowerCamelCase."

separator string This rule specifies the character or characters to use to
separate terms in the generated label. The default
separator is a space (s:separator " ").

Options for Data Types, Data Linking, and Models 202

Property Type Description

localNamePrefix string This rule specifies a string to use as the prefix for local
names when generating a URI.

localNameSeparator string This rule specifies the string to use for separating local
names when encoding hierarchies according to the
specified disambiguationLevel. By default,
localNameSeparator is a period
(s:localNameSeparator "."). If
localNameSeparator is empty, hierarchical context will
not be encoded into the local name of any properties or
child classes. The result would be an ontology where
only the class or property name is used to determine
the local name. For example, a property URI would look
like ont:employeeID rather than
ont:Employee.employeeID. The result could lead
to "conflicts" in the generated ontology, but those
"conflicts" may be desired as properties with same
name are reused across the generated ontology.

Tip
You can specify normalization rules at both the source and global level in the same query. If

you include multi-valued rules (such as ignore, words, or preserve) at both levels, the

Generator combines all values from both instances of the rule. If you specify single value rules

at both levels and the values are conflicting, the Generator applies the value at the source

level.

Normalize Examples

The example below uses the normalize property to normalize data at both the model and field level.

s:normalize [

s:model [

s:localNamePrefix "C_" ;

Options for Data Types, Data Linking, and Models 203

s:localNameSeparator "_" ;

s:match [s:pattern "(.+)Enlarged" ; s:replace "$1"] ;

] ;

s:field [

s:localNamePrefix "P_" ;

s:localNameSeparator "_" ;

s:ignore "rowguid ModifiedDate" ;

s:match (

[s:pattern "(.+)GUID$" ; s:replace "$1"]

[s:pattern "(.+)ID$" ; s:replace "$1"]

) ;

] ;

] ;

Options for Data Types, Data Linking, and Models 204

Advanced Usage by Data Source Type

The topics in this section provide more advanced GDI usage information by including descriptions

for all of the query options for each type of supported data source.

Note
Although connections to data sources can be made directly in GDI queries. Creating the

connection in Anzo prior to writing queries enables your organization to get an overview of the

sources that are in use or available to use. Connecting to a source also gives a sample view of

the data to be onboarded (except for JSON and XML sources). And, for sources that require

input of sensitive connection and authorization information, connecting the sources to Anzo

allows you to later hide that sensitive information (through the use of a Query Context) from

any queries that are generated for that source. See Adding Data Sources for instructions on

connecting to sources.

Tip
Rather than manually writing complex queries, you can use the GDI to automatically generate

graphs and ontologies by including a few key statements in a relatively simple query. For

information, see Onboarding Data with a Direct Load Step.

l Querying a Database Source

l Querying an HTTP Source

l Querying an Elasticsearch Source

l Querying a File Source

Querying a Database Source

This topic provides details about the structure to use when writing GDI queries to read or ingest data

from database data sources. It also includes example queries that may be useful as a starting point

for writing your own GDI queries.

Advanced Usage by Data Source Type 205

l Supported Databases

l Query Syntax

l Query Examples

Supported Databases

The GDI supports querying any database through a JDBC connection. AnzoGraph installations

include JDBC drivers for the following databases:

l Databricks

l H2

l IBM DB2

l Microsoft SQL Server

l MariaDB

l Oracle

l PostgreSQL

l SAP Sybase (jTDS)

l Snowflake

To extend the service to access other databases, additional JDBC drivers can be added to

AnzoGraph. For information about acquiring additional JDBC drivers, contact your Cambridge

Semantics Customer Success manager. For instructions on deploying drivers, see Deploy Optional

Drivers for Accessing Custom Database Sources in the Deployment Guide.

Query Syntax

The following query syntax shows the structure of a GDI query for database sources. The clauses,

patterns, and placeholders that are links are described below.

PREFIX Clause

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

Advanced Usage by Data Source Type 206

https://docs.cambridgesemantics.com/anzo/v5.4/userdoc/anzograph-post-install.htm#gdi-drivers
https://docs.cambridgesemantics.com/anzo/v5.4/userdoc/anzograph-post-install.htm#gdi-drivers

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX anzo: <http://openanzo.org/ontologies/2008/07/Anzo#>

PREFIX zowl: <http://openanzo.org/ontologies/2009/05/AnzoOwl#>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

Result Clause

{

[GRAPH ${targetGraph} {]

triple_patterns

[}]

}

[${usingSources}]

WHERE

{

SERVICE Clause: Include the following service call when reading or inserting data.

SERVICE [TOPDOWN] <http://cambridgesemantics.com/services/DataToolkit>

View SERVICE Clause: Or use the service call below when constructing a view.

SERVICE <http://cambridgesemantics.com/services/DataToolkitView>(${targetGraph})

{

?data a s:DbSource ;

s:url "string" ;

s:username "string" ;

s:password "string" ;

[s:token "string" ;]

[s:driver "string" ;]

[s:property [s:name "string" ; s:value "string"] ;]

[s:timeout int ;]

[s:maxConnections int ;]

[s:batching boolean | int ;]

[s:concurrency int | [list_of_properties] ;]

[s:rate int | "string" ;]

[s:partitionBy "string" | ?variable | s:auto ;]

[s:paging [pagination_options ;]

[s:locale "string" ;]

[s:sampling int ;]

[s:selector "string" | [list] ;]

[s:model "string" ;]

[s:key ("string") ;]

[s:reference [s:model "string" ; s:using ("string")]

Advanced Usage by Data Source Type 207

[s:formats [datatype_formatting_options] ;]

[s:normalize boolean | [normalization_rules] ;]

[s:query "string" ;]

[s:database "string" ;]

[s:schema "string" ;]

[s:table "string" ;]

[s:count ?variable ;]

[s:offset int ;]

[s:orderBy "string" | ?variable ;]

[s:limit int ;]

Mapping variables

?mapping_variable (["binding"] [datatype] ["datetime_format"]) ;

... ;

.

Additional clauses such as BIND, VALUES, FILTER

}

}

Note
For readability, the parameters below exclude the base URI

<http://cambridgesemantics.com/ontologies/DataToolkit#> as well as the s:

prefix. As shown in the examples, however, the s: prefix or full property URI does need to be

included in queries.

Option Type Description

PREFIX Clause N/A The PREFIX clause declares the standard and custom prefixes for
GDI service queries. Generally, queries include the prefixes from
the query template (or a subset of them) plus any data-specific
declarations.

Result Clause N/A The result clause defines the type of SPARQL query to run and
the set of results to return, i.e., whether you want to read (SELECT
or CONSTRUCT) from the source or ingest the data into Anzo
(INSERT).

GRAPH N/A Include the GRAPH keyword and target graph parameter

Advanced Usage by Data Source Type 208

Option Type Description

${targetGraph} ${targetGraph} when writing an INSERT query to ingest data
into a graphmart. Anzo automatically populates the query with the
appropriate target URIs when the query runs.

${usingSource
s}

N/A Include the source graph parameter ${usingSources} when
writing a "topdown" query that passes values from the data that is
in the graphmart to the data source. Anzo automatically populates
the query with the appropriate FROM clauses when the query
runs. When passing literal values to the remote source, you do not
need to include the source graph parameter. The SERVICE
Clause description below includes more information about
passing input to data sources.

SERVICE
Clause

N/A Include the SERVICE call SERVICE [TOPDOWN]

<http://cambridgesemantics.com/services/DataTool

kit> to invoke the GDI service when you are running a SELECT,
INSERT, or CONSTRUCT query that is not creating a view. When
writing a CONSTRUCT query in a View Step, use the
DataToolkitView service call, as described below in View
SERVICE Clause.

Include the optional TOPDOWN keyword when you want to

pass input values from the graphmart to the data source. When

you include TOPDOWN in the service call, it indicates that the

rest of the query produces values to send to the source. In this

case, the GDI makes repeated calls to pass in each of the

specified values and retrieve the data that is based on those

values.

View SERVICE
Clause

N/A When writing a CONSTRUCT query that creates a view of the
data (usually in a View Step), include the following SERVICE call:
SERVICE

Advanced Usage by Data Source Type 209

Option Type Description

<http://cambridgesemantics.com/services/DataTool

kitView>(${targetGraph}). Using the DataToolkitView
call optimizes query execution because it tells the GDI to inspect
the query and determine which filters to push to the data source. It
also limits the result set and retrieves only the data that is needed,
i.e., the source data is fully mapped but all of the mapped data is
not necessarily returned.

url string This property specifies the URL to use to access the database.

Important
For security, it is a best practice to reference connection

information (such as the url, username, and password)

from a Query Context so that the sensitive details are

abstracted from any requests. In addition, using a Query

Context makes connection details reusable across

queries. See Using Query Contexts for more information.

For example, the triple patterns below reference a Query

Context and add a JDBC driver level connection property:

?data a s:DbSource ;

s:url "{{@db.eca4bf...ff9a.url}}" ;

s:username "{{@db.eca4bf...ff9a.user}}" ;

s:password "

{{@db.eca4bf...ff9a.password}}" ;

s:property [s:name "access" ; s:value

"all"] ;

username string This property lists the user name to use for the connection to the
database.

Advanced Usage by Data Source Type 210

Option Type Description

Tip
If you want to group the username and password

properties, you can wrap them with s:credentials [

]. For example:

s:credentials [

s:username "username" ;

s:password "password" ;

] ;

password string This property lists the password for the given username.

token string For connections that require a bearer token, this property can be
included to specify the token.

driver string This property can be included to specify the JDBC driver to use.

property RDF list This property can be included to list any JDBC driver-specific
connection properties. To incorporate property, use the
following syntax:

s:property [

s:name "custom_driver_property_name" ;

s:value "custom_value"

]

timeout int This property can be used to specify the timeout (in milliseconds)
to use for requests against the source. For example, s:timeout
5000 configures a 5 second timeout.

maxConnection int This property can be used to set a limit on the maximum number

Advanced Usage by Data Source Type 211

Option Type Description

s of active connections to the source. For example,
s:maxConnections 16 sets the limit to 16 connections. The
default value is 10.

batching boolean
or int

This property can be used to disable batching, or it can be used to
change the default the batch size. By default, batching is set to
5000 (s:batching 5000). To disable batching, you can include
s:batching false in the query. Typically users do not change
the batching size. However, it can be useful to control the batch
size when performing updates. To configure the size, include
s:batching int in the query. For example, s:batching
3000.

concurrency int or
RDF list

This property can be included to configure the maximum level of
concurrency for the query. The value can be an integer, such as
s:concurrency 8. If the value is an integer, it configures a
maximum limit on the number of slices that can execute the query.
For finer-grained control over the number of nodes and slices to
use, concurrency can also be included as an object with limit,
nodes, and/or executorsPerNode properties. For example, the
following object configures a concurrency model that allows a
maximum of 24 executors distributed across 4 nodes with 8
executors per node:

s:concurrency [

s:limit 24 ;

s:nodes 4 ;

s:executorsPerNode 8 ;

] ;

rate int or
string

This property can be included to control the frequency with which
a request is sent to the source. The limit applies to the number of

Advanced Usage by Data Source Type 212

Option Type Description

requests a single slice can make. If you specify an integer for the
rate, then the value is treated as the maximum number of requests
to issue per minute. If you specify a string, you have more
flexibility in configuring the rate. The sample values below show
the types of values that are supported:

s:rate "90/minute" ;

s:rate "90 per minute" ;

s:rate "200000 every week" ;

s:rate "10000 every 6 hours" ;

To enforce the rate limit, the GDI introduces a sleep between

requests that is equal to the rate delay. The more executing

slices, the longer the rate delay needs to be to enforce the limit

in aggregate.

Given the example of s:rate "90/minute", the GDI would

optimize the concurrency and only use 1 slice for execution with

a rate delay of 666ms between requests. If s:rate

"240/minute", the GDI would use 3 executors with a rate

delay of 750ms between requests.

partitionBy string,
variable,
object

The GDI attempts to partition queries automatically across the
available cores (slices) in AnzoGraph. To determine how to
partition the query, the GDI uses metadata from the source
database. It looks for any column in an index, preferring the
primary key column if it is interpolable. However, it only considers
the first column in any index on the table. After determining the
partition column, the GDI does a MIN/MAX on the column as well
as a basic sizing query. To specify which column or columns the
GDI should partition on, you can include the partitionBy
property in the query. The property supports a list of source field
names, bound variables, or the object s:auto, which forces the

Advanced Usage by Data Source Type 213

Option Type Description

GDI to partition the data when the source does not define
partitioning metadata.

paging RDF list This property can be used to configure paging so that the GDI can
access large amounts of data across a number of smaller
requests. For details about the paging property, see Paginating
Requests.

locale string This property can be used to specify the locale to use when
parsing locale-dependent data such as numbers, dates, and
times.

sampling int This property can be used to configure the number of records in
the source to examine for data type inferencing.

selector string or
RDF list

This property can be used as a binding component to identify the
path to the source objects. For example, s:selector
"Sales.SalesOrderHeader" targets the SalesOrderHeader
table in the Sales schema. As an alternative to including the
selector property for identifying the target data, you could use the
database, schema, and/or table properties.

model string This property defines the class (or table) name for the type of data
that is generated from the specified data source. For example,
s:model "employees". Model is optional when querying a
single source. If your query targets multiple sources, however,
and you want to define resource templates (primary keys) and
object properties (foreign keys), you must specify the model value
for each source.

key string This property can be used to define the primary key column for the
source file or table. This column is leveraged in a resource

Advanced Usage by Data Source Type 214

Option Type Description

template for the instances that are created from the source. For
example, s:key ("EMPLOYEE_ID"). For more information
about key, see Data Linking Options.

reference RDF list This property can be used to specify a foreign key column. The
reference property is an RDF list that includes the model property
to list the target table and a using property that defines the
foreign key column. For more information about reference, see
Data Linking Options.

formats RDF list To give users control over the data types that are used when
coercing strings to other types, this property can be included in
GDI queries to define the desired types. In addition, it can be used
to describe the formats of date and time values in the source to
ensure that they are recognized and parsed to the appropriate
date, time, and/or dateTime values. For details about the
formats property, see Data Type Formatting Options.

normalize RDF list To give users control over the labels and URIs that are generated,
the GDI offers several options for normalizing the model and/or
the fields that are created from the specified data source(s). For
details about the normalize property, see Model Normalization
Options.

query string If you want to access the source data by running an SQL query,
you can include this property to specify the query string to run. The
language does not have to be SQL if the source supports another
language. However, some GDI features where the query is
dynamically altered may not work with a non-SQL language.
Including {{?variable}} substitutions is supported within
s:query strings.

Advanced Usage by Data Source Type 215

Option Type Description

Important
If you include s:query, you must also specify table and

partitionBy. Specify the table name in s:table and the

column to partition the table on in s:partitionBy. If the

table and partition column are not specified, the GDI will

not partition the query and query execution may fail or

perform very poorly.

database string This property can be used to specify the database to target in the
source if the database is not listed in the s:url or s:selector
strings.

schema string This property can be included to specify the target schema to
query. If you include s:schema "schema_name" without
specifying s:table (described below) or s:query, all tables in
the schema are queried.

table string This property can be included to specify the target table or tables
for the query.

count variable If you want to turn the query into a COUNT query, you can include
this property with a ?variable to perform a count. For example,
s:count ?count.

offset int This property can be used to offset the data that is returned by a
number of rows.

orderBy string,
variable,
list

You can include this property to order the result set by a field
name, a bound variable, or a list of names or bound variables.

Advanced Usage by Data Source Type 216

Option Type Description

limit int You can include this property to limit the number of results that are
returned. s:limitmaps to the SPARQL LIMIT clause.

mapping_
variable

variable The mapping variables, in ?variable (["binding"]

[datatype] ["datetime_format"]) format, define the triple
patterns to output. When the specified ?variablematches the
source column name, the GDI uses the variable as the source
data selector. If you specify an alternate variable name, a binding
needs to be specified to map the new variable to the source. You
also have the option to transform the data using the datatype and
datetime_format options.

Note
The parentheses around the binding, data type, and

format specifications are not required but are included in

this document for readability.

binding string The binding is a literal value that binds a ?variable to a source
column. If you specify a ?variable that matches the source column
name, then that variable name is the data selector and it is not
necessary to specify a binding. If you specify an alternate variable
name or there is a hierarchical path to the source column that is
not already identified by the selector, database, schema, table, or
query properties, then the binding is needed to map the new
variable to that source column. For example, ?subject
("dbo.FILM.SUBJECT") binds the ?subject variable by
navigating to the SUBJECT column in the FILM table in the dbo
schema.

Note
Database, schema, and table names in bindings are

Advanced Usage by Data Source Type 217

Option Type Description

parsed according to the specific rules for that database

type. You do not need to escape characters in database

names. However, database names with characters that do

not match (_|A-Z|a-z)(_|A-Z|a-z|0-9)* should be

quoted, such as

("'Adventure.Works'.Sales.'Daily.Totals'").

datatype URI The datatype is the data type to convert the column to. If you do
not specify a data type, the GDI infers the type. The GDI supports
the following types:

xsd:int, xsd:long, xsd:float, xsd:double,

xsd:boolean, xsd:time, xsd:dateTime, xsd:date,

xsd:duration, xsd:dayTimeDuration,

xsd:yearMonthDuration, xsd:gMonthDay,

xsd:gMonth, xsd:gYearMonth, xsd:anyURI

datetime_
format

string This option is used to specify the format to use for date and time
data types. The GDI supports Java date and time formats. Specify
days as "d," months as "M," and years as "y." For the time, specify
"H" for hours, "m" for minutes, and "s" for seconds. For example,
"yyyyMMdd HH:mm:ss" or "ddMMMyy" to display date values
such as "01JAN19."

Note
The GDI's default base year is 2000. If the source data
has years with only two digits, such as 02-04-99, the

GDI prepends 20 to the digits. The value 02-04-99 is
parsed to 02-04-2099. To specify an alternate base year

to use for two-digit values, you can include the notation

Advanced Usage by Data Source Type 218

Option Type Description

^nnnn (e.g., ^1900) in the format value. For

example, to set the base year to 1900 instead of 2000,

use a format value such as xsd:date "dd-MMM-

yy^1900" or xsd:date "dd-MMM-yy^1990". When

one of those values is specified, 02-04-99 is parsed to

02-04-1999.

Query Examples

The example below selects data from the AdventureWorks2012 database. The s:selector

property is used to specify the table (salesOrderHeader in the Sales schema) to target.

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT (COUNT(*) as ?count)

WHERE

{

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

?SalesOrderHeader a s:DbSource ;

s:url "{{@db.eca4bfa83481f3638b93ab5fdf93ff9a.url}}" ;

s:username "{{@db.eca4bfa83481f3638b93ab5fdf93ff9a.user}}" ;

s:password "{{@db.eca4bfa83481f3638b93ab5fdf93ff9a.password}}" ;

s:selector "Sales.SalesOrderHeader" ;

?SalesOrderID (xsd:int) ;

?RevisionNumber (xsd:int) ;

?OrderDate (xsd:dateTime) ;

?DueDate (xsd:dateTime) ;

?TerritoryID (xsd:int) ;

?TotalDue (xsd:decimal) .

FILTER(?TerritoryID IN (1, 2, 3))

FILTER(?TotalDue < 11.0 || ?TotalDue > 250)

}

}

Advanced Usage by Data Source Type 219

The example below ingests data from a database. To define the data to target, the query includes

the s:query property to run an SQL query. The s:table and partitionBy properties are also

included to aid the GDI in partitioning the query.

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX ont:

<http://cambridgesemantics.com/Layer/2f1e926b130a402db6fc10fa54199d49/Model#>

INSERT {

GRAPH ${targetGraph} {

?resource a ont:EmrPatient ;

ont:EmrPatient.patientid ?PATIENTID ;

ont:EmrPatient.gender ?GENDER ;

ont:EmrPatient.language ?LANGUAGE ;

ont:EmrPatient.patientfirstdocactivitydate ?PATIENTFIRSTDOCACTIVITYDATE .

}

}

WHERE {

SERVICE <http://cambridgesemantics.com/services/DataToolkit> {

?data a s:DbSource ;

s:url "{{@db.eca4bfa83481f3638b93ab5fdf93ff9a.url}}" ;

s:username "{{@db.eca4bfa83481f3638b93ab5fdf93ff9a.user}}" ;

s:password "{{@db.eca4bfa83481f3638b93ab5fdf93ff9a.password}}" ;

s:query "select * from emrdbsmall.emr_patient where emr_patient.PATIENTID < 500"

;

s:partitionBy "PATIENTID" ;

s:table "emrdbsmall.emr_patient" ;

?PATIENTID (xsd:int) ;

?GENDER (xsd:string) ;

?LANGUAGE (xsd:string) ;

?PATIENTFIRSTDOCACTIVITYDATE (xsd:dateTime "M/d/yyyy HH:mm:ss") .

BIND(IRI("http://cambridgesemantics.com/Layer/2f1e926b130a402db6fc10fa54199d49/

{{?PATIENTID}}") AS ?resource)

}

}

Advanced Usage by Data Source Type 220

Querying an HTTP Source

This topic provides details about the structure to use when writing GDI queries to read or ingest data

from HTTP data sources. It also includes example queries that may be useful as a starting point for

writing your own GDI queries.

l Query Syntax

l Mapping the Content Property to JSON

l Query Examples

Query Syntax

The following query syntax shows the structure of a GDI query for HTTP sources. The clauses,

patterns, and placeholders that are links are described below.

PREFIX Clause

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX anzo: <http://openanzo.org/ontologies/2008/07/Anzo#>

PREFIX zowl: <http://openanzo.org/ontologies/2009/05/AnzoOwl#>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

Result Clause

{

[GRAPH ${targetGraph} {]

triple_patterns

[}]

}

[${usingSources}]

WHERE

{

SERVICE Clause: Include the following service call when reading or inserting data.

SERVICE [TOPDOWN] <http://cambridgesemantics.com/services/DataToolkit>

View SERVICE Clause: Or use the service call below when constructing a view.

SERVICE <http://cambridgesemantics.com/services/DataToolkitView>(${targetGraph})

Advanced Usage by Data Source Type 221

{

?data a s:HttpSource ;

s:url "string" ;

[s:authorization [

a s:BearerToken ; s:token "string" ;

| a s:AWSSignature ; s:accessKey "string" ; s:region "string" ;

s:secretKey "string" ; s:serviceName "string" ;

s:sessionToken "string" ;

| a s:BasicAuth ; s:username "string" ; s:password "string" ;

] ;]

[s:trust "string" ;]

[s:proxy "string" | [s:host "string" ; s:port int]]

[s:header [s:name: "string" ; s:value "string"] ;]

[s:mimetype "string" ;]

[s:contentType "string" ;]

[s:content """string""" ;]

[s:parameter [s:name "string" ; s:value "string"] ;]

[s:method "string" ;]

[s:encoding "string" ;]

[s:form [s:name: "string" ; s:value "string"] ;]

[s:format [source_format_options ;] ;]

[s:timeout int ;]

[s:batching boolean | int ;]

[s:paging [pagination_options ;]

[s:concurrency int | [list_of_properties] ;]

[s:rate int | "string" ;]

[s:partitionBy "string" | ?variable ;]

[s:locale "string" ;]

[s:sampling int ;]

[s:selector "string" | [list] ;]

[s:model "string" ;]

[s:key ("string") ;]

[s:reference [s:model "string" ; s:using ("string")]

[s:formats [datatype_formatting_options] ;]

[s:normalize boolean | [normalization_rules] ;]

[s:count ?variable ;]

[s:offset int ;]

[s:orderBy "string" | ?variable ;]

[s:limit int ;]

Mapping variables

?mapping_variable (["binding"] [datatype] ["datetime_format"]) ;

... ;

.

Advanced Usage by Data Source Type 222

Additional clauses such as BIND, VALUES, FILTER

}

}

Note
For readability, the parameters below exclude the base URI

<http://cambridgesemantics.com/ontologies/DataToolkit#> as well as the s:

prefix. As shown in the examples, however, the s: prefix or full property URI does need to be

included in queries.

Option Type Description

PREFIX Clause N/A The PREFIX clause declares the standard and custom prefixes for
GDI service queries. Generally, queries include the prefixes from
the query template (or a subset of them) plus any data-specific
declarations.

Result Clause N/A The result clause defines the type of SPARQL query to run and the
set of results to return, i.e., whether you want to read (SELECT or
CONSTRUCT) from the source or ingest the data into Anzo
(INSERT).

GRAPH
${targetGraph}

N/A Include the GRAPH keyword and target graph parameter
${targetGraph} when writing an INSERT query to ingest data
into a graphmart. Anzo automatically populates the query with the
appropriate target URIs when the query runs.

${usingSource
s}

N/A Include the source graph parameter ${usingSources} when
writing a "topdown" query that passes values from the data that is
in the graphmart to the data source. Anzo automatically populates
the query with the appropriate FROM clauses when the query
runs. When passing literal values to the remote source, you do not
need to include the source graph parameter. The SERVICE
Clause description below includes more information about passing

Advanced Usage by Data Source Type 223

Option Type Description

input to data sources.

SERVICE
Clause

N/A Include the SERVICE call SERVICE [TOPDOWN]

<http://cambridgesemantics.com/services/DataTool

kit> to invoke the GDI service when you are running a SELECT,
INSERT, or CONSTRUCT query that is not creating a view. When
writing a CONSTRUCT query in a View Step, use the
DataToolkitView service call, as described below in View
SERVICE Clause.

Include the optional TOPDOWN keyword when you want to

pass input values from the graphmart to the data source. When

you include TOPDOWN in the service call, it indicates that the

rest of the query produces values to send to the source. In this

case, the GDI makes repeated calls to pass in each of the

specified values and retrieve the data that is based on those

values.

View SERVICE
Clause

N/A When writing a CONSTRUCT query that creates a view of the data
(usually in a View Step), include the following SERVICE call:
SERVICE

<http://cambridgesemantics.com/services/DataTool

kitView>(${targetGraph}). Using the DataToolkitView
call optimizes query execution because it tells the GDI to inspect
the query and determine which filters to push to the data source. It
also limits the result set and retrieves only the data that is needed,
i.e., the source data is fully mapped but all of the mapped data is
not necessarily returned.

url string This property specifies the URL to use to access the source.
Query binding variables can be inserted into the url string by
surrounding the variable name with double curly braces. For

Advanced Usage by Data Source Type 224

Option Type Description

example, "{{?name}}".

Important
For security, it is a best practice to reference connection

information (such as the url, username, and password)

from a Query Context so that the sensitive details are

abstracted from any requests. In addition, using a Query

Context makes connection details reusable across

queries. See Using Query Contexts for more information.

For example:

?data a s:HttpSource ;

s:url "{{@db.eca...f93ff9a.url}}" ;

s:authorization [a s:BasicAuth ;

s:username "{{@db.eca...f93ff9a.user}}"

;

s:password "

{{@db.eca...f93ff9a.password}}" ;

]

authorization RDF list This property specifies the type of authorization to use and the
values for authentication. The options are BearerToken,
AWSSignature, or BasicAuth.

s:authorization [a s:BearerToken |

s:AWSSignature | s:BasicAuth]

BearerToken string Specify this property when a bearer token is used for
authentication, and include the token property.

s:authorization [a s:BearerToken ;

s:token "string"

Advanced Usage by Data Source Type 225

Option Type Description

]

AWSSignature RDF list For authorization to AWS service endpoints, specify this property
and include the appropriate authentication properties from the list
below:

l accessKey: Include this property to specify the AWS

access key.

l region: Include this property to specify the AWS region.

l secretKey: Include this property to specify the AWS

secret key.

l serviceName: Include this property to specify the AWS

service name.

l sessionToken: Include this property to specify the AWS

session token.

s:authorization [

a s:AWSSignature ; s:accessKey "string" ;

s:region "string" ; s:secretKey "string" ;

s:serviceName "string" ; s:sessionToken

"string" ;

]

BasicAuth RDF list Specify this property when basic authentication is used, and
include the username and password properties.

s:authorization [a s:BasicAuth ;

s:username "string" ;

s:password "string" ;

]

Advanced Usage by Data Source Type 226

Option Type Description

trust string Include this property to set the level of trust for the source's SSL
certificate. The value can be either "system" or "all".

proxy string or
RDF list

Include this property to specify proxy information if a proxy is used.
The value can be a string, such as s:proxy "host_url:port_

number", or an RDF list that includes host and port properties,
such as s:proxy [s:host "host_url" ; s:port port_

number].

header RDF list You can use this property to specify name-value pairs to include
as headers in the request. For example:

s:header [s:name "Accept" ; s:value

"application/json"]

If you are creating a view, you can include variables in the

s:header list. When another query is run against a view with

variables, that query can map the variables through the view by

including predicates in the CONSTRUCT clause.

mimetype string You can include this property to specify the MIME type of the
source. For example, s:mimetype "text/html".

contentType string Include this property to specify the content type of the body of the
request. For example, s:contentType
"application/sparql-query" or s:contentType
"application/json".

content string or
RDF list

This property can be included to send content to the source in the
body of the request. For example, content can be a SPARQL
query, JSON arrays, or a list of key-value pairs. Content can also
be configured with an inline object (blank node) that gets
translated to JSON. For more information, see Mapping the

Advanced Usage by Data Source Type 227

Option Type Description

Content Property to JSON below.

parameter RDF list You can include this property to list any URL parameters as name-
value pairs. For example, the s:parameter property below adds
format to return results in CSV format and the named-graph-
uri parameter to target a specific layer in a graphmart.

s:parameter [s:name "format" ; s:value "csv"]

,

[s:name "named-graph-uri" ;

s:value

"http://cambridgesemantics.com/Layer/d541..."]

If you are creating a view, you can include variables in the

s:parameter list. When another query is run against a view

with variables, that query can map the variables through the

view by including predicates in the CONSTRUCT clause.

method string You can include this property to specify the HTTP method. For
example, s:method "GET" or s:method "POST".

encoding string When targeting a file, you can include this property to specify the
character encoding used by the file. The default value is
s:encoding "utf8".

form RDF list To send data to the HTTP endpoint, you can use this property to
post the data. Form is a list of name-value pairs. When including
s:form, you must also include s:contentType
"multipart/form-data". The GDI sends the form object as
an application/x-www-form-urlencoded string that
contains the specified parameters. See Example form Parameter
Usage below for sample usage.

Advanced Usage by Data Source Type 228

Option Type Description

format RDF list If the data is file-based, you can include the format property to
add parameters that describe the source. See File Source Format
Options for details about the supported parameters.

timeout int This property can be used to specify the timeout (in milliseconds)
to use for requests against the source. For example, s:timeout
5000 configures a 5 second timeout.

batching boolean
or int

This property can be used to disable batching, or it can be used to
change the default the batch size. By default, batching is set to
5000 (s:batching 5000). To disable batching, you can include
s:batching false in the query. Typically users do not change
the batching size. However, it can be useful to control the batch
size when performing updates. To configure the size, include
s:batching int in the query. For example, s:batching
3000.

paging RDF list This property can be used to configure paging so that the GDI can
access large amounts of data across a number of smaller
requests. For details about the paging property, see Paginating
Requests.

concurrency int or
RDF list

This property can be included to configure the maximum level of
concurrency for the query. The value can be an integer, such as
s:concurrency 8. If the value is an integer, it configures a
maximum limit on the number of slices that can execute the query.
For finer-grained control over the number of nodes and slices to
use, concurrency can also be included as an object with limit,
nodes, and/or executorsPerNode properties. For example, the
following object configures a concurrency model that allows a
maximum of 24 executors distributed across 4 nodes with 8
executors per node:

Advanced Usage by Data Source Type 229

Option Type Description

s:concurrency [

s:limit 24 ;

s:nodes 4 ;

s:executorsPerNode 8 ;

] ;

rate int or
string

This property can be included to control the frequency with which a
request is sent to the source. The limit applies to the number of
requests a single slice can make. If you specify an integer for the
rate, then the value is treated as the maximum number of requests
to issue per minute. If you specify a string, you have more flexibility
in configuring the rate. The sample values below show the types of
values that are supported:

s:rate "90/minute" ;

s:rate "90 per minute" ;

s:rate "200000 every week" ;

s:rate "10000 every 6 hours" ;

To enforce the rate limit, the GDI introduces a sleep between

requests that is equal to the rate delay. The more executing

slices, the longer the rate delay needs to be to enforce the limit

in aggregate.

Given the example of s:rate "90/minute", the GDI would

optimize the concurrency and only use 1 slice for execution with

a rate delay of 666ms between requests. If s:rate

"240/minute", the GDI would use 3 executors with a rate

delay of 750ms between requests.

partitionBy string,
variable,

The GDI attempts to partition queries automatically across the
available cores (slices) in AnzoGraph. To determine how to

Advanced Usage by Data Source Type 230

Option Type Description

list partition the query, the GDI uses metadata from the source. It
looks for any column in an index, preferring the primary key
column if it is interpolable. However, it only considers the first
column in any index on the table. After determining the partition
column, the GDI does a MIN/MAX on the column as well as a
basic sizing query. To specify which column or columns the GDI
should partition on, you can include the partitionBy property in
the query. The property supports a list of source field names,
bound variables, or the object s:auto, which forces the GDI to
partition the data when the source does not define partitioning
metadata.

locale string This property can be used to specify the locale to use when
parsing locale-dependent data such as numbers, dates, and
times.

sampling int This property can be used to configure the number of records in
the source to examine for data type inferencing.

selector string or
RDF list

This property can be used as a binding component to identify the
path to the source objects. For example, s:selector
"Sales.SalesOrderHeader" targets the SalesOrderHeader
table in the Sales schema. For more information about binding
components and the selector property, see Using Binding Trees
and Selector Paths.

model string This property defines the class (or table) name for the type of data
that is generated from the specified data source. For example,
s:model "employees". Model is optional when querying a
single source. If your query targets multiple sources, however, and
you want to define resource templates (primary keys) and object
properties (foreign keys), you must specify the model value for

Advanced Usage by Data Source Type 231

Option Type Description

each source.

key string This property can be used to define the primary key column for the
source file or table. This column is leveraged in a resource
template for the instances that are created from the source. For
example, s:key ("EMPLOYEE_ID"). For more information
about key, see Data Linking Options.

reference RDF list This property can be used to specify a foreign key column. The
reference property is an RDF list that includes the model property
to list the target table and a using property that defines the
foreign key column. For more information about reference, see
Data Linking Options.

formats RDF list To give users control over the data types that are used when
coercing strings to other types, this property can be included in
GDI queries to define the desired types. In addition, it can be used
to describe the formats of date and time values in the source to
ensure that they are recognized and parsed to the appropriate
date, time, and/or dateTime values. For details about the
formats property, see Data Type Formatting Options.

normalize RDF list To give users control over the labels and URIs that are generated,
the GDI offers several options for normalizing the model and/or the
fields that are created from the specified data source(s). For
details about the normalize property, see Model Normalization
Options.

count variable If you want to turn the query into a COUNT query, you can include
this property with a ?variable to perform a count. For example,
s:count ?count.

Advanced Usage by Data Source Type 232

Option Type Description

offset int This property can be used to offset the data that is returned by a
number of rows.

orderBy string,
variable,
list

You can include this property to order the result set by a field
name, a bound variable, or a list of names or bound variables.

limit int You can include this property to limit the number of results that are
returned. s:limitmaps to the SPARQL LIMIT clause.

mapping_
variable

variable The mapping variables, in ?mapping_variable
(["binding"] [datatype] ["datetime_format"])

format, define the triple patterns to output. When the specified
?variablematches the source column name, the GDI uses the
variable as the source data selector. If you specify an alternate
variable name, a binding needs to be specified to map the new
variable to the source. You also have the option to transform the
data using the datatype and datetime_format options.

Note
The parentheses around the binding, data type, and

format specifications are not required but are included in

this document for readability.

binding string The binding is a literal value that binds a ?mapping_variable to a
source column. If you specify a ?variable that matches the source
column name, then that variable name is the data selector and it is
not necessary to specify a binding. If you specify an alternate
variable name or there is a hierarchical path to the source column,
then the binding is needed to map the new variable to that source
column.

Advanced Usage by Data Source Type 233

Option Type Description

For example for CSV, the following pattern simply binds the

source column AIRLINE to the lowercase variable ?airline:

?airline ("AIRLINE").

Note
For FileSource, periods (.), forward slashes (/), and

brackets ([]) are parsed as path notation. Therefore, if a

source column name includes any of those characters

they must be escaped in the binding. Use two backslashes

(\\) as an escape character. For example, if a column

name is average/day, the variable and binding pattern
could be written as ?averagePerDay

("average\\/day").

datatype URI The datatype is the data type to convert the column to. If you do
not specify a data type, the GDI infers the type. The GDI supports
the following types:

xsd:int, xsd:long, xsd:float, xsd:double,

xsd:boolean, xsd:time, xsd:dateTime, xsd:date,

xsd:duration, xsd:dayTimeDuration,

xsd:yearMonthDuration, xsd:gMonthDay,

xsd:gMonth, xsd:gYearMonth, xsd:anyURI

datetime_
format

string This option is used to specify the format to use for date and time
data types. The GDI supports Java date and time formats. Specify
days as "d," months as "M," and years as "y." For the time, specify
"H" for hours, "m" for minutes, and "s" for seconds. For example,
"yyyyMMdd HH:mm:ss" or "ddMMMyy" to display date values
such as "01JAN19."

Advanced Usage by Data Source Type 234

Option Type Description

Note
The GDI's default base year is 2000. If the source data
has years with only two digits, such as 02-04-99, the

GDI prepends 20 to the digits. The value 02-04-99 is
parsed to 02-04-2099. To specify an alternate base year

to use for two-digit values, you can include the notation

^nnnn (e.g., ^1900) in the format value. For

example, to set the base year to 1900 instead of 2000, use

a format value such as xsd:date "dd-MMM-yy^1900"

or xsd:date "dd-MMM-yy^1990". When one of those

values is specified, 02-04-99 is parsed to 02-04-1999.

Mapping the Content Property to JSON

The s:content property can be configured with an inline object (blank node) that gets translated to

JSON in the request body. This mapping allows for creation of embedded objects and arrays as well

as a mechanism for iterating over all available input so that HTTP endpoints that support batching

can be used more effectively.

Using Blank Nodes

Blank nodes are used to create an object in the output JSON. The local name of any predicate used

within content becomes a key in the generated JSON object. Blank nodes can be embedded

within each other, allowing the hierarchical nature of JSON to be represented. For example:

s:content [ex:firstName "Mary" ; ex:lastName "Barry"] ;

Or

s:content [ex:person [ex:firstName "Mary"]] ;

Advanced Usage by Data Source Type 235

Using Variables

Variables can be also used in the object position to construct a request from input at runtime. For

example:

s:content [ex:firstName ?firstName ; ex:lastName ?lastName] ;

The values for the variables can come from a TOPDOWN variable, a VALUES clause in the

SERVICE block, or another data source. Any unbound variables in the input will not be added to the

generated JSON object.

Using RDF Lists

An RDF list can also be used to create an array in the output JSON. For example:

s:content [ex:allKnownNames (?firstName ?lastName ?nickName)]

An RDF list can also be embedded inside another list to create an array in the output JSON and

populate it with items evaluated against a repeating pattern across all available input rows for a

slice. That pattern can be a variable, which generates an array of primitive values, or a blank node,

which generates an array of mapped JSON objects. For example:

s:content [ex:documents ((?id))] ;

Or

s:content [ex:documents (([ex:id ?id ; ex:title ?title])) ;

Example

The following example query demonstrates the use of s:content to generate JSON. The query

also includes the s:concurrency property to restrict execution to a single slice. Without limiting

execution when there are a small number of inputs (as in the VALUES clause), each input row gets

executed on its own. As the inputs increase, each slice operates over a larger number of inputs until

the default s:batching 5000 is applied.

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX api: <http://contoso.com/api/>

Advanced Usage by Data Source Type 236

SELECT *

WHERE {

SERVICE TOPDOWN <http://cambridgesemantics.com/services/DataToolkit>

{

VALUES (?firstName ?lastName ?dob ?email)

{

("Gray" "Hay" "1978-03-18"^^xsd:date "gray@abc.com")

("Ana" "Bana" "1974-10-20"^^xsd:date "ana@abc.com")

("George" "Forge" "1975-08-13"^^xsd:date "george@abc.com")

("Miles" "Giles" "1977-04-12"^^xsd:date "miles@abc.com")

}

?data a s:HttpSource ;

s:url "https://postman-echo.com/post" ;

s:header [s:name "Accept" ; s:value "application/json"] ;

s:concurrency 1 ;

s:content

(([

api:dateOfBirth ?dob ;

api:email ?email ;

api:year 2020 ;

api:person [api:firstName ?firstName ; api:lastName ?lastName] ;

])) ;

s:selector "data" ;

?firstName ("person.firstName" xsd:string) ;

?lastName ("person.lastName" xsd:string) ;

?dob ("dateOfBirth" xsd:date) ;

?email ("email" xsd:string) ;

?year ("year" xsd:int) .

}

}

The content portion of the request that the query generates is shown below:

[{

"firstName": "Gray" ,

"lastName": "Hay" ,

"dateOfBirth": "1978-03-18" ,

"email": "gray@abc.com" ,

"year": 2020

},

{

Advanced Usage by Data Source Type 237

"firstName": "Ana" ,

"lastName": "Bana" ,

"dateOfBirth": "1974-10-20" ,

"email": "ana@abc.com" ,

"year": 2020

},

{

...

}]

Query Examples

l Topdown Query with URL Parameters

l Generator Query against an Anzo SPARQL Endpoint

l API Queries

l Example form Parameter Usage

Topdown Query with URL Parameters

The query below reads data from a sample HTTP source that compiles worldwide weather statistics.

The source has several models available for retrieving data that is current, daily, historical, etc. To

target current data, the query includes s:selector "currently". In addition, the query

demonstrates the use of the "topdown" functionality, where the query sends values to the source to

narrow the results. The VALUES clause specifies the latitude and longitude values for the cities to

return data for. In addition, since this sample source requires parameters to be specified in the

connection URL, the s:url value includes ?lat and ?long as parameters as part of the value.

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX ex: <http://example.org/ontologies/City#>

SELECT

?city ?state ?temp ?rainChance

?humidity ?pressure ?windSpeed

WHERE

{

Advanced Usage by Data Source Type 238

SERVICE TOPDOWN <http://cambridgesemantics.com/services/DataToolkit>

{

?data a s:HttpSource ;

s:url "https://sampleEndpoint.com/forecast/{{?lat}},{{?long}}" ;

s:selector "currently" ;

?lat ("latitude") ;

?long ("longitude") ;

?temp ("temperature") ;

?rainChance ("precipProbability") ;

?humidity () ;

?pressure () ;

?windSpeed () .

}

VALUES(?city ?state ?lat ?long)

{

("Lakeway" "TX" 30.374563 -97.975892)

("Boston" "MA" 42.358043 -71.060415)

("Seattle" "WA" 47.590720 -122.307053)

("Chicago" "IL" 41.837741 -87.823296)

("Hilo" "HI" 19.702040 -155.090312)

}

}

ORDER BY ?city

Generator Query against an Anzo SPARQL Endpoint

The example below is a GDI Generator query that retrieves graphmart data from a remote Anzo

SPARQL endpoint.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

INSERT {

GRAPH ${targetGraph} {

?s ?p ?o }

}

${usingSources}

WHERE {

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

Advanced Usage by Data Source Type 239

{

?data a s:HttpSource ;

s:url

"https://10.10.0.10/sparql/graphmart/http%3A%2F%2Fcambridgesemantics.com%2FGraphmart%2F

1686168b-3eaf-4fdc-9730-1903717b9e62";

s:trust "all" ;

s:username "user";

s:password "pass";

s:contentType "application/sparql-query" ;

s:header [s:name "Accept" ; s:value "text/csv"] ;

s:content """

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT ?s ?p ?o

WHERE {

?s ?p ?o .

FILTER(ISLITERAL(?o))

}

""" .

?rdf a s:RdfGenerator, s:OntologyGenerator ;

s:as (?s ?p ?o) ;

s:ontology <http://cambridgesemantics.com/ontologies/TopMovies> ;

s:base <http://cambridgesemantics.com/data> .

}

}

API Queries

The following example queries the Google Recognize API to request transcriptions for voice

recordings that are stored in a Google bucket.

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX anzo: <http://openanzo.org/ontologies/2008/07/Anzo#>

PREFIX zowl: <http://openanzo.org/ontologies/2009/05/AnzoOwl#>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

INSERT {

GRAPH ${targetGraph}{

?record <http://google.com/transcript> ?transcript .

Advanced Usage by Data Source Type 240

?record <http://google.com/confidence> ?confidence .

?record <http://google.com/file> ?file .

}

}

${usingSources}

WHERE {

BIND(<gs://csi-se/demo/emergency-test.mp3> as ?file)

BIND(UUID() as ?record)

{

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

?data a s:HttpSource ;

s:selector "results.alternatives" ;

s:url "https://speech.googleapis.com/v1p1beta1/speech:recognize" ;

s:authorization [a s:BearerToken ; s:token """ya29..."""] ;

s:content """

{

"config": {

"encoding":"MP3",

"sampleRateHertz": 16000,

"languageCode": "en-US",

"enableWordTimeOffsets": false

},

"audio": {

"uri":"gs://csi-se/demo/emergency-test.mp3"}

}

""" ;

?confidence ("confidence") ;

?transcript ("transcript") .

}

}

}

The example below includes the header and content properties to send a request that contains

small text snippets for sentiment analysis.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX ont: <http://cambridgesemantics.com/ontologies/Sentiment_Analysis#>

INSERT {

Advanced Usage by Data Source Type 241

GRAPH ${targetGraph} {

?requirement a ont:Sentiment ;

ont:p_Sentiment_Type ?sentiment ;

ont:p_Sentiment_Score ?polarity .

}

}

${usingSources}

WHERE {

?requirement a

<http://cambridgesemantics.com/Layer/3b4163e7f53149d5a815627be5d409bd/Model#Requirement

s> ;

<http://cambridgesemantics.com/Layer/3b4163e7f53149d5a815627be5d409bd/Model#Requirement

s.reqText> ?requirement_text .

SERVICE TOPDOWN <http://cambridgesemantics.com/services/DataToolkit> {

?data a s:HttpSource ;

s:url "https://text-analysis12.p.rapidapi.com/sentiment-analysis/api/v1.1" ;

s:method "POST" ;

s:header [s:name "Accept" ; s:value "application/json"] ,

[s:name "X-RapidAPI-Key" ; s:value "key"] ,

[s:name "X-RapidAPI-Host" ; s:value "text-analysis12.p.rapidapi.com"

] ;

s:contentType "application/json" ;

s:content """{ "text": "{{?requirement_text}}" , "language": "english" }""" ;

?polarity ("aggregate_sentiment/compound" xsd:double);

?sentiment () .

}

}

Example form Parameter Usage

The query snippet below shows an example that incorporates the s:form parameter.

SERVICE <http://cambridgesemantics.com/services/DataToolkit> {

VALUES (?reviews_text) {

("Horrible, terrible, will never use again.")

("Wonderful, magnificent, will recommend to everyone!")

("Simply OK. I might purchase this product again.") }

?data a s:HttpSource ;

s:url "https://api.meaningcloud.com/sentiment-2.1" ;

s:contentType "multipart/form-data" ;

Advanced Usage by Data Source Type 242

s:form [s:name "key" ; s:value "9eab751142..."],

[s:name "lang" ; s:value "auto"],

[s:name "txt" ; s:value ?reviews_text] ;

?confidence ();

?score_tag ();

?subjectivity () ;

?irony () ;

?agreement () .

}

Querying an Elasticsearch Source

This topic provides details about the structure to use when writing GDI queries to read or ingest data

from Elasticsearch data sources. It also includes example queries that may be useful as a starting

point for writing your own GDI queries.

l Query Syntax

l Query DSL and Filter Mapping

l Query Examples

Query Syntax

The following query syntax shows the structure of a GDI query for Elasticsearch sources. The

clauses, patterns, and placeholders that are links are described below.

PREFIX Clause

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX es: <http://elastic.co/search/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX anzo: <http://openanzo.org/ontologies/2008/07/Anzo#>

PREFIX zowl: <http://openanzo.org/ontologies/2009/05/AnzoOwl#>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

Result Clause

{

[GRAPH ${targetGraph} {]

triple_patterns

[}]

Advanced Usage by Data Source Type 243

}

[${usingSources}]

WHERE

{

SERVICE Clause: Include the following service call when reading or inserting data.

SERVICE [TOPDOWN] <http://cambridgesemantics.com/services/DataToolkit>

View SERVICE Clause: Or use the service call below when constructing a view.

SERVICE <http://cambridgesemantics.com/services/DataToolkitView>(${targetGraph})

{

?data a s:ElasticSource ;

s:url "string" ;

[s:username "string" ;]

[s:password "string" ;]

[s:property [s:name "string" ; s:value "string" ;]

[es:aggregations [rdf_list] ;]

[es:config "string" ;]

[es:document "string" ;]

[es:field "string" | ?variable ;]

[es:highlight [rdf_list] ;]

[es:html boolean ;]

[es:index "string" ;]

[es:minScore float ;]

[es:query "string" | [rdf_list] ;]

[es:routing "string" ;]

[es:searchAfter [rdf_list] ;]

[es:size int ;]

[es:source boolean | [rdf_list] ;]

[s:timeout int ;]

[s:batching boolean | int ;]

[s:paging [pagination_options ;]

[s:concurrency int | [list_of_properties] ;]

[s:rate int | "string" ;]

[s:partitionBy "string" | ?variable ;]

[s:locale "string" ;]

[s:sampling int ;]

[s:selector "string" | [list] ;]

[s:model "string" ;]

[s:key ("string") ;]

[s:reference [s:model "string" ; s:using ("string")]

[s:formats [datatype_formatting_options] ;]

Advanced Usage by Data Source Type 244

[s:normalize boolean | [normalization_rules] ;]

[s:count ?variable ;]

[s:offset int ;]

[s:orderBy "string" | ?variable ;]

[s:limit int ;]

Mapping variables

?mapping_variable (["binding"] [datatype] ["datetime_format"]) ;

... ;

.

Additional clauses such as BIND, VALUES, FILTER

}

}

Note
For readability, the parameters below exclude the base URIs

<http://cambridgesemantics.com/ontologies/DataToolkit#> and

<http://elastic.co/search/> as well as the s: and es: prefixes. As shown in the

examples, however, the prefixes or full property URIs do need to be included in queries.

Option Type Description

PREFIX Clause N/A The PREFIX clause declares the standard and custom prefixes for
GDI service queries. Generally, queries include the prefixes from
the query template (or a subset of them) plus any data-specific
declarations.

Result Clause N/A The result clause defines the type of SPARQL query to run and the
set of results to return, i.e., whether you want to read (SELECT or
CONSTRUCT) from the source or ingest the data into Anzo
(INSERT).

GRAPH
${targetGraph}

N/A Include the GRAPH keyword and target graph parameter
${targetGraph} when writing an INSERT query to ingest data
into a graphmart. Anzo automatically populates the query with the
appropriate target URIs when the query runs.

Advanced Usage by Data Source Type 245

Option Type Description

${usingSource
s}

N/A Include the source graph parameter ${usingSources} when
writing a "topdown" query that passes values from the data that is
in the graphmart to the data source. Anzo automatically populates
the query with the appropriate FROM clauses when the query
runs. When passing literal values to the remote source, you do not
need to include the source graph parameter. The SERVICE
Clause description below includes more information about passing
input to data sources.

SERVICE
Clause

N/A Include the SERVICE call SERVICE [TOPDOWN]

<http://cambridgesemantics.com/services/DataTool

kit> to invoke the GDI service when you are running a SELECT,
INSERT, or CONSTRUCT query that is not creating a view. When
writing a CONSTRUCT query in a View Step, use the
DataToolkitView service call, as described below in View
SERVICE Clause.

Include the optional TOPDOWN keyword when you want to

pass input values from the graphmart to the data source. When

you include TOPDOWN in the service call, it indicates that the

rest of the query produces values to send to the source. In this

case, the GDI makes repeated calls to pass in each of the

specified values and retrieve the data that is based on those

values.

View SERVICE
Clause

N/A When writing a CONSTRUCT query that creates a view of the data
(usually in a View Step), include the following SERVICE call:
SERVICE

<http://cambridgesemantics.com/services/DataTool

kitView>(${targetGraph}). Using the DataToolkitView
call optimizes query execution because it tells the GDI to inspect
the query and determine which filters to push to the data source. It

Advanced Usage by Data Source Type 246

Option Type Description

also limits the result set and retrieves only the data that is needed,
i.e., the source data is fully mapped but all of the mapped data is
not necessarily returned.

url string This property specifies the URL to use to access the source.

Important
For security, it is a best practice to reference connection

information (such as the url, username, and password)

from a Query Context so that the sensitive details are

abstracted from any requests. In addition, using a Query

Context makes connection details reusable across

queries. See Using Query Contexts for more information.

For example:

?data a s:ElasticSource ;

s:url "{{@es.hostname}}:{{@es.port}}" ;

s:username "{{@es.username}}" ;

s:password "{{@es.password}}" ;

username string This property lists the user name to use for the connection to the
Elasticsearch.

Tip
If you want to group the username and password

properties, you can wrap them with s:credentials [

]. For example:

s:credentials [

s:username “username” ;

s:password “password” ;

Advanced Usage by Data Source Type 247

Option Type Description

]

password string This property lists the password for the given username.

property RDF list This property can be included to list any source-specific
configuration values.

s:property [s:name "custom_property_name" ;

s:value "custom_value"]

aggregations RDF list You can include this property to calculate aggregations over the
specified bindings. For information about aggregations, see
Aggregations in the Elasticsearch documentation.

config string To enable you to use explicit mappings, you can include this
property to specify the URL to the index configuration file to
employ. For example, es:config
"/opt/shared/elastic/mapping.json".

document string This property lists the document(s) to search.

field string or
variable

This property defines the field to operate on. The value can be a
string or bound variable.

highlight RDF list You can include this property to define how results are highlighted.
For information about the available properties, see Highlighting
Elasticsearch Results.

html boolean This property controls whether to output HTML for highlighted
results. Defaults to true.

Advanced Usage by Data Source Type 248

https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations.html

Option Type Description

index string This property can be included to specify the indexes to search.
Specify multiple indexes in a comma-separated list. For example,
es:index "projectA_mar", "projectA_apr" ;.

minScore float This property defines the minimum score for matching documents.
Documents with a lower score are not included in the search
results.

query string or
RDF list

This property defines the query to execute. The value can be a
string or a query object that maps to the Elasticsearch Query DSL.
To generate the final query, the GDI combines es:query with
any filters it can push to the Elasticsearch DSL. For more
information about the query property and mapping Elasticsearch
filters to SPARQL FILTER clauses, see Query DSL and Filter
Mapping below.

routing string This property can be included to route a document to a specific
shard or to limit the search to a particular shard.

searchAfter RDF list You can include this property to define the key values to start
searching from.

size int This property maps to the size parameter in the Elasticsearch
Search API and configures the batch size or maximum number of
hits to return in a single call. Defaults to 10 and typically does not
need to be changed.

source boolean
or RDF
list

This property can be included to specify the source data to include
in results. The value can be a boolean, list of fields, or a list of
variable bindings. When true, all source data is returned. When
false, no source data is returned.

Advanced Usage by Data Source Type 249

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html

Option Type Description

timeout int This property can be used to specify the timeout (in milliseconds)
to use for requests against the source. For example, s:timeout
5000 configures a 5 second timeout.

batching boolean
or int

This property can be used to disable batching, or it can be used to
change the default the batch size. By default, batching is set to
5000 (s:batching 5000). To disable batching, you can include
s:batching false in the query. Typically users do not change
the batching size. However, it can be useful to control the batch
size when performing updates. To configure the size, include
s:batching int in the query. For example, s:batching
3000.

paging RDF list This property can be used to configure paging so that the GDI can
access large amounts of data across a number of smaller
requests. For details about the paging property, see Paginating
Requests.

concurrency int or
RDF list

This property can be included to configure the maximum level of
concurrency for the query. The value can be an integer, such as
s:concurrency 8. If the value is an integer, it configures a
maximum limit on the number of slices that can execute the query.
For finer-grained control over the number of nodes and slices to
use, concurrency can also be included as an object with limit,
nodes, and/or executorsPerNode properties. For example, the
following object configures a concurrency model that allows a
maximum of 24 executors distributed across 4 nodes with 8
executors per node:

s:concurrency [

s:limit 24 ;

s:nodes 4 ;

Advanced Usage by Data Source Type 250

Option Type Description

s:executorsPerNode 8 ;

] ;

rate int or
string

This property can be included to control the frequency with which a
request is sent to the source. The limit applies to the number of
requests a single slice can make. If you specify an integer for the
rate, then the value is treated as the maximum number of requests
to issue per minute. If you specify a string, you have more flexibility
in configuring the rate. The sample values below show the types of
values that are supported:

s:rate "90/minute" ;

s:rate "90 per minute" ;

s:rate "200000 every week" ;

s:rate "10000 every 6 hours" ;

To enforce the rate limit, the GDI introduces a sleep between

requests that is equal to the rate delay. The more executing

slices, the longer the rate delay needs to be to enforce the limit

in aggregate.

Given the example of s:rate "90/minute", the GDI would

optimize the concurrency and only use 1 slice for execution with

a rate delay of 666ms between requests. If s:rate

"240/minute", the GDI would use 3 executors with a rate

delay of 750ms between requests.

partitionBy string,
variable,
list

The GDI attempts to partition queries automatically across the
available cores (slices) in AnzoGraph. To determine how to
partition the query, the GDI uses metadata from the source
database. It looks for any column in an index, preferring the
primary key column if it is interpolable. However, it only considers

Advanced Usage by Data Source Type 251

Option Type Description

the first column in any index on the table. After determining the
partition column, the GDI does a MIN/MAX on the column as well
as a basic sizing query. To specify which column or columns the
GDI should partition on, you can include the partitionBy
property in the query. The property supports a list of source field
names, bound variables, or the object s:auto, which forces the
GDI to partition the data when the source does not define
partitioning metadata.

locale string This property can be used to specify the locale to use when
parsing locale-dependent data such as numbers, dates, and
times.

sampling int This property can be used to configure the number of records in
the source to examine for data type inferencing.

selector string or
RDF list

This property can be used as a binding component to identify the
path to the source objects. For example, s:selector
"Sales.SalesOrderHeader" targets the SalesOrderHeader
table in the Sales schema. For more information about binding
components and the selector property, see Using Binding Trees
and Selector Paths.

model string This property defines the class (or table) name for the type of data
that is generated from the specified data source. For example,
s:model "employees". Model is optional when querying a
single source. If your query targets multiple sources, however, and
you want to define resource templates (primary keys) and object
properties (foreign keys), you must specify the model value for
each source.

key string This property can be used to define the primary key column for the

Advanced Usage by Data Source Type 252

Option Type Description

source file or table. This column is leveraged in a resource
template for the instances that are created from the source. For
example, s:key ("EMPLOYEE_ID"). For more information
about key, see Data Linking Options.

reference RDF list This property can be used to specify a foreign key column. The
reference property is an RDF list that includes the model property
to list the target table and a using property that defines the
foreign key column. For more information about reference, see
Data Linking Options.

formats RDF list To give users control over the data types that are used when
coercing strings to other types, this property can be included in
GDI queries to define the desired types. In addition, it can be used
to describe the formats of date and time values in the source to
ensure that they are recognized and parsed to the appropriate
date, time, and/or dateTime values. For details about the
formats property, see Data Type Formatting Options.

normalize RDF list To give users control over the labels and URIs that are generated,
the GDI offers several options for normalizing the model and/or the
fields that are created from the specified data source(s). For
details about the normalize property, see Model Normalization
Options.

count variable If you want to turn the query into a COUNT query, you can include
this property with a ?variable to perform a count. For example,
s:count ?count. The GDI runs an Elasticsearch value count
aggregation.

offset int This property can be used to offset the data that is returned by a
number of rows.

Advanced Usage by Data Source Type 253

https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-metrics-valuecount-aggregation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-metrics-valuecount-aggregation.html

Option Type Description

orderBy string,
variable,
list

You can include this property to order the result set by a field
name, a bound variable, or a list of names or bound variables.

limit int You can include this property to limit the number of results that are
returned. s:limitmaps to the SPARQL LIMIT clause.

mapping_
variable

variable The mapping variables, in ?mapping_variable
(["binding"] [datatype] ["datetime_format"])

format, define the triple patterns to output. When the specified
?variablematches the source column name, the GDI uses the
variable as the source data selector. If you specify an alternate
variable name, a binding needs to be specified to map the new
variable to the source. You also have the option to transform the
data using the datatype and datetime_format options.

Note
The parentheses around the binding, data type, and

format specifications are not required but are included in

this document for readability.

binding string The binding is a literal value that binds a ?mapping_variable to a
source column. If you specify a ?variable that matches the source
column name, then that variable name is the data selector and it is
not necessary to specify a binding. If you specify an alternate
variable name or there is a hierarchical path to the source column,
then the binding is needed to map the new variable to that source
column.

datatype URI The datatype is the data type to convert the column to. If you do
not specify a data type, the GDI infers the type. The GDI supports

Advanced Usage by Data Source Type 254

Option Type Description

the following types:

xsd:int, xsd:long, xsd:float, xsd:double,

xsd:boolean, xsd:time, xsd:dateTime, xsd:date,

xsd:duration, xsd:dayTimeDuration,

xsd:yearMonthDuration, xsd:gMonthDay,

xsd:gMonth, xsd:gYearMonth, xsd:anyURI

datetime_
format

string This option is used to specify the format to use for date and time
data types. The GDI supports Java date and time formats. Specify
days as "d," months as "M," and years as "y." For the time, specify
"H" for hours, "m" for minutes, and "s" for seconds. For example,
"yyyyMMdd HH:mm:ss" or "ddMMMyy" to display date values
such as "01JAN19."

Note
The GDI's default base year is 2000. If the source data
has years with only two digits, such as 02-04-99, the

GDI prepends 20 to the digits. The value 02-04-99 is
parsed to 02-04-2099. To specify an alternate base year

to use for two-digit values, you can include the notation

^nnnn (e.g., ^1900) in the format value. For

example, to set the base year to 1900 instead of 2000, use

a format value such as xsd:date "dd-MMM-yy^1900"

or xsd:date "dd-MMM-yy^1990". When one of those

values is specified, 02-04-99 is parsed to 02-04-1999.

Advanced Usage by Data Source Type 255

Query DSL and Filter Mapping

The vocabulary used in GDI queries against an ElasticSource closely mimics the Elasticsearch

Query DSL. The table below shows a side-by-side view of a DSL query that is mapped to SPARQL

using the es:query property:

DSL SPARQL

{

"query": {

"bool" : {

"must" : {

"term" : { "user.id" :

"kimchy" }

},

"filter": {

"term" : { "tags" :

"production" }

},

"must_not" : {

"range" : {

"age" : { "gte" : 10,

"lte" : 20 }

}

},

"should" : [

{ "term" : { "tags" :

"env1" } },

{ "term" : { "tags" :

"deployed" } }

],

"minimum_should_match" : 1,

"boost" : 1.0

}

}

es:query [

a es:BoolQuery ;

es:must [

a es:TermQuery ;

es:field "user.id" ;

es:value "kimchy" ;

] ;

es:filter [

a es:TermQuery ;

es:field "tags" ;

es:value "production" ;

] ;

es:mustNot [

a es:RangeQuery ;

es:field "age" ;

es:gte 10 ;

es:lte 20 ;

] ;

es:should (

[a es:TermQuery ; es:field "tags" ;

es:value "env1"]

[a es:TermQuery ; es:field "tags" ;

es:value "deployed"]

) ;

es:minimumShouldMatch 1 ;

es:boost 1.0 ;

]

Advanced Usage by Data Source Type 256

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html

DSL SPARQL

}

The following example SERVICE clause with comments provides details about how the GDI

es:query property can be mapped to DSL:

SERVICE <http://cambridgesemantics.com/services/DataToolkit> {

?data a es:ElasticSource ;

s:url "http://localhost:9200/" ;

When the value of es:query is a simple literal,

it is mapped to an Elastic query string query.

es:query "literal"

When the value of es:query is an RDF list,

you can specify other query types,

such as a match query:

es:query [

a es:MatchQuery ;

es:field "title" | ?title ; # field can be a literal or bound variable

es:query "moby dick" ;

] ;

or a boolean query:

es:query [

a es:BoolQuery ;

es:should ([

a es:RangeQuery ;

es:field ?amount ;

es:gt 500 ;

es:lt 1000 ;

] [

a es:TermQuery ;

es:field ?status ;

es:value 'late' ;

]) ;

] ;

}

Filter Mapping

Filtering can be performed inside the es:query list or you can add a FILTER clause to the query.

For example, the table below shows the SPARQL snippet above expressed as a FILTER clause.

Advanced Usage by Data Source Type 257

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-query-string-query.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-match-query.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-bool-query.html

SPARQL Query FILTER Clause

es:query [

a es:BoolQuery ;

es:must [

a es:TermQuery ;

es:field "user.id" ;

es:value "kimchy" ;

] ;

es:filter [

a es:TermQuery ;

es:field "tags" ;

es:value "production" ;

] ;

es:mustNot [

a es:RangeQuery ;

es:field "age" ;

es:gte 10 ;

es:lte 20 ;

] ;

es:should (

[a es:TermQuery ; es:field "tags" ;

es:value "env1"]

[a es:TermQuery ; es:field "tags" ;

es:value "deployed"]

) ;

es:minimumShouldMatch 1 ;

es:boost 1.0 ;

]

FILTER(?user_id = "kimchy" &&

?tags = "production" &&

!(?age >= 10 && ?age <=

20) &&

(?tags == "env1" || ?tags

== "deployed"))

The table below shows each of the supported ElasticSource FILTER translations. Only expressions

matching the list below will be translated by the GDI. If the expression is of the form value <=

?field, the inequality is flipped to ?field > value before translating.

Advanced Usage by Data Source Type 258

es:query Expression
FILTER Clause
Expression

es:query [a es:BoolQuery ; es:mustNot expr] !expr

es:query [a es:BoolQuery ; es:must (left right)] left && right

es:query [a es:BoolQuery ; es:should (left right)] left || right

es:query [a es:RangeQuery ; es:field ?field ; es:lt value] ?field < value

es:query [a es:RangeQuery ; es:field ?field ; es:lte value

]

?field <= value

es:query [a es:TermQuery ; es:field ?field ; es:value value

]

?field = value

es:query [a es:BoolQuery ; es:mustNot [a es:TermQuery ;

es:field ?field ; es:value value]]

?field != value

es:query [a es:RangeQuery ; es:field ?field ; es:gte value

]

?field >= value

es:query [a es:RangeQuery ; es:field ?field ; es:gt value] ?field > value

es:query [a es:QueryStringQuery ; es:field ?field ;

es:query pattern ; es:defaultOperator "AND"]

REGEX(?field,

pattern, "q")

es:query [a es:TermsQuery ; es:field ?field ; es:value

value, ...]

IN(?field,

value, ...)

es:query [a es:BoolQuery ; es:mustNot [a es:TermsQuery ;

es:field ?field ; es:value value, ...]]

NOT IN(?field,

value, ...)

Advanced Usage by Data Source Type 259

es:query Expression
FILTER Clause
Expression

es:query [a es:MatchQuery ; es:field ?field ; es:query

value ; es:lenient true]

CONTAINS

(?field, value)

es:query [a es:PrefixQuery ; es:field ?field ; es:value

value]

STRSTARTS

(?field, value)

es:query [a es:ExistsQuery ; es:field ?field] BOUND(?field)

Query Examples

l General Query

l Aggregations

l Highlighting

General Query

The following example queries any Elasticsearch indexes that are loaded in the graphmart for which

you run the query. No configuration is needed because Anzo manages the indexes that it loads and

uses predictable naming conventions and aliases.

PREFIX docm: <http://cambridgesemantics.com/ontologies/2011/07/DocumentMetadata#>

PREFIX es: <http://elastic.co/search/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX services: <http://cambridgesemantics.com/services/>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?title

WHERE {

SERVICE <http://cambridgesemantics.com/services/DataToolkit> {

?data a es:ElasticSource;

s:selector "unstructuredfile" ;

es:query "string" ; # input the text search string

es:fields "fullText" ;

?title (xsd:string) .

Advanced Usage by Data Source Type 260

}

}

Aggregations

The following example query performs terms aggregations.

PREFIX es: <http://elastic.co/search/>

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT DISTINCT *

WHERE {

SERVICE <http://cambridgesemantics.com/services/DataToolkit> {

?data a es:ElasticSource;

s:url "https://{{@es.hostname}}:{{@es.port}}/" ;

s:username "{{@es.username}}" ;

s:password "{{@es.password}}" ;

es:index "templated_consumption_es" ;

es:query "*ELM*" ;

?instance () ;

es:aggregations [

?artifactTypes [

a es:TermsAggregation ;

es:field ?artifactType ;

es:meta [

?label "artifactType" ;

] ;

?value () ;

?count () ;

] ;

?fileTypes [

a es:TermsAggregation ;

es:field ?fileType ;

es:meta [

?label "fileType" ;

] ;

?value () ;

?count () ;

] ;

?managedBys [

a es:TermsAggregation ;

es:field ?managedBy ;

Advanced Usage by Data Source Type 261

es:meta [

?label "managedBy" ;

] ;

?value () ;

?count () ;

] ;

] .

}

}

Highlighting

The following example configures highlighting for fragments from the actor field.

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX es: <http://elastic.co/search/>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT *

WHERE {

SERVICE TOPDOWN <http://cambridgesemantics.com/services/DataToolkit>

{

?data a es:ElasticSource ;

es:url "http://localhost:9200/" ;

es:index "films" ;

es:html false ;

es:query "Clint" ;

es:field ?actor, ?director ;

es:highlight [

es:field ?actor ;

es:type "plain" ;

es:fragmentSize 200 ;

es:numberOfFragments 10 ;

es:preTags "<mark hit='true'>" ;

es:postTags "</mark>" ;

] ;

s:selector "film" ;

?actor (xsd:string) ;

?awards (xsd:string) ;

?director (xsd:string) ;

?image (xsd:string) ;

?length (xsd:long) ;

?popularity (xsd:long) ;

?subject (xsd:string) ;

Advanced Usage by Data Source Type 262

?title (xsd:string) ;

?year (xsd:long) ;

?score () ;

?id () ;

?highlights [

?field () ;

?fragment () ;

] .

FILTER(?year = 1990 || ?length > 103)

FILTER(REGEX(?title, "Manhattan", "q") || REGEX(?subject, "Comedy", "q") || REGEX

(?subject, "Drama", "q"))

}

}

Highlighting Elasticsearch Results

By including the highlight property in ElasticSource GDI queries, you can configure the response to
include highlights for search results. For general information about highlighting Elasticsearch

responses, see Highlighting in the Elasticsearch documentation. Highlight property usage is

described below.

l Highlight Syntax

l Highlight Examples

Highlight Syntax
es:highlight [

es:boundaryChars "string" ;

es:boundaryMaxScan int ;

es:boundaryScannerLocale "string" ;

es:boundaryScannerType "string" ;

es:field "string" ;

es:forceSource boolean ;

es:fragmentSize int ;

es:fragmenter "string" ;

es:highlightFilter boolean ;

es:highlightQuery "string" | [rdf_list] ;

es:highlighterType "string" ;

es:noMatchSize int ;

es:numberOfFragments int ;

Advanced Usage by Data Source Type 263

https://www.elastic.co/guide/en/elasticsearch/reference/current/highlighting.html

es:order "string" ;

es:phraseLimit int ;

es:postTags "string" ;

es:preTags "string" ;

es:requireFieldMatch boolean ;

] ;

Option Type Description

boundaryChars string This property can be used to define the boundary
characters to look for. Defaults to .,!? \t\n.

boundaryMaxScan int This property can be used to place a limit on the
number of characters to scan when looking for
boundary characters. Defaults to 20.

boundaryScannerLocale string This property defines the language tag (such as
"en-US" or "fr-FR") to apply when searching for
sentence and word boundaries.

boundaryScannerType string If highlighterType is unified or fvh, this property
can be used to specify how to break the highlighted
fragments. This property is ignored when the
highlighter type is plain. The list below describes
the valid values:

l chars: Valid when the highlighter type is
fast vector highlighter (fvh)

(es:highlighterType "fvh").

Specifies that the highlighting boundaries

are the characters specified by

boundaryChars. The boundaryMaxScan

value controls how far to scan for boundary

characters. This is the default value for fvh.

Advanced Usage by Data Source Type 264

Option Type Description

l sentence: This is the default value for the
unified highlighter. It configures highlighted

fragments to break at the next sentence

boundary. You can specify the locale to use

with boundaryScannerLocale. When used

with the unified highlighter, the sentence

scanner splits sentences bigger than

fragmentSize at the first word boundary

next to fragmentSize. You can set

fragmentSize to 0 to avoid splitting

sentences.

l word: Configures highlighted fragments to
break at the next word boundary. You can

specify the locale to use with

boundaryScannerLocale.

field string or
variable

This property specifies the field to retrieve
highlights for. It can include a ?variable (which the
GDI maps to the full path of the field in the
Elasticsearch document), a field name, or a field
name pattern. For example:

es:highlight [

es:field ?actor ;

es:field "film.actor" ;

es:field "film.*" ;

es:field "*" ;

]

forceSource boolean This property controls whether to highlight based

Advanced Usage by Data Source Type 265

Option Type Description

on the source even if the field is stored separately.
Defaults to false.

fragmentSize int This property specifies the number of characters to
include in highlighted fragments. Defaults to 100.

fragmenter string If highlighterType is plain, this property can be
used to specify how to break up text in highlight
snippets. The list below describes the valid values:

l simple: Breaks text into fragments that are
the same size (as specified by

fragmentSize).

l span: The default value. Breaks text into
fragments that are the same size but tries to

avoid breaking text between highlighted

terms.

highlightFilter boolean This property controls whether to highlight filter
results.

highlightQuery string or
object

This property specifies the highlight query. The
value can be a string or a query object that maps to
the Elasticsearch query DSL.

highlighterType string This property defines the type of highlighter to use,
"plain", "unified", or "fvh".

noMatchSize int This property specifies the number of characters to
return from the beginning of the field if there are no
matching fragments to highlight. Defaults to 0

Advanced Usage by Data Source Type 266

Option Type Description

(nothing is returned).

numberOfFragments int This property can be used to set the maximum
number of fragments to generate. If this property is
set to 0, no fragments are returned. Instead, the
entire field contents are highlighted and returned,
which can be useful if you want to highlight short
text (such as a title or address) for which
fragmentation is not required. Defaults to 5. If the
number of fragments is 0, fragmentSize is ignored.

order string This property can be included to sort highlighted
fragments by score. When es:order "score",
the most relevant fragments are output first.
Defaults to "none"; fragments are output in the
order they appear in the field.

phraseLimit int If highlighterType is fvh, this property can be used
to limit the number of matching phrases to consider.
Limiting the number of phrases prevents the fvh
highlighter from analyzing too many phrases and
consuming too much memory. Defaults to 256.

postTags string This property is used in conjunction with preTags to
define the HTML tags to use for the highlighted
elements. This property defines the closing tag to
use after the highlighted text. Defaults to .

preTags string This property is used in conjunction with postTags
to define the HTML tags to use for the highlighted
elements. This property defines the opening tag to
use before the highlighted text. Defaults to .

Advanced Usage by Data Source Type 267

Option Type Description

requireFieldMatch boolean This property controls whether to highlight only the
fields that contain a query match. Defaults to true.
If false, all fields are highlighted.

Highlight Examples

The following example configures highlighting for fragments from the actor field.

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX es: <http://elastic.co/search/>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT *

WHERE {

SERVICE TOPDOWN <http://cambridgesemantics.com/services/DataToolkit>

{

?data a es:ElasticSource ;

es:url "http://localhost:9200/" ;

es:index "films" ;

es:html false ;

es:query "Clint" ;

es:field ?actor, ?director ;

es:highlight [

es:field ?actor ;

es:type "plain" ;

es:fragmentSize 200 ;

es:numberOfFragments 10 ;

es:preTags "<mark hit='true'>" ;

es:postTags "</mark>" ;

] ;

s:selector "film" ;

?actor (xsd:string) ;

?awards (xsd:string) ;

?director (xsd:string) ;

?image (xsd:string) ;

?length (xsd:long) ;

?popularity (xsd:long) ;

?subject (xsd:string) ;

?title (xsd:string) ;

Advanced Usage by Data Source Type 268

?year (xsd:long) ;

?score () ;

?id () ;

?highlights [

?field () ;

?fragment () ;

] .

FILTER(?year = 1990 || ?length > 103)

FILTER(REGEX(?title, "Manhattan", "q") || REGEX(?subject, "Comedy", "q") || REGEX

(?subject, "Drama", "q"))

}

}

Querying a File Source

The Graph Data Interface (GDI) uses the Apache Commons VFS library to work with file systems.

Many of the properties specified in queries against file sources reflect the requirements of the VFS

library for that source. The topics in this section provide guidance on writing GDI queries for each of

the supported file types.

l Querying CSV and TSV Files

l Querying JSON and NDJSON Files

l Querying XML Files

l Querying Parquet and SAS Files

l File Source Format Options

l File Storage Connection Options

Querying CSV and TSV Files

This topic provides details about the structure to use when writing GDI queries to read or ingest data

from CSV or TSV files. It also includes example queries that may be useful as a starting point for

writing your own GDI queries.

l Query Syntax

l Query Examples

Advanced Usage by Data Source Type 269

https://commons.apache.org/proper/commons-vfs/

Query Syntax

The following query syntax shows the structure of a GDI query for CSV and TSV sources. The

clauses, patterns, and placeholders that are links are described below.

PREFIX Clause

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX anzo: <http://openanzo.org/ontologies/2008/07/Anzo#>

PREFIX zowl: <http://openanzo.org/ontologies/2009/05/AnzoOwl#>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

Result Clause

{

[GRAPH ${targetGraph} {]

triple_patterns

[}]

}

[${usingSources}]

WHERE

{

SERVICE Clause: Include the following service call when reading or inserting data.

SERVICE [TOPDOWN] <http://cambridgesemantics.com/services/DataToolkit>

View SERVICE Clause: Or use the service call below when constructing a view.

SERVICE <http://cambridgesemantics.com/services/DataToolkitView>(${targetGraph})

{

?data a s:FileSource ;

s:url "string" ;

[s:options [file_storage_connection_options] ;]

[s:pattern "string" ;]

[s:maxDepth int ;]

[s:format [source_format_options ;] ;]

[s:mimetype "string" ;]

[s:username "string" ;]

[s:password "string" ;]

Advanced Usage by Data Source Type 270

[s:timeout int ;]

[s:batching boolean | int ;]

[s:paging [pagination_options ;]

[s:concurrency int | [list_of_properties] ;]

[s:rate int | "string" ;]

[s:locale "string" ;]

[s:sampling int ;]

[s:selector "string" | [list] ;]

[s:model "string" ;]

[s:key ("string") ;]

[s:reference [s:model "string" ; s:using ("string")]

[s:formats [datatype_formatting_options] ;]

[s:normalize boolean | [normalization_rules] ;]

[s:count ?variable ;]

[s:offset int ;]

[s:limit int ;]

Mapping variables

?mapping_variable (["binding"] [datatype] ["datetime_format"]) ;

... ;

.

Additional clauses such as BIND, VALUES, FILTER

}

}

Note
For readability, the parameters below exclude the base URI

<http://cambridgesemantics.com/ontologies/DataToolkit#> as well as the s:

prefix. As shown in the examples, however, the s: prefix or full property URI does need to be

included in queries.

Option Type Description

PREFIX Clause N/A The PREFIX clause declares the standard and custom prefixes for
GDI service queries. Generally, queries include the prefixes from
the query template (or a subset of them) plus any data-specific
declarations.

Result Clause N/A The result clause defines the type of SPARQL query to run and the

Advanced Usage by Data Source Type 271

Option Type Description

set of results to return, i.e., whether you want to read (SELECT or
CONSTRUCT) from the source or ingest the data into Anzo
(INSERT).

GRAPH
${targetGraph}

N/A Include the GRAPH keyword and target graph parameter
${targetGraph} when writing an INSERT query to ingest data
into a graphmart. Anzo automatically populates the query with the
appropriate target URIs when the query runs.

${usingSource
s}

N/A Include the source graph parameter ${usingSources} when
writing a "topdown" query that passes values from the data that is
in the graphmart to the data source. Anzo automatically populates
the query with the appropriate FROM clauses when the query
runs. When passing literal values to the remote source, you do not
need to include the source graph parameter. The SERVICE
Clause description below includes more information about passing
input to data sources.

SERVICE
Clause

N/A Include the SERVICE call SERVICE [TOPDOWN]

<http://cambridgesemantics.com/services/DataTool

kit> to invoke the GDI service when you are running a SELECT,
INSERT, or CONSTRUCT query that is not creating a view. When
writing a CONSTRUCT query in a View Step, use the
DataToolkitView service call, as described below in View
SERVICE Clause.

Include the optional TOPDOWN keyword when you want to pass

input values from the graphmart to the data source. When you

include TOPDOWN in the service call, it indicates that the rest of

the query produces values to send to the source. In this case,

the GDI makes repeated calls to pass in each of the specified

values and retrieve the data that is based on those values.

Advanced Usage by Data Source Type 272

Option Type Description

View SERVICE
Clause

N/A When writing a CONSTRUCT query that creates a view of the data
(usually in a View Step), include the following SERVICE call:
SERVICE

<http://cambridgesemantics.com/services/DataTool

kitView>(${targetGraph}). Using the DataToolkitView
call optimizes query execution because it tells the GDI to inspect
the query and determine which filters to push to the data source. It
also limits the result set and retrieves only the data that is needed,
i.e., the source data is fully mapped but all of the mapped data is
not necessarily returned.

url string This property specifies the file system location of the source file or
directory of files. When specifying a directory (such as s:url
"/opt/shared-files/loads/"), the GDI loads all of the file
formats it recognizes. To specify a directory but limit the number or
type of files that are read, you can include the pattern and/or
maxDepth properties.

options RDF list If additional connection information needs to be provided to access
the file storage system, include the options property to list any
storage-specific connection parameters. See File Storage
Connection Options for information about the supported properties
for each storage type.

pattern string This property can be used to specify a wildcard pattern for
matching file names. For example, s:pattern "common_

prefix*.csv". You can include one s:pattern property per
FileSource. The GDI supports Unix file globbing syntax outside of
parentheses. Within parentheses, full Java regular expression
language is supported. For example, including s:pattern
"data/**/customer_*.csv" tells the GDI to load all files that
match the pattern "customer_*.csv" from any number of

Advanced Usage by Data Source Type 273

Option Type Description

subdirectories under the data directory. Similarly s:pattern "

(\d+)/transaction_*.csv" tells the GDI to load all files that
match the pattern "transaction_*.csv" in all subdirectories.

maxDepth int This property can be used to limit the directory traversal depth. By
default, when s:url specifies a directory (and a s:pattern that
limits that traversal depth is not specified), all subdirectories are
processed. To process only the files in the top level directory, set
maxDepth to 0 (s:maxDepth 0). To process the files in the top
level directory plus the first-level subdirectories, set maxDepth to 1
(s:maxDepth 1), and so on.

format RDF list You can include the format property to add parameters that
describe the source files. See File Source Format Options for
details about the supported parameters.

mimetype string This property can be included to specify the MIME type of the data.
If you are querying TSV files that do not have a .tsv file extension,
include the mimetype property with a value of text/tsv
(s:mimetype "text/tsv").

username string If authentication is required to access the source, include this
property to specify the user name.

password string This property lists the password for the given username.

timeout int This property can be used to specify the timeout (in milliseconds)
to use for requests against the source. For example, s:timeout
5000 configures a 5 second timeout.

batching boolean
or int

This property can be used to disable batching, or it can be used to
change the default the batch size. By default, batching is set to

Advanced Usage by Data Source Type 274

Option Type Description

5000 (s:batching 5000). To disable batching, you can include
s:batching false in the query. Typically users do not change
the batching size. However, it can be useful to control the batch
size when performing updates. To configure the size, include
s:batching int in the query. For example, s:batching
3000.

paging RDF list This property can be used to configure paging so that the GDI can
access large amounts of data across a number of smaller
requests. For details about the paging property, see Paginating
Requests.

concurrency int or
RDF list

This property can be included to configure the maximum level of
concurrency for the query. The value can be an integer, such as
s:concurrency 8. If the value is an integer, it configures a
maximum limit on the number of slices that can execute the query.
For finer-grained control over the number of nodes and slices to
use, concurrency can also be included as an object with limit,
nodes, and/or executorsPerNode properties. For example, the
following object configures a concurrency model that allows a
maximum of 24 executors distributed across 4 nodes with 8
executors per node:

s:concurrency [

s:limit 24 ;

s:nodes 4 ;

s:executorsPerNode 8 ;

] ;

rate int or
string

This property can be included to control the frequency with which a
request is sent to the source. The limit applies to the number of
requests a single slice can make. If you specify an integer for the

Advanced Usage by Data Source Type 275

Option Type Description

rate, then the value is treated as the maximum number of requests
to issue per minute. If you specify a string, you have more flexibility
in configuring the rate. The sample values below show the types of
values that are supported:

s:rate "90/minute" ;

s:rate "90 per minute" ;

s:rate "200000 every week" ;

s:rate "10000 every 6 hours" ;

To enforce the rate limit, the GDI introduces a sleep between

requests that is equal to the rate delay. The more executing

slices, the longer the rate delay needs to be to enforce the limit

in aggregate.

Given the example of s:rate "90/minute", the GDI would

optimize the concurrency and only use 1 slice for execution with

a rate delay of 666ms between requests. If s:rate

"240/minute", the GDI would use 3 executors with a rate

delay of 750ms between requests.

locale string This property can be used to specify the locale to use when
parsing locale-dependent data such as numbers, dates, and times.

sampling int This property can be used to configure the number of records in
the source to examine for data type inferencing.

selector string or
RDF list

This property can be used as a binding component to identify the
path to the source objects. For example, s:selector
"Sales.SalesOrderHeader" targets the SalesOrderHeader
table in the Sales schema. For more information about binding
components and the selector property, see Using Binding Trees
and Selector Paths.

Advanced Usage by Data Source Type 276

Option Type Description

model string This property defines the class (or table) name for the type of data
that is generated from the specified data source. For example,
s:model "employees". Model is optional when querying a
single source. If your query targets multiple sources, however, and
you want to define resource templates (primary keys) and object
properties (foreign keys), you must specify the model value for
each source.

key string This property can be used to define the primary key column for the
source file or table. This column is leveraged in a resource
template for the instances that are created from the source. For
example, s:key ("EMPLOYEE_ID"). For more information
about key, see Data Linking Options.

reference RDF list This property can be used to specify a foreign key column. The
reference property is an RDF list that includes the model property
to list the target table and a using property that defines the foreign
key column. For more information about reference, see Data
Linking Options.

formats RDF list To give users control over the data types that are used when
coercing strings to other types, this property can be included in
GDI queries to define the desired types. In addition, it can be used
to describe the formats of date and time values in the source to
ensure that they are recognized and parsed to the appropriate
date, time, and/or dateTime values. For details about the formats
property, see Data Type Formatting Options.

normalize RDF list To give users control over the labels and URIs that are generated,
the GDI offers several options for normalizing the model and/or the
fields that are created from the specified data source(s). For
details about the normalize property, see Model Normalization

Advanced Usage by Data Source Type 277

Option Type Description

Options.

count variable If you want to turn the query into a COUNT query, you can include
this property with a ?variable to perform a count. For example,
s:count ?count.

offset int This property can be used to offset the data that is returned by a
number of rows.

limit int You can include this property to limit the number of results that are
returned. s:limitmaps to the SPARQL LIMIT clause.

mapping_
variable

variable The mapping variables, in ?mapping_variable
(["binding"] [datatype] ["datetime_format"])

format, define the triple patterns to output. When the specified
?variablematches the source column name, the GDI uses the
variable as the source data selector. If you specify an alternate
variable name, a binding needs to be specified to map the new
variable to the source. You also have the option to transform the
data using the datatype and datetime_format options.

Note
The parentheses around the binding, data type, and

format specifications are not required but are included in

this document for readability.

binding string The binding is a literal value that binds a ?mapping_variable to a
source column. If you specify a ?variable that matches the source
column name, then that variable name is the data selector and it is
not necessary to specify a binding. If you specify an alternate
variable name or there is a hierarchical path to the source column,

Advanced Usage by Data Source Type 278

Option Type Description

then the binding is needed to map the new variable to that source
column.

For example for CSV, the following pattern simply binds the

source column AIRLINE to the lowercase variable ?airline:

?airline ("AIRLINE").

Note
For FileSource, periods (.), forward slashes (/), and

brackets ([]) are parsed as path notation. Therefore, if a

source column name includes any of those characters

they must be escaped in the binding. Use two backslashes

(\\) as an escape character. For example, if a column

name is average/day, the variable and binding pattern
could be written as ?averagePerDay

("average\\/day").

datatype URI The datatype is the data type to convert the column to. If you do
not specify a data type, the GDI infers the type. The GDI supports
the following types:

xsd:int, xsd:long, xsd:float, xsd:double,

xsd:boolean, xsd:time, xsd:dateTime, xsd:date,

xsd:duration, xsd:dayTimeDuration,

xsd:yearMonthDuration, xsd:gMonthDay,

xsd:gMonth, xsd:gYearMonth, xsd:anyURI

datetime_
format

string This option is used to specify the format to use for date and time
data types. The GDI supports Java date and time formats. Specify
days as "d," months as "M," and years as "y." For the time, specify
"H" for hours, "m" for minutes, and "s" for seconds. For example,

Advanced Usage by Data Source Type 279

Option Type Description

"yyyyMMdd HH:mm:ss" or "ddMMMyy" to display date values
such as "01JAN19."

Note
The GDI's default base year is 2000. If the source data has
years with only two digits, such as 02-04-99, the GDI

prepends 20 to the digits. The value 02-04-99 is parsed
to 02-04-2099. To specify an alternate base year to use

for two-digit values, you can include the notation ^nnnn

(e.g., ^1900) in the format value. For example, to set

the base year to 1900 instead of 2000, use a format value

such as xsd:date "dd-MMM-yy^1900" or xsd:date

"dd-MMM-yy^1990". When one of those values is

specified, 02-04-99 is parsed to 02-04-1999.

Query Examples

The example below ingests a directory of CSV files into a Graphmart. The pattern property

(s:pattern "post_[0-9]*_[0-9]*.csv") is used to narrow down the set of files to load.

Since the files use a pipe (|) as the delimiter rather than a comma (,), the delimiter property is also

included to specify the | character.

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX snvoc: <http://www.ldbc.eu/ldbc_socialnet/1.0/vocabulary/>

PREFIX sntag: <http://www.ldbc.eu/ldbc_socialnet/1.0/tag/>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

INSERT {

GRAPH ${targetGraph}

{

?postIRI a snvoc:Post, snvoc:Message ;

snvoc:creationDate ?creationDate ;

Advanced Usage by Data Source Type 280

snvoc:id ?id ;

snvoc:imageFile ?imageFile ;

snvoc:locationIP ?locationIP ;

snvoc:browserUsed ?browserUsed ;

snvoc:language ?language ;

snvoc:content ?content ;

snvoc:length ?length ;

}

}

WHERE {

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

?data a s:FileSource ;

s:url "/opt/shared-files/data/csv/post_6_0/" ;

s:pattern "post_[0-9]*_[0-9]*.csv" ;

s:format [s:delimiter "|"] ;

?creationDate (xsd:dateTime) ;

?id (xsd:string) ;

?imageFile (xsd:string) ;

?locationIP (xsd:string) ;

?browserUsed (xsd:string) ;

?language (xsd:string) ;

?content (xsd:string) ;

?length(xsd:string) .

BIND(IRI("http://www.ldbc.eu/ldbc_socialnet/1.0/data/Post/{{?id}}") as ?postIRI)

}

}

The example below is similar to the query above but it specifies the formats to use for the

xsd:date values.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX anzo: <http://openanzo.org/ontologies/2008/07/Anzo#>

PREFIX zowl: <http://openanzo.org/ontologies/2009/05/AnzoOwl#>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX kd: <http://cambridgesemantics.com/ont/autogen/Rh/Kaggle_Diabetes#>

INSERT {

GRAPH ${targetGraph}

Advanced Usage by Data Source Type 281

{

?URI a kd:Diagnosis ;

kd:Diagnosis_DiagnosisGuid ?diagnosis_guid ;

kd:Diagnosis_PatientGuid ?patient_guid ;

kd:Diagnosis_ICD9Code ?icd9Code ;

kd:Diagnosis_DiagnosisDescription ?diagnosisDescription ;

kd:Diagnosis_StartDate ?cus_start_date ;

kd:Diagnosis_EndDate ?Date_End ;

kd:Diagnosis_Acute ?acute ;

kd:Diagnosis_UserGuid ?UserGuid .

}

}

WHERE {

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

?csv a s:FileSource ;

s:url "/opt/shared-files/source_data/kaggle_diabetes/" ;

s:pattern "Diagnosis.csv" ;

s:format [s:delimiter ","] ;

?diagnosis_guid ("DiagnosisGuid" xsd:string) ;

?patient_guid ("PatientGuid" xsd:string) ;

?icd9Code ("ICD9Code" xsd:string) ;

?diagnosisDescription ("DiagnosisDescription" xsd:string) ;

?acute ("Acute" xsd:int) ;

?UserGuid ("UserGuid" xsd:string) ;

?cus_start_date ("CUSTOMER_START_DATE" xsd:date "yyyy-MM-dd") ;

?Date_End ("Date End" xsd:date "MM/dd/yy") .

}

BIND(IRI(CONCAT("urn://cambridgesemantics.com/kaggle_diabetes/patient/",ENCODE_FOR_

URI(?diagnosis_guid))) as ?URI)

}

Querying JSON and NDJSON Files

This topic provides details about the structure to use when writing GDI queries to read or ingest data

from JSON or NDJSON files. It also includes example queries that may be useful as a starting point

for writing your own GDI queries.

l Query Syntax

l Hierarchical Bindings and Arrays

Advanced Usage by Data Source Type 282

l Capturing Property Keys

l Query Examples

Query Syntax

The following query syntax shows the structure of a GDI query for JSON sources. The clauses,

patterns, and placeholders that are links are described below.

PREFIX Clause

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX anzo: <http://openanzo.org/ontologies/2008/07/Anzo#>

PREFIX zowl: <http://openanzo.org/ontologies/2009/05/AnzoOwl#>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

Result Clause

{

[GRAPH ${targetGraph} {]

triple_patterns

[}]

}

[${usingSources}]

WHERE

{

SERVICE Clause: Include the following service call when reading or inserting data.

SERVICE [TOPDOWN] <http://cambridgesemantics.com/services/DataToolkit>

View SERVICE Clause: Or use the service call below when constructing a view.

SERVICE <http://cambridgesemantics.com/services/DataToolkitView>(${targetGraph})

{

?data a s:FileSource ;

s:url "string" ;

[s:options [file_storage_connection_options] ;]

[s:pattern "string" ;]

[s:maxDepth int ;]

Advanced Usage by Data Source Type 283

[s:format [source_format_options ;] ;]

[s:mimetype "string" ;]

[s:username "string" ;]

[s:password "string" ;]

[s:timeout int ;]

[s:batching boolean | int ;]

[s:paging [pagination_options ;]

[s:concurrency int | [list_of_properties] ;]

[s:rate int | "string" ;]

[s:locale "string" ;]

[s:sampling int ;]

[s:selector "string" | [list] ;]

[s:model "string" ;]

[s:key ("string") ;]

[s:reference [s:model "string" ; s:using ("string")]

[s:formats [datatype_formatting_options] ;]

[s:normalize boolean | [normalization_rules] ;]

[s:count ?variable ;]

[s:offset int ;]

[s:limit int ;]

Mapping variables and hierarchical bindings

?mapping_variable (["binding"] [datatype] ["datetime_format"]) ;

... ;

.

Additional clauses such as BIND, VALUES, FILTER

}

}

Note
For readability, the parameters below exclude the base URI

<http://cambridgesemantics.com/ontologies/DataToolkit#> as well as the s:

prefix. As shown in the examples, however, the s: prefix or full property URI does need to be

included in queries.

Option Type Description

PREFIX Clause N/A The PREFIX clause declares the standard and custom prefixes for
GDI service queries. Generally, queries include the prefixes from
the query template (or a subset of them) plus any data-specific

Advanced Usage by Data Source Type 284

Option Type Description

declarations.

Result Clause N/A The result clause defines the type of SPARQL query to run and the
set of results to return, i.e., whether you want to read (SELECT or
CONSTRUCT) from the source or ingest the data into Anzo
(INSERT).

GRAPH
${targetGraph}

N/A Include the GRAPH keyword and target graph parameter
${targetGraph} when writing an INSERT query to ingest data
into a graphmart. Anzo automatically populates the query with the
appropriate target URIs when the query runs.

${usingSource
s}

N/A Include the source graph parameter ${usingSources} when
writing a "topdown" query that passes values from the data that is
in the graphmart to the data source. Anzo automatically populates
the query with the appropriate FROM clauses when the query
runs. When passing literal values to the remote source, you do not
need to include the source graph parameter. The SERVICE
Clause description below includes more information about passing
input to data sources.

SERVICE
Clause

N/A Include the SERVICE call SERVICE [TOPDOWN]

<http://cambridgesemantics.com/services/DataTool

kit> to invoke the GDI service when you are running a SELECT,
INSERT, or CONSTRUCT query that is not creating a view. When
writing a CONSTRUCT query in a View Step, use the
DataToolkitView service call, as described below in View
SERVICE Clause.

Include the optional TOPDOWN keyword when you want to pass

input values from the graphmart to the data source. When you

include TOPDOWN in the service call, it indicates that the rest of

Advanced Usage by Data Source Type 285

Option Type Description

the query produces values to send to the source. In this case,

the GDI makes repeated calls to pass in each of the specified

values and retrieve the data that is based on those values.

View SERVICE
Clause

N/A When writing a CONSTRUCT query that creates a view of the data
(usually in a View Step), include the following SERVICE call:
SERVICE

<http://cambridgesemantics.com/services/DataTool

kitView>(${targetGraph}). Using the DataToolkitView
call optimizes query execution because it tells the GDI to inspect
the query and determine which filters to push to the data source. It
also limits the result set and retrieves only the data that is needed,
i.e., the source data is fully mapped but all of the mapped data is
not necessarily returned.

url string This property specifies the file system location of the source file or
directory of files. When specifying a directory (such as s:url
"/opt/shared-files/loads/"), the GDI loads all of the file
formats it recognizes. To specify a directory but limit the number or
type of files that are read, you can include the pattern and/or
maxDepth properties.

options RDF list If additional connection information needs to be provided to access
the file storage system, include the options property to list any
storage-specific connection parameters. See File Storage
Connection Options for information about the supported properties
for each storage type.

pattern string This property is used to specify a wildcard pattern for matching file
names. For example, s:pattern "common_prefix*.json".
You can include one s:pattern property per FileSource. The
GDI supports Unix file globbing syntax outside of parentheses.

Advanced Usage by Data Source Type 286

Option Type Description

Within parentheses, full Java regular expression language is
supported. For example, including s:pattern
"data/**/customer_*.json" tells the GDI to load all files that
match the pattern "customer_*.json" from any number of
subdirectories under the data directory. Similarly s:pattern "

(\d+)/transaction_*.json" tells the GDI to load all files that
match the pattern "transaction_*.json" in all subdirectories.

maxDepth int This property can be used to limit the directory traversal depth. By
default, when s:url specifies a directory (and a s:pattern that
limits that traversal depth is not specified), all subdirectories are
processed. To process only the files in the top level directory, set
maxDepth to 0 (s:maxDepth 0). To process the files in the top
level directory plus the first-level subdirectories, set maxDepth to 1
(s:maxDepth 1), and so on.

format RDF list You can include the format property to add parameters that
describe the source files. See File Source Format Options for
details about the supported parameters.

mimetype string This property can be included to specify the MIME type of the data.

username string If authentication is required to access the source, include this
property to specify the user name.

password string This property lists the password for the given username.

timeout int This property can be used to specify the timeout (in milliseconds)
to use for requests against the source. For example, s:timeout
5000 configures a 5 second timeout.

batching boolean This property can be used to disable batching, or it can be used to

Advanced Usage by Data Source Type 287

Option Type Description

or int change the default the batch size. By default, batching is set to
5000 (s:batching 5000). To disable batching, you can include
s:batching false in the query. Typically users do not change
the batching size. However, it can be useful to control the batch
size when performing updates. To configure the size, include
s:batching int in the query. For example, s:batching
3000.

paging RDF list This property can be used to configure paging so that the GDI can
access large amounts of data across a number of smaller
requests. For details about the paging property, see Paginating
Requests.

concurrency int or
RDF list

This property can be included to configure the maximum level of
concurrency for the query. The value can be an integer, such as
s:concurrency 8. If the value is an integer, it configures a
maximum limit on the number of slices that can execute the query.
For finer-grained control over the number of nodes and slices to
use, concurrency can also be included as an object with limit,
nodes, and/or executorsPerNode properties. For example, the
following object configures a concurrency model that allows a
maximum of 24 executors distributed across 4 nodes with 8
executors per node:

s:concurrency [

s:limit 24 ;

s:nodes 4 ;

s:executorsPerNode 8 ;

] ;

rate int or
string

This property can be included to control the frequency with which a
request is sent to the source. The limit applies to the number of

Advanced Usage by Data Source Type 288

Option Type Description

requests a single slice can make. If you specify an integer for the
rate, then the value is treated as the maximum number of requests
to issue per minute. If you specify a string, you have more flexibility
in configuring the rate. The sample values below show the types of
values that are supported:

s:rate "90/minute" ;

s:rate "90 per minute" ;

s:rate "200000 every week" ;

s:rate "10000 every 6 hours" ;

To enforce the rate limit, the GDI introduces a sleep between

requests that is equal to the rate delay. The more executing

slices, the longer the rate delay needs to be to enforce the limit

in aggregate.

Given the example of s:rate "90/minute", the GDI would

optimize the concurrency and only use 1 slice for execution with

a rate delay of 666ms between requests. If s:rate

"240/minute", the GDI would use 3 executors with a rate

delay of 750ms between requests.

locale string This property can be used to specify the locale to use when
parsing locale-dependent data such as numbers, dates, and times.

sampling int This property can be used to configure the number of records in
the source to examine for data type inferencing.

selector string or
RDF list

This property can be used for JSON path extraction to traverse
nested structures and target specific data. For example,
s:selector "projects" targets the projects class of data.
To express a hierarchy, use dot notation. For example,
s:selector "region.state.city" navigates a hierarchy to

Advanced Usage by Data Source Type 289

Option Type Description

target city data. For more information about binding components
and the selector property, see Using Binding Trees and Selector
Paths.

model string This property defines the class (or table) name for the type of data
that is generated from the specified data source. For example,
s:model "employees". Model is optional when querying a
single source. If your query targets multiple sources, however, and
you want to define resource templates (primary keys) and object
properties (foreign keys), you must specify the model value for
each source.

key string This property can be used to define the primary key column for the
source file or table. This column is leveraged in a resource
template for the instances that are created from the source. For
example, s:key ("EMPLOYEE_ID"). For more information
about key, see Data Linking Options.

reference RDF list This property can be used to specify a foreign key column. The
reference property is an RDF list that includes the model property
to list the target table and a using property that defines the foreign
key column. For more information about reference, see Data
Linking Options.

formats RDF list To give users control over the data types that are used when
coercing strings to other types, this property can be included in
GDI queries to define the desired types. In addition, it can be used
to describe the formats of date and time values in the source to
ensure that they are recognized and parsed to the appropriate
date, time, and/or dateTime values. For details about the formats
property, see Data Type Formatting Options.

Advanced Usage by Data Source Type 290

Option Type Description

normalize RDF list To give users control over the labels and URIs that are generated,
the GDI offers several options for normalizing the model and/or the
fields that are created from the specified data source(s). For
details about the normalize property, see Model Normalization
Options.

count variable If you want to turn the query into a COUNT query, you can include
this property with a ?variable to perform a count. For example,
s:count ?count.

offset int This property can be used to offset the data that is returned by a
number of rows.

limit int You can include this property to limit the number of results that are
returned. s:limitmaps to the SPARQL LIMIT clause.

mapping_
variable

variable The mapping variables, in ?mapping_variable
(["binding"] [datatype] ["datetime_format"])

format, define the triple patterns to output. When the specified
?variablematches the source column name, the GDI uses the
variable as the source data selector. If you specify an alternate
variable name, a binding needs to be specified to map the new
variable to the source. You also have the option to transform the
data using the datatype and datetime_format options.

Tip
See Hierarchical Bindings and Arrays below for more

information about configuring mapping variables and

unpacking JSON files with nested objects and arrays.

binding string The binding is a literal value that binds a ?mapping_variable to a

Advanced Usage by Data Source Type 291

Option Type Description

source column. If you specify a ?variable that matches the source
column name, then that variable name is the data selector and it is
not necessary to specify a binding. If you specify an alternate
variable name or there is a hierarchical path to the source column,
then the binding is needed to map the new variable to that source
column.

For example for CSV, the following pattern simply binds the

source column AIRLINE to the lowercase variable ?airline:

?airline ("AIRLINE").

Note
For FileSource, periods (.), forward slashes (/), and

brackets ([]) are parsed as path notation. Therefore, if a

source column name includes any of those characters

they must be escaped in the binding. Use two backslashes

(\\) as an escape character. For example, if a column

name is average/day, the variable and binding pattern
could be written as ?averagePerDay

("average\\/day").

datatype URI The datatype is the data type to convert the column to. If you do
not specify a data type, the GDI infers the type. The GDI supports
the following types:

xsd:int, xsd:long, xsd:float, xsd:double,

xsd:boolean, xsd:time, xsd:dateTime, xsd:date,

xsd:duration, xsd:dayTimeDuration,

xsd:yearMonthDuration, xsd:gMonthDay,

xsd:gMonth, xsd:gYearMonth, xsd:anyURI

Advanced Usage by Data Source Type 292

Option Type Description

datetime_
format

string This option is used to specify the format to use for date and time
data types. The GDI supports Java date and time formats. Specify
days as "d," months as "M," and years as "y." For the time, specify
"H" for hours, "m" for minutes, and "s" for seconds. For example,
"yyyyMMdd HH:mm:ss" or "ddMMMyy" to display date values
such as "01JAN19."

Note
The GDI's default base year is 2000. If the source data has
years with only two digits, such as 02-04-99, the GDI

prepends 20 to the digits. The value 02-04-99 is parsed
to 02-04-2099. To specify an alternate base year to use

for two-digit values, you can include the notation ^nnnn

(e.g., ^1900) in the format value. For example, to set

the base year to 1900 instead of 2000, use a format value

such as xsd:date "dd-MMM-yy^1900" or xsd:date

"dd-MMM-yy^1990". When one of those values is

specified, 02-04-99 is parsed to 02-04-1999.

Hierarchical Bindings and Arrays

When configuring the mapping variables in a query, the GDI provides syntax for unpacking JSON

files with nested objects and arrays. One way to express hierarchies in queries is to use brackets ([

]) to group objects into binding trees. For example, the WHERE clause snippet below organizes

mapping variable objects into an hourly/data hierarchy by nesting the ?data patterns inside the

?hourly [] tree:

WHERE

{

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

Advanced Usage by Data Source Type 293

?data a s:FileSource;

s:url "/mnt/data/json/weather.json" ;

?latitude (xsd:double) ;

?longitude (xsd:double) ;

?timezone (xsd:string) ;

?hourly

[

?data

[

?time (xsd:long) ;

?rainProbability ("precipProbability" xsd:double) ;

?temperature (xsd:double) ;

?feelsLike ("apparentTemperature" xsd:double) ;

?windSpeed (xsd:double) ;

] ;

] .

}

}

When constructing object binding trees, if you choose to introduce the hierarchy with a variable

name that is not an exact match to the source label, include a selector property to list the value from
the source. For example, in the WHERE clause snippet below, s:selector is included to select

eventHeader in the source as ?event in the query and statLocation as ?location.

WHERE

{

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

?data a s:FileSource ;

s:url "/mnt/data/json/part_1.json" ;

?event

[

s:selector "eventHeader" ;

?eventId (xsd:string) ;

?eventName (xsd:string) ;

?eventVersion (xsd:string) ;

?eventTime (xsd:dateTime) ;

] ;

?location

[

s:selector "statLocation" ;

?locationId (xsd:string) ;

Advanced Usage by Data Source Type 294

?lineNo (xsd:int) ;

?statNo (xsd:int) ;

?statId (xsd:int) ;

] .

}

}

As an alternative to grouping objects in binding trees, the selector property also supports using dot
notation to specify paths. For example, the WHERE clause snippet below rewrites the first example

query to express the same hourly/data hierarchy as a path in the s:selector value:

WHERE

{

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

?data a s:FileSource;

s:url "/mnt/data/json/weather.json" ;

?latitude (xsd:double) ;

?longitude (xsd:double) ;

?timezone (xsd:string) ;

s:selector: "hourly.data" ;

?time (xsd:long) ;

?rainProbability ("precipProbability" xsd:double) ;

?temperature (xsd:double) ;

?feelsLike ("apparentTemperature" xsd:double) ;

?windSpeed (xsd:double) .

}

}

In addition to object binding trees and selectors, the GDI offers additional syntax for reading or

ingesting JSON sources with nested objects and arrays. For example, following the JSON sample

file below is a query that captures each value in the arrays:

{

"payload" :

{

"IBP_IndEvent_MSR" :

{

"unit" : "ms",

"value" : [0, 1]

},

"IBP_IndEvent_RMF" :

Advanced Usage by Data Source Type 295

{

"unit" : "-",

"value" : [0.012, 1.398, 3.1415]

}

}

}

To read the JSON file above, the following query uses an object binding (?values []) to drill

down to the value arrays in the source. An @ selector is specified in the ?value variable binding

(?value ("@" xsd:double)) to retrieve each of the array values. For an array of primitive

values, the @ selector captures each value in the array. If the source value was an array of

objects, the @ selector would retrieve a JSON representation for each object in the array. In

addition to creating a new binding context for the primitive array values, the ?values object binding

also includes ?index ("!array::index") to capture the index array with the primitive value.

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT *

WHERE {

SERVICE <http://cambridgesemantics.com/services/DataToolkit> {

?data a s:FileSource ;

s:url "/mnt/data/json/array-index.json" ;

s:selector "payload.*" ;

?unit (xsd:string) ;

?values [

s:selector "value" ;

?value ("@" xsd:double) ;

?index ("!array::index") ;

] .

}

}

The results of the query are shown below:

unit | value | index

-----+--------+-------

ms | 0 | 0

ms | 1 | 1

- | 0.012 | 0

- | 1.398 | 1

- | 3.1415 | 2

Advanced Usage by Data Source Type 296

If you do not want to retrieve all of the values in an array, you can include the specific index number

to retrieve instead of using the @ symbol. In the variable binding, the index number is appended in

brackets ([]) to the binding column name. For example, the following variable binding retrieves the

second index value (the third value in the array) from a "projects" array: ?project ("projects

[2]"). The next example uses the following JSON file:

{

"field1" : "value1" ,

"arrayfield" : [

"arrayvalue1",

"arrayvalue2"

]

}

To retrieve only the second value in the array, the following query appends the index value 1 to the

array column name, arrayfield:

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

SELECT *

WHERE {

SERVICE <http://cambridgesemantics.com/services/DataToolkit> {

?json a s:FileSource ;

s:url "/mnt/data/json/array-index-2.json" ;

?field1 (xsd:string) ;

?arrayval ("arrayfield[1]" xsd:string) .

}

}

The results of the query are shown below:

field1 | arrayval

---------+----------

value1 |arrayvalue2

Capturing Property Keys

In GDI Generator queries, the names of property keys can be captured from files by including a

variable as the s:selector and using the same variable as the s:key. For example, the GDI

query below ingests the following simple JSON file.

Advanced Usage by Data Source Type 297

company.json

{

"AAPL": {

"name": "Apple Corp"

},

"MSFT": {

"name": "Microsoft"

},

"IBM": {

"name": "IBM"

}

}

In the query, the keys "AAPL," "MSFT," and "IBM" are selected as the ?TickerSymbol variable and

the key is set to the same value.

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

INSERT ${targetGraph} {

?s ?p ?o .

}

}

WHERE {

SERVICE <http://cambridgesemantics.com/services/DataToolkit> {

?data a s:FileSource ;

s:url "/opt/shared/data/company.json" ;

s:selector "?TickerSymbol" ;

s:key (?TickerSymbol) ;

s:model "Company" ;

?TickerSymbol (xsd:string) ;

?name (xsd:string) .

?rdf a s:RdfGenerator, s:OntologyGenerator;

s:as (?s ?p ?o) ;

s:ontology <http://cambridgesemantics.com/ontologies/company> ;

s:base ${targetGraph} .

}

}

Selecting the predicates and objects from the graph shows the tickerSymbol predicate and value.

Advanced Usage by Data Source Type 298

SELECT ?p ?o

${usingSources}

WHERE { ?s ?p ?o . }

ORDER BY desc(?o)

p | o

---+-------------

http://anzograph.com/ontologies/company#Company.name | Microsoft

http://anzograph.com/ontologies/company#Company.tickerSymbol | MSFT

http://anzograph.com/ontologies/company#Company.name | IBM

http://anzograph.com/ontologies/company#Company.tickerSymbol | IBM

http://anzograph.com/ontologies/company#Company.name | Apple Corp

http://anzograph.com/ontologies/company#Company.tickerSymbol | AAPL

...

Query Examples

The example query below reads a JSON file that contains data about weather. Since the file is

hierarchical, the s:selector property is included to specify the path to data in the hourly/data

hierarchy:

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT *

WHERE

{

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

?data a s:FileSource;

s:url "/mnt/data/json/weather.json" ;

?latitude (xsd:double) ;

?longitude (xsd:double) ;

?timezone (xsd:string) ;

s:selector: "hourly.data" ;

?time (xsd:long) ;

?rainProbability ("precipProbability" xsd:double) ;

?temperature (xsd:double) ;

?feelsLike ("apparentTemperature" xsd:double) ;

?windSpeed (xsd:double) .

}

}

Advanced Usage by Data Source Type 299

The following example query ingests data from a JSON file that contains data about the New York

Times best selling books.

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX books: <http://cambridgesemantics.com/ontologies/NYT_Bestsellers_Ontology#>

INSERT {

GRAPH ${targetGraph}{

?book a books:Book ;

books:p_Title ?title ;

books:p_Description ?description ;

books:p_Author ?author ;

books:p_Publisher ?publisher ;

books:p_Date ?rawdate .

}

}

WHERE {

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

?data a s:FileSource ;

s:url "/mnt/data/json/nyt_best_sellers.json" ;

?title () ;

?author () ;

?description () ;

?publisher () ;

?price() ;

?rawdate ("bestsellers_date.$date.$numberLong").

}

BIND(IRI(CONCAT("http://cambridgesemantics.com/ontologies/NYT_Bestsellers_Ontology/",

ENCODE_FOR_URI(?title))) AS ?book) .

}

A snippet of the file's contents is shown below:

{

"_id": {

"$oid": "5b4aa4ead3089013507db18b"

},

"bestsellers_date": {

"$date": {

"$numberLong": "1211587200000"

}

},

"published_date": {

Advanced Usage by Data Source Type 300

"$date": {

"$numberLong": "1212883200000"

}

},

"amazon_product_url": "http://www.amazon.com/Odd-Hours-Dean-

Koontz/dp/0553807056?tag=NYTBS-20",

"author": "Dean R Koontz",

"description": "Odd Thomas, who can communicate with the dead, confronts evil forces

in a California coastal town.",

"price": {

"$numberInt": "27"

},

"publisher": "Bantam",

"title": "ODD HOURS",

"rank": {

"$numberInt": "1"

},

"rank_last_week": {

"$numberInt": "0"

},

"weeks_on_list": {

"$numberInt": "1"

}

}

Querying XML Files

This topic provides details about the structure to use when writing GDI queries to read or ingest data

from XML files. It also includes example queries that may be useful as a starting point for writing

your own GDI queries.

l Query Syntax

l Hierarchical Bindings and Arrays

l Query Examples

Query Syntax

The following query syntax shows the structure of a GDI query for XML sources. The clauses,

patterns, and placeholders that are links are described below.

Advanced Usage by Data Source Type 301

PREFIX Clause

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX anzo: <http://openanzo.org/ontologies/2008/07/Anzo#>

PREFIX zowl: <http://openanzo.org/ontologies/2009/05/AnzoOwl#>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

Result Clause

{

[GRAPH ${targetGraph} {]

triple_patterns

[}]

}

[${usingSources}]

WHERE

{

SERVICE Clause: Include the following service call when reading or inserting data.

SERVICE [TOPDOWN] <http://cambridgesemantics.com/services/DataToolkit>

View SERVICE Clause: Or use the service call below when constructing a view.

SERVICE <http://cambridgesemantics.com/services/DataToolkitView>(${targetGraph})

{

?data a s:FileSource ;

s:url "string" ;

[s:options [file_storage_connection_options] ;]

[s:pattern "string" ;]

[s:maxDepth int ;]

[s:format [source_format_options ;] ;]

[s:mimetype "string" ;]

[s:username "string" ;]

[s:password "string" ;]

[s:timeout int ;]

[s:batching boolean | int ;]

[s:paging [pagination_options ;]

[s:concurrency int | [list_of_properties] ;]

[s:rate int | "string" ;]

[s:locale "string" ;]

[s:sampling int ;]

Advanced Usage by Data Source Type 302

[s:selector "string" | [list] ;]

[s:model "string" ;]

[s:key ("string") ;]

[s:reference [s:model "string" ; s:using ("string")]

[s:formats [datatype_formatting_options] ;]

[s:normalize boolean | [normalization_rules] ;]

[s:count ?variable ;]

[s:offset int ;]

[s:limit int ;]

Mapping variables and hierarchical bindings

?mapping_variable (["binding"] [datatype] ["datetime_format"]) ;

... ;

.

Additional clauses such as BIND, VALUES, FILTER

}

}

Note
For readability, the parameters below exclude the base URI

<http://cambridgesemantics.com/ontologies/DataToolkit#> as well as the s:

prefix. As shown in the examples, however, the s: prefix or full property URI does need to be

included in queries.

Option Type Description

PREFIX Clause N/A The PREFIX clause declares the standard and custom prefixes for
GDI service queries. Generally, queries include the prefixes from
the query template (or a subset of them) plus any data-specific
declarations.

Result Clause N/A The result clause defines the type of SPARQL query to run and the
set of results to return, i.e., whether you want to read (SELECT or
CONSTRUCT) from the source or ingest the data into Anzo
(INSERT).

GRAPH N/A Include the GRAPH keyword and target graph parameter

Advanced Usage by Data Source Type 303

Option Type Description

${targetGraph} ${targetGraph} when writing an INSERT query to ingest data
into a graphmart. Anzo automatically populates the query with the
appropriate target URIs when the query runs.

${usingSource
s}

N/A Include the source graph parameter ${usingSources} when
writing a "topdown" query that passes values from the data that is
in the graphmart to the data source. Anzo automatically populates
the query with the appropriate FROM clauses when the query
runs. When passing literal values to the remote source, you do not
need to include the source graph parameter. The SERVICE
Clause description below includes more information about passing
input to data sources.

SERVICE
Clause

N/A Include the SERVICE call SERVICE [TOPDOWN]

<http://cambridgesemantics.com/services/DataTool

kit> to invoke the GDI service when you are running a SELECT,
INSERT, or CONSTRUCT query that is not creating a view. When
writing a CONSTRUCT query in a View Step, use the
DataToolkitView service call, as described below in View
SERVICE Clause.

Include the optional TOPDOWN keyword when you want to pass

input values from the graphmart to the data source. When you

include TOPDOWN in the service call, it indicates that the rest of

the query produces values to send to the source. In this case,

the GDI makes repeated calls to pass in each of the specified

values and retrieve the data that is based on those values.

View SERVICE
Clause

N/A When writing a CONSTRUCT query that creates a view of the data
(usually in a View Step), include the following SERVICE call:
SERVICE

<http://cambridgesemantics.com/services/DataTool

Advanced Usage by Data Source Type 304

Option Type Description

kitView>(${targetGraph}). Using the DataToolkitView
call optimizes query execution because it tells the GDI to inspect
the query and determine which filters to push to the data source. It
also limits the result set and retrieves only the data that is needed,
i.e., the source data is fully mapped but all of the mapped data is
not necessarily returned.

url string This property specifies the file system location of the source file or
directory of files. When specifying a directory (such as s:url
"/opt/shared-files/loads/"), the GDI loads all of the file
formats it recognizes. To specify a directory but limit the number or
type of files that are read, you can include the pattern and/or
maxDepth properties.

options RDF list If additional connection information needs to be provided to access
the file storage system, include the options property to list any
storage-specific connection parameters. See File Storage
Connection Options for information about the supported properties
for each storage type.

pattern string This property is used to specify a wildcard pattern for matching file
names. For example, s:pattern "common_prefix*.xml".
You can include one s:pattern property per FileSource. The
GDI supports Unix file globbing syntax outside of parentheses.
Within parentheses, full Java regular expression language is
supported. For example, including s:pattern
"data/**/customer_*.xml" tells the GDI to load all files that
match the pattern "customer_*.xml" from any number of
subdirectories under the data directory. Similarly s:pattern "

(\d+)/transaction_*.xml" tells the GDI to load all files that
match the pattern "transaction_*.xml" in all subdirectories.

Advanced Usage by Data Source Type 305

Option Type Description

maxDepth int This property can be used to limit the directory traversal depth. By
default, when s:url specifies a directory (and a s:pattern that
limits that traversal depth is not specified), all subdirectories are
processed. To process only the files in the top level directory, set
maxDepth to 0 (s:maxDepth 0). To process the files in the top
level directory plus the first-level subdirectories, set maxDepth to 1
(s:maxDepth 1), and so on.

format RDF list You can include the format property to add parameters that
describe the source files. See File Source Format Options for
details about the supported parameters.

mimetype string This property can be included to specify the MIME type of the data.

username string If authentication is required to access the source, include this
property to specify the user name.

password string This property lists the password for the given username.

timeout int This property can be used to specify the timeout (in milliseconds)
to use for requests against the source. For example, s:timeout
5000 configures a 5 second timeout.

batching boolean
or int

This property can be used to disable batching, or it can be used to
change the default the batch size. By default, batching is set to
5000 (s:batching 5000). To disable batching, you can include
s:batching false in the query. Typically users do not change
the batching size. However, it can be useful to control the batch
size when performing updates. To configure the size, include
s:batching int in the query. For example, s:batching
3000.

Advanced Usage by Data Source Type 306

Option Type Description

paging RDF list This property can be used to configure paging so that the GDI can
access large amounts of data across a number of smaller
requests. For details about the paging property, see Paginating
Requests.

concurrency int or
RDF list

This property can be included to configure the maximum level of
concurrency for the query. The value can be an integer, such as
s:concurrency 8. If the value is an integer, it configures a
maximum limit on the number of slices that can execute the query.
For finer-grained control over the number of nodes and slices to
use, concurrency can also be included as an object with limit,
nodes, and/or executorsPerNode properties. For example, the
following object configures a concurrency model that allows a
maximum of 24 executors distributed across 4 nodes with 8
executors per node:

s:concurrency [

s:limit 24 ;

s:nodes 4 ;

s:executorsPerNode 8 ;

] ;

rate int or
string

This property can be included to control the frequency with which a
request is sent to the source. The limit applies to the number of
requests a single slice can make. If you specify an integer for the
rate, then the value is treated as the maximum number of requests
to issue per minute. If you specify a string, you have more flexibility
in configuring the rate. The sample values below show the types of
values that are supported:

s:rate "90/minute" ;

s:rate "90 per minute" ;

s:rate "200000 every week" ;

Advanced Usage by Data Source Type 307

Option Type Description

s:rate "10000 every 6 hours" ;

To enforce the rate limit, the GDI introduces a sleep between

requests that is equal to the rate delay. The more executing

slices, the longer the rate delay needs to be to enforce the limit

in aggregate.

Given the example of s:rate "90/minute", the GDI would

optimize the concurrency and only use 1 slice for execution with

a rate delay of 666ms between requests. If s:rate

"240/minute", the GDI would use 3 executors with a rate

delay of 750ms between requests.

locale string This property can be used to specify the locale to use when
parsing locale-dependent data such as numbers, dates, and times.

sampling int This property can be used to configure the number of records in
the source to examine for data type inferencing.

selector string or
RDF list

This property can be used for XML path extraction to traverse
nested structures and target specific data. For example,
s:selector "projects" targets the projects class of data.
To express a hierarchy, use dot notation. For example,
s:selector "region.state.city" navigates a hierarchy to
target city data. For more information about binding components
and the selector property, see Hierarchical Bindings and Arrays
below.

model string This property defines the class (or table) name for the type of data
that is generated from the specified data source. For example,
s:model "employees". Model is optional when querying a
single source. If your query targets multiple sources, however, and

Advanced Usage by Data Source Type 308

Option Type Description

you want to define resource templates (primary keys) and object
properties (foreign keys), you must specify the model value for
each source.

key string This property can be used to define the primary key column for the
source file or table. This column is leveraged in a resource
template for the instances that are created from the source. For
example, s:key ("EMPLOYEE_ID"). For more information
about key, see Data Linking Options.

reference RDF list This property can be used to specify a foreign key column. The
reference property is an RDF list that includes the model property
to list the target table and a using property that defines the foreign
key column. For more information about reference, see Data
Linking Options.

formats RDF list To give users control over the data types that are used when
coercing strings to other types, this property can be included in
GDI queries to define the desired types. In addition, it can be used
to describe the formats of date and time values in the source to
ensure that they are recognized and parsed to the appropriate
date, time, and/or dateTime values. For details about the formats
property, see Data Type Formatting Options.

normalize RDF list To give users control over the labels and URIs that are generated,
the GDI offers several options for normalizing the model and/or the
fields that are created from the specified data source(s). For
details about the normalize property, see Model Normalization
Options.

count variable If you want to turn the query into a COUNT query, you can include
this property with a ?variable to perform a count. For example,

Advanced Usage by Data Source Type 309

Option Type Description

s:count ?count.

offset int This property can be used to offset the data that is returned by a
number of rows.

limit int You can include this property to limit the number of results that are
returned. s:limitmaps to the SPARQL LIMIT clause.

mapping_
variable

variable The mapping variables, in ?mapping_variable
(["binding"] [datatype] ["datetime_format"])

format, define the triple patterns to output. When the specified
?variablematches the source column name, the GDI uses the
variable as the source data selector. If you specify an alternate
variable name, a binding needs to be specified to map the new
variable to the source. You also have the option to transform the
data using the datatype and datetime_format options.

Tip
See Hierarchical Bindings and Arrays below for more

information about configuring mapping variables and

unpacking files with nested objects and arrays.

binding string The binding is a literal value that binds a ?mapping_variable to a
source column. If you specify a ?variable that matches the source
column name, then that variable name is the data selector and it is
not necessary to specify a binding. If you specify an alternate
variable name or there is a hierarchical path to the source column,
then the binding is needed to map the new variable to that source
column.

For example, the following pattern simply binds the source

column AIRLINE to the lowercase variable ?airline: ?airline

Advanced Usage by Data Source Type 310

Option Type Description

("AIRLINE").

Note
For FileSource, periods (.), forward slashes (/), and

brackets ([]) are parsed as path notation. Therefore, if a

source column name includes any of those characters

they must be escaped in the binding. Use two backslashes

(\\) as an escape character. For example, if a column

name is average/day, the variable and binding pattern
could be written as ?averagePerDay

("average\\/day").

datatype URI The datatype is the data type to convert the column to. If you do
not specify a data type, the GDI infers the type. The GDI supports
the following types:

xsd:int, xsd:long, xsd:float, xsd:double,

xsd:boolean, xsd:time, xsd:dateTime, xsd:date,

xsd:duration, xsd:dayTimeDuration,

xsd:yearMonthDuration, xsd:gMonthDay,

xsd:gMonth, xsd:gYearMonth, xsd:anyURI

datetime_
format

string This option is used to specify the format to use for date and time
data types. The GDI supports Java date and time formats. Specify
days as "d," months as "M," and years as "y." For the time, specify
"H" for hours, "m" for minutes, and "s" for seconds. For example,
"yyyyMMdd HH:mm:ss" or "ddMMMyy" to display date values
such as "01JAN19."

Note

Advanced Usage by Data Source Type 311

Option Type Description

The GDI's default base year is 2000. If the source data has
years with only two digits, such as 02-04-99, the GDI

prepends 20 to the digits. The value 02-04-99 is parsed
to 02-04-2099. To specify an alternate base year to use

for two-digit values, you can include the notation ^nnnn

(e.g., ^1900) in the format value. For example, to set

the base year to 1900 instead of 2000, use a format value

such as xsd:date "dd-MMM-yy^1900" or xsd:date

"dd-MMM-yy^1990". When one of those values is

specified, 02-04-99 is parsed to 02-04-1999.

Hierarchical Bindings and Arrays

When configuring the mapping variables in a query, the GDI provides syntax for unpacking XML

files with nested objects and arrays. One way to express hierarchies in queries is to use brackets ([

]) to group objects into binding trees. For example, the WHERE clause snippet below organizes

mapping variable objects into an hourly/data hierarchy by nesting the ?data patterns inside the

?hourly [] tree:

WHERE

{

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

?data a s:FileSource;

s:url "/mnt/data/xml/weather.xml" ;

?latitude (xsd:double) ;

?longitude (xsd:double) ;

?timezone (xsd:string) ;

?hourly

[

?data

[

Advanced Usage by Data Source Type 312

?time (xsd:long) ;

?rainProbability ("precipProbability" xsd:double) ;

?temperature (xsd:double) ;

?feelsLike ("apparentTemperature" xsd:double) ;

?windSpeed (xsd:double) ;

] ;

] .

}

}

When constructing object binding trees, if you choose to introduce the hierarchy with a variable

name that is not an exact match to the source label, include a selector property to list the value from
the source. For example, in the WHERE clause snippet below, s:selector is included to select

eventHeader in the source as ?event in the query and statLocation as ?location.

WHERE

{

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

?data a s:FileSource ;

s:url "/mnt/data/xml/part_1.xml" ;

?event

[

s:selector "eventHeader" ;

?eventId (xsd:string) ;

?eventName (xsd:string) ;

?eventVersion (xsd:string) ;

?eventTime (xsd:dateTime) ;

] ;

?location

[

s:selector "statLocation" ;

?locationId (xsd:string) ;

?lineNo (xsd:int) ;

?statNo (xsd:int) ;

?statId (xsd:int) ;

] .

}

}

Advanced Usage by Data Source Type 313

As an alternative to grouping objects in binding trees, the selector property also supports using dot
notation to specify paths. For example, the WHERE clause snippet below rewrites the first example

query to express the same hourly/data hierarchy as a path in the s:selector value:

WHERE

{

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

?data a s:FileSource;

s:url "/mnt/data/xml/weather.xml" ;

?latitude (xsd:double) ;

?longitude (xsd:double) ;

?timezone (xsd:string) ;

s:selector: "hourly.data" ;

?time (xsd:long) ;

?rainProbability ("precipProbability" xsd:double) ;

?temperature (xsd:double) ;

?feelsLike ("apparentTemperature" xsd:double) ;

?windSpeed (xsd:double) .

}

}

Query Examples

The following example query ingests data from an XML file that contains hierarchies.

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX fmcsa: <http://census.gov/ontologies/FMCSA#>

INSERT {

GRAPH ${targetGraph} {

}

}

${usingSources}

WHERE {

SERVICE <http://cambridgesemantics.com/services/DataToolkit> {

?data a s:FileSource ;

s:url "file:///opt/shared/data/xml/define.xml" ;

Advanced Usage by Data Source Type 314

?ItemGroupDef [

?OID (xsd:string) ;

?Name (xsd:string) ;

?Repeating (xsd:string) ;

?IsReferenceData (xsd:string) ;

?Purpose (xsd:string) ;

?Label (xsd:string) ;

?Structure (xsd:string) ;

?DomainKeys (xsd:string) ;

?Class (xsd:string) ;

?ArchiveLocationID (xsd:string) ;

?Comment (xsd:string) ;

?ItemRef [

?ItemOID (xsd:string) ;

?OrderNumber (xsd:int) ;

?Mandatory (xsd:string) ;

] ;

] .

}

}

Querying Parquet and SAS Files

This topic provides details about the structure to use when writing GDI queries to read or ingest data

from Parquet and SAS files. It also includes example queries that may be useful as a starting point

for writing your own GDI queries.

Note
Loading parquet files from Amazon S3 is not supported. Amazon does not provide a VFS

driver that supports random access reads, which are necessary for reading parquet files.

l Query Syntax

l Query Examples

Advanced Usage by Data Source Type 315

Query Syntax

The following query syntax shows the structure of a GDI query for Parquet and SAS sources. The

clauses, patterns, and placeholders that are links are described below.

PREFIX Clause

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX anzo: <http://openanzo.org/ontologies/2008/07/Anzo#>

PREFIX zowl: <http://openanzo.org/ontologies/2009/05/AnzoOwl#>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

Result Clause

{

[GRAPH ${targetGraph} {]

triple_patterns

[}]

}

[${usingSources}]

WHERE

{

SERVICE Clause: Include the following service call when reading or inserting data.

SERVICE [TOPDOWN] <http://cambridgesemantics.com/services/DataToolkit>

View SERVICE Clause: Or use the service call below when constructing a view.

SERVICE <http://cambridgesemantics.com/services/DataToolkitView>(${targetGraph})

{

?data a s:FileSource ;

s:url "string" ;

[s:options [file_storage_connection_options] ;]

[s:pattern "string" ;]

[s:maxDepth int ;]

[s:format [source_format_options ;] ;]

[s:mimetype "string" ;]

[s:username "string" ;]

[s:password "string" ;]

Advanced Usage by Data Source Type 316

[s:timeout int ;]

[s:batching boolean | int ;]

[s:paging [pagination_options ;]

[s:concurrency int | [list_of_properties] ;]

[s:rate int | "string" ;]

[s:locale "string" ;]

[s:sampling int ;]

[s:selector "string" | [list] ;]

[s:model "string" ;]

[s:key ("string") ;]

[s:reference [s:model "string" ; s:using ("string")]

[s:formats [datatype_formatting_options] ;]

[s:normalize boolean | [normalization_rules] ;]

[s:count ?variable ;]

[s:offset int ;]

[s:limit int ;]

Mapping variables and hierarchical bindings

?mapping_variable (["binding"] [datatype] ["datetime_format"]) ;

... ;

.

Additional clauses such as BIND, VALUES, FILTER

}

}

Option Type Description

PREFIX Clause N/A The PREFIX clause declares the standard and custom prefixes for
GDI service queries. Generally, queries include the prefixes from
the query template (or a subset of them) plus any data-specific
declarations.

Result Clause N/A The result clause defines the type of SPARQL query to run and the
set of results to return, i.e., whether you want to read (SELECT or
CONSTRUCT) from the source or ingest the data into Anzo
(INSERT).

GRAPH
${targetGraph}

N/A Include the GRAPH keyword and target graph parameter
${targetGraph} when writing an INSERT query to ingest data
into a graphmart. Anzo automatically populates the query with the

Advanced Usage by Data Source Type 317

Option Type Description

appropriate target URIs when the query runs.

${usingSource
s}

N/A Include the source graph parameter ${usingSources} when
writing a "topdown" query that passes values from the data that is
in the graphmart to the data source. Anzo automatically populates
the query with the appropriate FROM clauses when the query
runs. When passing literal values to the remote source, you do not
need to include the source graph parameter. The SERVICE
Clause description below includes more information about passing
input to data sources.

SERVICE
Clause

N/A Include the SERVICE call SERVICE [TOPDOWN]

<http://cambridgesemantics.com/services/DataTool

kit> to invoke the GDI service when you are running a SELECT,
INSERT, or CONSTRUCT query that is not creating a view. When
writing a CONSTRUCT query in a View Step, use the
DataToolkitView service call, as described below in View
SERVICE Clause.

Include the optional TOPDOWN keyword when you want to pass

input values from the graphmart to the data source. When you

include TOPDOWN in the service call, it indicates that the rest of

the query produces values to send to the source. In this case,

the GDI makes repeated calls to pass in each of the specified

values and retrieve the data that is based on those values.

View SERVICE
Clause

N/A When writing a CONSTRUCT query that creates a view of the data
(usually in a View Step), include the following SERVICE call:
SERVICE

<http://cambridgesemantics.com/services/DataTool

kitView>(${targetGraph}). Using the DataToolkitView
call optimizes query execution because it tells the GDI to inspect

Advanced Usage by Data Source Type 318

Option Type Description

the query and determine which filters to push to the data source. It
also limits the result set and retrieves only the data that is needed,
i.e., the source data is fully mapped but all of the mapped data is
not necessarily returned.

url string This property specifies the file system location of the source file or
directory of files. When specifying a directory (such as s:url
"/opt/shared-files/loads/" or s:url "gs://shared-

files/my-files/"), the GDI loads all of the file formats it
recognizes. To specify a directory but limit the number or type of
files that are read, you can include the pattern and/or maxDepth
properties.

options RDF list If additional connection information needs to be provided to access
the file storage system, include the options property to list any
storage-specific connection parameters. See File Storage
Connection Options for information about the supported properties
for each storage type.

pattern string This property is used to specify a wildcard pattern for matching file
names. For example, s:pattern "common_

prefix*.parquet". You can include one s:pattern property
per FileSource. The GDI supports Unix file globbing syntax outside
of parentheses. Within parentheses, full Java regular expression
language is supported. For example, including s:pattern
"data/**/customer_*.parquet" tells the GDI to load all files
that match the pattern "customer_*.parquet" from any number of
subdirectories under the data directory. Similarly s:pattern "

(\d+)/transaction_*.xpt" tells the GDI to load all files that
match the pattern "transaction_*.xpt" in all subdirectories.

maxDepth int This property can be used to limit the directory traversal depth. By

Advanced Usage by Data Source Type 319

Option Type Description

default, when s:url specifies a directory (and a s:pattern that
limits that traversal depth is not specified), all subdirectories are
processed. To process only the files in the top level directory, set
maxDepth to 0 (s:maxDepth 0). To process the files in the top
level directory plus the first-level subdirectories, set maxDepth to 1
(s:maxDepth 1), and so on.

format RDF list You can include the format property to add parameters that
describe the source files. See File Source Format Options for
details about the supported parameters.

mimetype string This property can be included to specify the MIME type of the data.

username string If authentication is required to access the source, include this
property to specify the user name.

password string This property lists the password for the given username.

timeout int This property can be used to specify the timeout (in milliseconds)
to use for requests against the source. For example, s:timeout
5000 configures a 5 second timeout.

batching boolean
or int

This property can be used to disable batching, or it can be used to
change the default the batch size. By default, batching is set to
5000 (s:batching 5000). To disable batching, you can include
s:batching false in the query. Typically users do not change
the batching size. However, it can be useful to control the batch
size when performing updates. To configure the size, include
s:batching int in the query. For example, s:batching
3000.

paging RDF list This property can be used to configure paging so that the GDI can

Advanced Usage by Data Source Type 320

Option Type Description

access large amounts of data across a number of smaller
requests. For details about the paging property, see Paginating
Requests.

concurrency int or
RDF list

This property can be included to configure the maximum level of
concurrency for the query. The value can be an integer, such as
s:concurrency 8. If the value is an integer, it configures a
maximum limit on the number of slices that can execute the query.
For finer-grained control over the number of nodes and slices to
use, concurrency can also be included as an object with limit,
nodes, and/or executorsPerNode properties. For example, the
following object configures a concurrency model that allows a
maximum of 24 executors distributed across 4 nodes with 8
executors per node:

s:concurrency [

s:limit 24 ;

s:nodes 4 ;

s:executorsPerNode 8 ;

] ;

rate int or
string

This property can be included to control the frequency with which a
request is sent to the source. The limit applies to the number of
requests a single slice can make. If you specify an integer for the
rate, then the value is treated as the maximum number of requests
to issue per minute. If you specify a string, you have more flexibility
in configuring the rate. The sample values below show the types of
values that are supported:

s:rate "90/minute" ;

s:rate "90 per minute" ;

s:rate "200000 every week" ;

s:rate "10000 every 6 hours" ;

Advanced Usage by Data Source Type 321

Option Type Description

To enforce the rate limit, the GDI introduces a sleep between

requests that is equal to the rate delay. The more executing

slices, the longer the rate delay needs to be to enforce the limit

in aggregate.

Given the example of s:rate "90/minute", the GDI would

optimize the concurrency and only use 1 slice for execution with

a rate delay of 666ms between requests. If s:rate

"240/minute", the GDI would use 3 executors with a rate

delay of 750ms between requests.

locale string This property can be used to specify the locale to use when
parsing locale-dependent data such as numbers, dates, and times.

sampling int This property can be used to configure the number of records in
the source to examine for data type inferencing.

selector string or
RDF list

This property can be used as a binding component to identify the
path to the source objects. For example, s:selector
"Sales.SalesOrderHeader" targets the SalesOrderHeader
table in the Sales schema. For more information about binding
components and the selector property, see Using Binding Trees
and Selector Paths.

model string This property defines the class (or table) name for the type of data
that is generated from the specified data source. For example,
s:model "employees". Model is optional when querying a
single source. If your query targets multiple sources, however, and
you want to define resource templates (primary keys) and object
properties (foreign keys), you must specify the model value for
each source.

Advanced Usage by Data Source Type 322

Option Type Description

key string This property can be used to define the primary key column for the
source file or table. This column is leveraged in a resource
template for the instances that are created from the source. For
example, s:key ("EMPLOYEE_ID"). For more information
about key, see Data Linking Options.

reference RDF list This property can be used to specify a foreign key column. The
reference property is an RDF list that includes the model property
to list the target table and a using property that defines the foreign
key column. For more information about reference, see Data
Linking Options.

formats RDF list To give users control over the data types that are used when
coercing strings to other types, this property can be included in
GDI queries to define the desired types. In addition, it can be used
to describe the formats of date and time values in the source to
ensure that they are recognized and parsed to the appropriate
date, time, and/or dateTime values. For details about the formats
property, see Data Type Formatting Options.

normalize RDF list To give users control over the labels and URIs that are generated,
the GDI offers several options for normalizing the model and/or the
fields that are created from the specified data source(s). For
details about the normalize property, see Model Normalization
Options.

count variable If you want to turn the query into a COUNT query, you can include
this property with a ?variable to perform a count. For example,
s:count ?count.

offset int This property can be used to offset the data that is returned by a
number of rows.

Advanced Usage by Data Source Type 323

Option Type Description

limit int You can include this property to limit the number of results that are
returned. s:limitmaps to the SPARQL LIMIT clause.

mapping_
variable

variable The mapping variables, in ?mapping_variable
(["binding"] [datatype] ["datetime_format"])

format, define the triple patterns to output. When the specified
?variablematches the source column name, the GDI uses the
variable as the source data selector. If you specify an alternate
variable name, a binding needs to be specified to map the new
variable to the source. You also have the option to transform the
data using the datatype and datetime_format options.

binding string The binding is a literal value that binds a ?mapping_variable to a
source column. If you specify a ?variable that matches the source
column name, then that variable name is the data selector and it is
not necessary to specify a binding. If you specify an alternate
variable name or there is a hierarchical path to the source column,
then the binding is needed to map the new variable to that source
column.

For example, the following pattern simply binds the source

column AIRLINE to the lowercase variable ?airline: ?airline

("AIRLINE").

Note
For FileSource, periods (.), forward slashes (/), and

brackets ([]) are parsed as path notation. Therefore, if a

source column name includes any of those characters

they must be escaped in the binding. Use two backslashes

(\\) as an escape character. For example, if a column

name is average/day, the variable and binding pattern

Advanced Usage by Data Source Type 324

Option Type Description

could be written as ?averagePerDay

("average\\/day").

datatype URI The datatype is the data type to convert the column to. If you do
not specify a data type, the GDI infers the type. The GDI supports
the following types:

xsd:int, xsd:long, xsd:float, xsd:double,

xsd:boolean, xsd:time, xsd:dateTime, xsd:date,

xsd:duration, xsd:dayTimeDuration,

xsd:yearMonthDuration, xsd:gMonthDay,

xsd:gMonth, xsd:gYearMonth, xsd:anyURI

datetime_
format

string This option is used to specify the format to use for date and time
data types. The GDI supports Java date and time formats. Specify
days as "d," months as "M," and years as "y." For the time, specify
"H" for hours, "m" for minutes, and "s" for seconds. For example,
"yyyyMMdd HH:mm:ss" or "ddMMMyy" to display date values
such as "01JAN19."

Note
The GDI's default base year is 2000. If the source data has
years with only two digits, such as 02-04-99, the GDI

prepends 20 to the digits. The value 02-04-99 is parsed
to 02-04-2099. To specify an alternate base year to use

for two-digit values, you can include the notation ^nnnn

(e.g., ^1900) in the format value. For example, to set

the base year to 1900 instead of 2000, use a format value

such as xsd:date "dd-MMM-yy^1900" or xsd:date

"dd-MMM-yy^1990". When one of those values is

Advanced Usage by Data Source Type 325

Option Type Description

specified, 02-04-99 is parsed to 02-04-1999.

Query Examples

The following query inserts data from a Parquet file on the shared file system and uses a binding

tree to express hierarchical data.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX anzo: <http://openanzo.org/ontologies/2008/07/Anzo#>

PREFIX zowl: <http://openanzo.org/ontologies/2009/05/AnzoOwl#>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

INSERT {

GRAPH ${targetGraph} {

?s ?p ?o

}

}

WHERE {

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

?data a s:FileSource ;

s:url "file:///opt/shared/data/parquet/part-c000.snappy.parquet" ;

s:model "BID" ;

?bidid (xsd:string) ;

?cur (xsd:string) ;

?id (xsd:string) ;

?nbr (xsd:long) ;

?seatbid [

?seat (xsd:string) ;

?group (xsd:long) ;

?bid [

?adid (xsd:string) ;

?cid (xsd:string) ;

Advanced Usage by Data Source Type 326

?crid (xsd:string) ;

?dealid (xsd:string) ;

?h (xsd:long) ;

?w xsd:long ;

?bundle (xsd:string) ;

?price (xsd:double) ;

] ;

] .

}

}

The query below reads data from a Parquet file and filters out data by zip code.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX anzo: <http://openanzo.org/ontologies/2008/07/Anzo#>

PREFIX zowl: <http://openanzo.org/ontologies/2009/05/AnzoOwl#>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

SELECT *

WHERE {

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

?data a s:FileSource ;

s:url "file:///opt/shared/data.gov/FMCSA_CENSUS1_2023Nov.parquet" ;

?DOT_NUMBER (xsd:string) ;

?LEGAL_NAME (xsd:string) ;

?CARRIER_OPERATION (xsd:string) ;

?HM_FLAG (xsd:string) ;

?PC_FLAG (xsd:string) ;

?PHY_STREET (xsd:string) ;

?PHY_CITY (xsd:string) ;

?PHY_STATE (xsd:string) ;

?PHY_ZIP (xsd:string) ;

?PHY_COUNTRY (xsd:string) .

FILTER(?PHY_ZIP = "78735" || ?PHY_ZIP = "77040" || ?PHY_ZIP = "78705")

}

}

Advanced Usage by Data Source Type 327

File Source Format Options

For file sources, you can include the format property to list additional parameters that describe the
source. The supported format parameters are described below.

s:format [

s:delimiter "string" ;

s:headers boolean ;

s:columns "string" ;

s:start int ;

s:skip int ;

s:comment "string" ;

s:quote "string" ;

s:escape "string" ;

s:maxColumns int ;

s:segment boolean ;

] ;

Option Type Description

delimiter string This property specifies the string that is used to delimit columns
in the file(s). For example, s:delimiter "|".

headers boolean This property indicates whether or not the file(s) include
headers. By default the headers value is true (s:headers
true). For files that do not have headers, specify s:headers
false.

columns string If you want the GDI to target only certain columns in the source
file(s), you can include the columns property to list the names
of columns to include. The value is a single string that is a
comma-separated list. For example, s:columns
"employee_id, name, address, start date,

title".

start int If the file includes headers that take up more than one row,
include the start property to specify the row number where the

Advanced Usage by Data Source Type 328

Option Type Description

data starts to exclude headers. For example, s:start 8.

skip int This property can be used to specify the number of
rows/records to skip before reading or ingesting the file(s). By
default, skip is set to 0 (s:skip 0).

comment string This property specifies the string that is used as the comment
character in the file(s). The comment value is set to # by default
(s:comment "#").

quote string This property is used to specify the string that is used as the
quote character.

escape string This property is used to specify the escape string that is used in
the file(s). For example, s:escape "\".

maxColumns int This property can be used to set a limit on the maximum number
of columns to read or ingest. The maxColumns property is set to
-1 (unlimited) by default (s:maxColumns -1).

segment boolean This property indicates whether or not the file(s) can be
segmented (partitioned). The default value is s:segment
true. If you have CSV files that contain embedded new lines,
include s:segment false in the query as those files cannot
be segmented.

File Storage Connection Options

If you are querying a FileSource and additional connection information needs to be provided to
access the file storage system, include the options property in the query and define the necessary

Advanced Usage by Data Source Type 329

storage-specific connection parameters. The parameters that the GDI supports for each type of

storage system are pulled directly from the Java API for that system. The supported properties for

each storage type are listed below.

l Amazon S3

l FTP & FTPS

l Google Cloud Storage

l HDFS

l SFTP

l WebDAV

Amazon S3

Note
Loading parquet files from S3 is not supported. Amazon does not provide a VFS driver that

supports random access reads, which are necessary for reading parquet files.

s:options [

s:accessKey "string" ;

s:region "string" ;

s:secretKey "string" ;

s:serviceName "string" ;

s:sessionToken "string" ;

s:createBucket boolean ;

s:disableChunkedEncoding boolean ;

s:serverSideEncryption boolean ;

s:useHttps boolean ;

] ;

Option Type Description

accessKey string The accessKey property can be included to
specify the access key.

Advanced Usage by Data Source Type 330

Option Type Description

region string The region property can be included to specify
the region.

secretKey string The secretKey property can be included to
specify the secret key.

serviceName string For connections to AWS service endpoints, the
serviceName property can be included to
specify the service name.

sessionToken string The sessionToken property can be included to
specify the session token.

createBucket boolean Refer to the S3 API documentation.

disableChunkedEncoding boolean For increased performance, Amazon S3 requests
use chunked encoding by default. To disable
chunked encoding, you can include
s:disableChunkedEncoding true in the
query.

serverSideEncryption boolean Refer to the S3 API documentation.

useHttps boolean Refer to the S3 API documentation.

FTP & FTPS
s:options [

s:autodetectUtf8 boolean ;

s:connectTimeout int ;

s:controlEncoding "string" ;

s:dataTimeout int ;

Advanced Usage by Data Source Type 331

s:defaultDateFormat "string" ;

s:entryParser "string" ;

s:fileType "string" ;

s:passiveMode boolean ;

s:proxy "string" ;

s:recentDateFormat "string" ;

s:remoteVerification boolean ;

s:serverLanguageCode "string" ;

s:serverTimeZoneId "string" ;

s:shortMonthNames "string" ;

s:socketTimeout int ;

s:userDirIsRoot boolean ;

s:dataChannelProtectionLevel "string" ;

s:ftpsMode "string" ;

s:keyManager "string" ;

s:trustManager "string" ;

] ;

Option Type Description

autodetectUtf8 boolean For FTP connections, the autodetectUtf8
property can be included to indicate whether
the FTP server is set to UTF-8 mode or Auto-
detect encoding.

connectTimeout int For FTP connections, you can include the
connectTimeout property to specify the
maximum number of seconds to hold a
connection before timing out.

controlEncoding string Refer to the FTP API documentation.

dataTimeout int For FTP connections, you can include the
dataTimeout property to specify the
maximum number of seconds to transfer data
before timing out.

Advanced Usage by Data Source Type 332

Option Type Description

defaultDateFormat string Refer to the FTP API documentation.

entryParser string Refer to the FTP API documentation.

fileType string Refer to the FTP API documentation.

passiveMode boolean For FTP connections, the passiveMode
property can be included to indicate whether
the data transfer mode is passive or active. If
you use passive mode, set passiveMode to
true (s:passiveMode true).

proxy string If you are using an FTP proxy, include the
proxy property to specify the proxy connection
details.

recentDateFormat string Refer to the FTP API documentation.

remoteVerification boolean For FTP connections, the
remoteVerification property can be
included to indicate whether remote
authentication is enabled. If you use remote
authentication, set remoteVerification to true
(s:remoteVerification true).

serverLanguageCode string If the FTP server language is not set to English,
include the serverLanguageCode property
to specify the language code for the server. For
example, s:serverLanguageCode "ES".

serverTimeZoneId string For FTP connections, the
serverTimeZoneId property can be included

Advanced Usage by Data Source Type 333

Option Type Description

to specify the timezone ID for the server.

shortMonthNames string Refer to the FTP API documentation.

socketTimeout int For FTP connections, you can include the
socketTimeout property to specify the
maximum number of seconds to transfer data
before timing out.

userDirIsRoot boolean Refer to the FTP API documentation.

dataChannelProtectionLevel string For FTPS connections, the
dataChannelProtectionLevel property
specifies the Data Channel Protection Level for
the server.

ftpsMode string For FTPS connections, the ftpsMode property
specifies whether the FTPS is in implicit or
explicit mode.

keyManager string For FTPS connections, the keyManager
property specifies the KeyManager value for
making an SSL connection to the server.

trustManager string For FTPS connections, the trustManager
property specifies the TrustManager value for
the SSL connection to the server.

Advanced Usage by Data Source Type 334

Google Cloud Storage
s:options [

s:serviceAccountKey "string" ;

] ;

Option Type Description

serviceAccountKey string For connections to GCS, the serviceAccountKey
property can be included to specify the key for the service
account.

HDFS
s:options [

s:configName "string" ;

s:configPath "string" ;

s:configURL "string" ;

] ;

Option Type Description

configName string For connections to HDFS, the configName property can be
included to specify the name of the configuration file to read.

configPath string For connections to HDFS, the configPath property can be
included to list the path to the specified configuration file.

configURL string Refer to the HDFS API documentation.

Advanced Usage by Data Source Type 335

SFTP
s:options [

s:compression "string" ;

s:configRepository "string" ;

s:fileNameEncoding "string" ;

s:identityProvider "string" ;

s:identityRepositoryFactory "string" ;

s:keyExchangeAlgorithm "string" ;

s:knownHosts "string" ;

s:loadOpenSSHConfig boolean ;

s:preferredAuthentications "string" ;

s:sessionTimeout int ;

s:strictHostKeyChecking "string" ;

s:userInfo "string" ;

] ;

Option Type Description

compression string Refer to the SFTP API documentation.

configRepository string Refer to the SFTP API documentation.

fileNameEncoding string Refer to the SFTP API documentation.

identityProvider string Refer to the SFTP API documentation.

identityRepositoryFactory string Refer to the SFTP API documentation.

keyExchangeAlgorithm string For SFTP connections, you can include the
keyExchangeAlgorithm property to specify
the key exchange algorithm to use.

knownHosts string Refer to the SFTP API documentation.

Advanced Usage by Data Source Type 336

Option Type Description

loadOpenSSHConfig boolean For SFTP connections, the
loadOpenSSHConfig property indicates
whether to read the ~/.ssh/config file.

preferredAuthentications string For SFTP connections, the
preferredAuthentications property can be
included to specify the authentication order to
use.

sessionTimeout int For SFTP connections, you can include the
sessionTimeout property to specify the
maximum number of seconds to leave the
session open before timing out.

strictHostKeyChecking string For SFTP connections, you can include the
strictHostKeyChecking property to specify
how host keys are checked.

userInfo string Refer to the SFTP API documentation.

WebDAV
s:options [

s:creatorName "string" ;

s:versioning boolean ;

] ;

Option Type Description

creatorName string For WebDAV connections, the creatorName property can be
included to add a description of the creator of the resource.

Advanced Usage by Data Source Type 337

Option Type Description

versioning boolean Refer to the WebDAV API documentation.

Advanced Usage by Data Source Type 338

GDI Property Reference

This topic describes the Graph Data Interface (GDI) properties that are available to use in queries.

The first section describes the options that are available regardless of data source type, and the

second section describes the source-specific options.

l Universal Properties

l DbSource Properties

l FileSource Properties

l HttpSource Properties

l ElasticSource Properties

Universal Properties

The table below lists the properties that are valid in queries against all data source types.

Option Type Description

batching boolean or
int

This property can be used to disable batching, or it can be used
to change the default the batch size. By default, batching is set to
5000 (s:batching 5000). To disable batching, you can
include s:batching false in the query. Typically users do
not change the batching size. However, it can be useful to
control the batch size when performing updates. To configure
the size, include s:batching int in the query. For example,
s:batching 3000.

concurrency int or RDF
list

This property can be included to configure the maximum level of
concurrency for the query. The value can be an integer, such as
s:concurrency 8. If the value is an integer, it configures a
maximum limit on the number of slices that can execute the
query. For finer-grained control over the number of nodes and
slices to use, concurrency can also be included as an object with
limit, nodes, and/or executorsPerNode properties. For

GDI Property Reference 339

Option Type Description

example, the following object configures a concurrency model
that allows a maximum of 24 executors distributed across 4
nodes with 8 executors per node:

s:concurrency [

s:limit 24 ;

s:nodes 4 ;

s:executorsPerNode 8 ;

] ;

count variable If you want to turn the query into a COUNT query, you can
include this property with a ?variable to perform a count. For
example, s:count ?count.

errors boolean Controls whether the GDI ignores errors (such as query or file
errors) or stops processing the query when an error is
encountered. This property is set to true by default (s:errors
true). Processing stops when an error is encountered. To
ignore errors, you can include s:errors false.

formats RDF list To give users control over the data types that are used when
coercing strings to other types, this property can be included in
GDI queries to define the desired types. In addition, it can be
used to describe the formats of date and time values in the
source to ensure that they are recognized and parsed to the
appropriate date, time, and/or dateTime values. For details
about the formats property, see Data Type Formatting
Options.

key string This property can be used to define the primary key column for
the source file or table. This column is leveraged in a resource
template for the instances that are created from the source. For

GDI Property Reference 340

Option Type Description

example, s:key ("EMPLOYEE_ID"). For more information
about key, see Data Linking Options.

limit int You can include this property to limit the number of results that
are returned. s:limitmaps to the SPARQL LIMIT clause.

locale string This property can be used to specify the locale to use when
parsing locale-dependent data such as numbers, dates, and
times.

model string This property defines the class (or table) name for the type of
data that is generated from the specified data source. For
example, s:model "employees". Model is optional when
querying a single source. If your query targets multiple sources,
however, and you want to define resource templates (primary
keys) and object properties (foreign keys), you must specify the
model value for each source.

normalize boolean
and/or
RDF list

To give users control over the labels and URIs that are
generated, the GDI offers several options for normalizing the
model and/or the fields that are created from the specified data
source(s). For details about the normalize property, see Model
Normalization Options.

offset int This property can be used to offset the data that is returned by a
number of rows.

paging RDF list This property can be used to configure paging so that the GDI
can access large amounts of data across a number of smaller
requests. For details about the paging property, see Paginating
Requests.

GDI Property Reference 341

Option Type Description

password string This property lists the password for the given username.

rate int or string This property can be included to control the frequency with which
a request is sent to the source. The limit applies to the number of
requests a single slice can make. If you specify an integer for the
rate, then the value is treated as the maximum number of
requests to issue per minute. If you specify a string, you have
more flexibility in configuring the rate. The sample values below
show the types of values that are supported:

s:rate "90/minute" ;

s:rate "90 per minute" ;

s:rate "200000 every week" ;

s:rate "10000 every 6 hours" ;

To enforce the rate limit, the GDI introduces a sleep between

requests that is equal to the rate delay. The more executing

slices, the longer the rate delay needs to be to enforce the limit

in aggregate.

Given the example of s:rate "90/minute", the GDI would

optimize the concurrency and only use 1 slice for execution

with a rate delay of 666ms between requests. If s:rate

"240/minute", the GDI would use 3 executors with a rate

delay of 750ms between requests.

reference RDF list This property can be used to specify a foreign key column. The
reference property is an RDF list that includes the model
property to list the target table and a using property that defines
the foreign key column. For more information about reference,
see Data Linking Options.

sampling int This property can be used to configure the number of records in

GDI Property Reference 342

Option Type Description

the source to examine for data type inferencing.

selector string or
RDF list

This property can be used as a binding component to identify the
path to the source objects. For example, s:selector
"Sales.SalesOrderHeader" targets the SalesOrderHeader
table in the Sales schema. For more information about binding
components and the selector property, see Using Binding Trees
and Selector Paths.

strict boolean This property can be used to force the GDI to limit the data to
strictly what is stated in the query. For example, when ingesting
data from a CSV file, you can include s:strict true on the
s:FileSource to ensure that the GDI only ingests columns for
which a variable binding exists in the query. In addition, this
property can be included in s:formats to control the automatic
data type conversion feature (as described in Data Type
Formatting Options). The default value is false.

timeout int This property can be used to specify the timeout (in milliseconds)
to use for requests against the source. For example,
s:timeout 5000 configures a 5 second timeout.

url string This property specifies the URL for the data source, such as the
database URL, Elasticsearch URL, or HTTP endpoint URL. For
file-based sources, the url property specifies the file system
location of the source file or directory of files. When specifying a
directory (such as s:url "/opt/shared-files/loads/"),
the GDI loads all of the file formats it recognizes. To specify a
directory but limit the number or type of files that are read, you
can include the pattern and/or maxDepth properties.

Important

GDI Property Reference 343

Option Type Description

For security, it is a best practice to reference connection

information (such as the url, username, and password)

from a Query Context so that the sensitive details are

abstracted from any requests. In addition, using a Query

Context makes connection details reusable across

queries. See Using Query Contexts for more

information. For example, the triple patterns below

reference keys from a Query Context:

?data a s:DbSource ;

s:url "{{@db.eca4bf...3ff9a.url}}" ;

s:username "{{@db.eca4bf...3ff9a.user}}"

;

s:password "

{{@db.eca4bf...3ff9a.password}}" ;

username string If authentication is required to access the source, include this
property to specify the user name.

DbSource Properties

The table below lists the properties that are available for queries against database data sources.

For more information about database sources, see Querying a Database Source.

Option Type Description

database string This property can be used to specify the database to target
in the source if the database is not listed in the s:url or
s:selector strings.

driver string This property can be included to specify the JDBC driver to

GDI Property Reference 344

Option Type Description

use.

orderBy string,
variable,
list

You can include this property to order the result set by a
field name, a bound variable, or a list of names or bound
variables.

maxConnections int This property can be used to set a limit on the maximum
number of active connections to the source. For example,
s:maxConnections 16 sets the limit to 16 connections.
The default value is 10.

partitionBy string,
variable,
list

The GDI attempts to partition queries automatically across
the available cores (slices) in AnzoGraph. To determine
how to partition the query, the GDI uses metadata from the
source database. It looks for any column in an index,
preferring the primary key column if it is interpolable.
However, it only considers the first column in any index on
the table. After determining the partition column, the GDI
does a MIN/MAX on the column as well as a basic sizing
query. To specify which column or columns the GDI should
partition on, you can include the partitionBy property in
the query. The property supports a list of source field
names, bound variables, or the object s:auto, which
forces the GDI to partition the data when the source does
not define partitioning metadata.

property RDF list This property can be included to list any JDBC driver-
specific connection properties. To incorporate property,
use the following syntax:

s:property [

s:name "custom_driver_property_name" ;

GDI Property Reference 345

Option Type Description

s:value "custom_value"

]

query string If you want to access the source data by running an SQL
query, you can include this property to specify the query
string to run. The language does not have to be SQL if the
source supports another language. However, some GDI
features where the query is dynamically altered may not
work with a non-SQL language. Including
{{?variable}} substitutions is supported within
s:query strings.

Important
If you include s:query, you must also specify table

and partitionBy. Specify the table name in

s:table and the column to partition the table on in

s:partitionBy. If the table and partition column

are not specified, the GDI will not partition the query

and query execution may fail or perform very

poorly.

schema string This property can be included to specify the target schema
to query. If you include s:schema "schema_name"

without specifying s:table (described below) or
s:query, all tables in the schema are queried.

table string This property can be included to specify the target table or
tables for the query.

GDI Property Reference 346

FileSource Properties

The table below lists the properties that are available for queries against file-based data sources.

For more information about file sources, see Querying a File Source.

Option Type Description

format RDF list You can include the format property to add parameters that describe
the source files. See File Source Format Options for details about the
supported parameters.

maxDepth int This property can be used to limit the directory traversal depth. By
default, when s:url specifies a directory (and a s:pattern that
limits that traversal depth is not specified), all subdirectories are
processed. To process only the files in the top level directory, set
maxDepth to 0 (s:maxDepth 0). To process the files in the top level
directory plus the first-level subdirectories, set maxDepth to 1
(s:maxDepth 1), and so on.

mimetype string This property can be included to specify the MIME type of the data. If
you are querying TSV files that do not have a .tsv file extension,
include the mimetype property with a value of text/tsv
(s:mimetype "text/tsv").

options RDF list If additional connection information needs to be provided to access
the file storage system, include the options property to list any
storage-specific connection parameters. See File Storage Connection
Options for information about the supported properties for each
storage type.

pattern string This property can be used to specify a wildcard pattern for matching
file names. For example, s:pattern "common_prefix*.csv".
You can include one s:pattern property per FileSource. The GDI
supports Unix file globbing syntax outside of parentheses. Within
parentheses, full Java regular expression language is supported. For

GDI Property Reference 347

Option Type Description

example, including s:pattern "data/**/customer_*.csv"

tells the GDI to load all files that match the pattern "customer_*.csv"
from any number of subdirectories under the data directory. Similarly
s:pattern "(\d+)/transaction_*.csv" tells the GDI to load
all files that match the pattern "transaction_*.csv" in all subdirectories.

HttpSource Properties

The table below lists the properties that are available for queries against HTTP data sources. For

more information about HTTP sources, see Querying an HTTP Source.

Option Type Description

authorization RDF list This property specifies the type of authorization to use and the
values for authentication. The options are BearerToken,
AWSSignature, or BasicAuth.

s:authorization [a s:BearerToken |

s:AWSSignature | s:BasicAuth]

AWSSignature RDF list For authorization to AWS service endpoints, specify this
property and include the appropriate authentication properties
from the list below:

l accessKey: Include this property to specify the AWS

access key.

l region: Include this property to specify the AWS

region.

l secretKey: Include this property to specify the AWS

secret key.

l serviceName: Include this property to specify the AWS

service name.

GDI Property Reference 348

Option Type Description

l sessionToken: Include this property to specify the
AWS session token.

s:authorization [

a s:AWSSignature ; s:accessKey "string" ;

s:region "string" ; s:secretKey "string" ;

s:serviceName "string" ; s:sessionToken

"string" ;

]

BasicAuth RDF list Specify this property when basic authentication is used, and
include the username and password properties.

s:authorization [a s:BasicAuth ;

s:username "string" ;

s:password "string" ;

]

BearerToken string Specify this property when a bearer token is used for
authentication, and include the token property.

s:authorization [a s:BearerToken ;

s:token "string"

]

content string or
RDF list

This property can be included to send content to the source in
the body of the request. For example, content can be a
SPARQL query, JSON arrays, or a list of key-value pairs.
Content can also be configured with an inline object (blank
node) that gets translated to JSON. For more information, see
Mapping the Content Property to JSON.

GDI Property Reference 349

Option Type Description

contentType string Include this property to specify the content type of the body of
the request. For example, s:contentType
"application/sparql-query" or s:contentType
"application/json".

encoding string When targeting a file, you can include this property to specify
the character encoding used by the file. The default value is
s:encoding "utf8".

form RDF list To send data to the HTTP endpoint, you can use this property
to post the data. Form is a list of name-value pairs. When
including s:form, you must also include s:contentType
"multipart/form-data". The GDI sends the form object as
an application/x-www-form-urlencoded string that
contains the specified parameters. See Example form
Parameter Usage in Querying an HTTP Source for sample
usage.

format RDF list If the data is file-based, you can include the format property to
add parameters that describe the source. See File Source
Format Options for details about the supported parameters.

header RDF list You can use this property to specify name-value pairs to
include as headers in the request. For example:

s:header [s:name "Accept" ; s:value

"application/json"]

If you are creating a view, you can include variables in the

s:header list. When another query is run against a view with

variables, that query can map the variables through the view

by including predicates in the CONSTRUCT clause.

GDI Property Reference 350

Option Type Description

method string You can include this property to specify the HTTP method. For
example, s:method "GET" or s:method "POST".

mimetype string You can include this property to specify the MIME type of the
source. For example, s:mimetype "text/html".

orderBy string,
variable,
list

You can include this property to order the result set by a field
name, a bound variable, or a list of names or bound variables.

parameter RDF list You can include this property to list any URL parameters as
name-value pairs. For example, the s:parameter property
below adds format to return results in CSV format and the
named-graph-uri parameter to target a specific layer in a
graphmart.

s:parameter [s:name "format" ; s:value "csv"

] ,

[s:name "named-graph-uri" ;

s:value

"http://cambridgesemantics.com/Layer/d541..."

]

If you are creating a view, you can include variables in the

s:parameter list. When another query is run against a view

with variables, that query can map the variables through the

view by including predicates in the CONSTRUCT clause.

partitionBy string,
variable,
list

The GDI attempts to partition queries automatically across the
available cores (slices) in AnzoGraph. To determine how to
partition the query, the GDI uses metadata from the source. It
looks for any column in an index, preferring the primary key

GDI Property Reference 351

Option Type Description

column if it is interpolable. However, it only considers the first
column in any index on the table. After determining the partition
column, the GDI does a MIN/MAX on the column as well as a
basic sizing query. To specify which column or columns the GDI
should partition on, you can include the partitionBy property
in the query. The property supports a list of source field names,
bound variables, or the object s:auto, which forces the GDI to
partition the data when the source does not define partitioning
metadata.

proxy string or
RDF list

Include this property to specify proxy information if a proxy is
used. The value can be a string, such as s:proxy "host_

url:port_number", or an RDF list that includes host and
port properties, such as s:proxy [s:host "host_url"

; s:port port_number].

trust string Include this property to set the level of trust for the source's SSL
certificate. The value can be either "system" or "all".

ElasticSource Properties

The table below lists the properties that are available for queries against Elasticsearch data

sources. For more information about Elasticsearch sources, see Querying an Elasticsearch Source.

Option Type Description

aggregations object You can include this property to calculate aggregations over the
specified bindings. For information about aggregations, see
Aggregations in the Elasticsearch documentation.

config string To enable you to use explicit mappings, you can include this
property to specify the URL to the index configuration file to
employ. For example, es:config

GDI Property Reference 352

https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations.html

Option Type Description

"/opt/shared/elastic/mapping.json".

document string This property lists the document(s) to search.

field string or
variable

This property defines the field to operate on. The value can be a
string or bound variable.

highlight RDF list You can include this property to define how results are
highlighted. For information about the available properties, see
Highlighting Elasticsearch Results.

html boolean This property controls whether to output HTML for highlighted
results. Defaults to true.

index string This property can be included to specify the indexes to search.
Specify multiple indexes in a comma-separated list. For
example, es:index "projectA_mar", "projectA_apr"

;.

minScore float This property defines the minimum score for matching
documents. Documents with a lower score are not included in
the search results.

query string or
RDF list

This property defines the query to execute. The value can be a
string or a query object that maps to the Elasticsearch Query
DSL. To generate the final query, the GDI combines es:query
with any filters it can push to the Elasticsearch DSL. For more
information about the query property and mapping
Elasticsearch filters to SPARQL FILTER clauses, see Query
DSL and Filter Mapping.

routing string This property can be included to route a document to a specific

GDI Property Reference 353

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html

Option Type Description

shard or to limit the search to a particular shard.

searchAfter RDF list You can include this property to define the key values to start
searching from.

size int This property maps to the size parameter in the Elasticsearch
Search API and configures the batch size or maximum number
of hits to return in a single call. Defaults to 10 and typically does
not need to be changed.

source boolean or
RDF list

This property can be included to specify the source data to
include in results. The value can be a boolean, list of fields, or a
list of variable bindings. When true, all source data is returned.
When false, no source data is returned.

url string The Elasticsearch endpoint URL.

GDI Property Reference 354

Onboard Unstructured Data

Anzo processes unstructured data using an Anzo Distributed Unstructured cluster and

Elasticsearch. Configurable text analytics and natural language processing (NLP) pipelines find and

extract data and convert it to the graph data model. Anzo can process all common file types such as

Office documents, PDFs, web pages, and email messages, and can analyze text within Excel,

databases, and knowledgebases, or XML columns, properties, and fields. Anzo finds, analyzes,

extracts, and ingests concepts, entities, sentiment, topics, classifications, events, facts, and

thousands of types of relationships.

In this section:
Unstructured Onboarding Process Overview 356

Creating an Unstructured Pipeline 358

Running an Unstructured Pipeline 379

Pipeline Settings Reference 381

Annotator Settings Reference 387

Onboard Unstructured Data 355

Unstructured Onboarding Process Overview

Anzo onboards unstructured data through pipelines that run in a distributed environment where

a cluster of worker nodes process the incoming documents and generate output artifacts. This topic

provides an overview of the Anzo Distributed Unstructured (DU) pipeline process and infrastructure.

The diagram below provides a high level overview of the Anzo platform architecture with integration

of DU and Elasticsearch. The description below the diagram describes the unstructured data

onboarding process and resulting artifacts.

When an unstructured pipeline is run, a crawler service streams data to a pipeline service. The

pipeline service reads the stream of files and constructs the appropriate request payloads—one

request per document to process. Anzo sends the requests to the DU leader instance, and the

leader queues the requests and distributes them to the worker instances to process in parallel.

When each worker processes a document, it creates a temporary output artifact on the shared file

system. The artifact includes the following items:

l An RDF file that describes the text annotations and general metadata about the processed

document.

l A binary store artifact for Anzo.

l A JSON artifact that contains a reference to the extracted text of the document. Elasticsearch

uses this artifact to generate the document index.

Unstructured Onboarding Process Overview 356

When the DU workers have processed all of the documents, Anzo completes the following post-

processing steps:

l Consolidate the RDF artifacts from the workers and create a file-based linked data set (FLDS)

for loading to AnzoGraph.

l Read the JSON artifacts and instruct the Elasticsearch server to build an index with the text

extracted from the documents. A snaphsot of the index is saved on the file system with the

FLDS. Any time a graphmart that includes that FLDS is loaded to an AnzoGraph instance,

Anzo loads the corresponding snapshot into the Elasticsearch server that is associated with

the AnzoGraph connection.

When the post-processing is finished, the pipeline service finalizes the FLDS metadata to store in its

catalog. The new unstructured data set becomes available in the Datasets catalog, and it can be

added to a graphmart and loaded to AnzoGraph for use in Hi-Res Analytics dashboards.

Unstructured Onboarding Process Overview 357

Creating an Unstructured Pipeline

Follow the instructions below to create and run a new unstructured pipeline.

1. Create the Pipeline

2. Add Crawlers to the Pipeline

3. Add Annotators to the Pipeline

4. Run the Pipeline

Create the Pipeline

1. In the Anzo application, expand the Onboard menu and click Unstructured Data. Anzo
displays the Pipelines screen, which lists any existing unstructured pipelines. For example:

2. Click the Add Unstructured Pipeline button and select Distributed Unstructured Pipeline.
Anzo opens the Create Distributed Unstructured Pipeline dialog box. For example:

Creating an Unstructured Pipeline 358

3. In the Title field, type a name for the pipeline.

Note
The title serves as a key to identify this pipeline and its corpus in multiple contexts.

Specify a title that is unique and stable. The pipeline's corpus dataset name is derived

from this value.

4. Type an optional description for the pipeline in the Description field.

5. If necessary, click the Target Anzo Data Store field and select the Anzo Data Store for this
pipeline.

6. If the environment is configured for dynamic Kubernetes-based deployments of the

infrastructure, select the Deploy Unstructured Infrastructure Dynamically checkbox and
leave the Static Elasticsearch Config field blank.

7. If necessary, click the Static Elasticsearch Config field and select the Elasticsearch
connection to use for this pipeline. If you use dynamic deployments to deploy Elasticsearch

instances on-demand, leave this field blank. Anzo prompts the user to choose a Cloud

Location when the pipeline is run.

Creating an Unstructured Pipeline 359

8. Click Save to create the pipeline. Anzo displays the pipeline Overview screen. For example:

Note
A pipeline saves automatically and constantly undergoes validation to make sure that it

is valid based on the current configuration. Anzo displays validation issues in red on the

top of the screen. The warnings will disappear as you add components to the pipeline.

9. If necessary, click Advanced to configure the advanced pipeline settings. For details about
the advanced settings, see Pipeline Settings Reference.

10. Next, follow the instructions in Add Crawlers to the Pipeline to add one or more crawlers to the

pipeline.

Add Crawlers to the Pipeline

After creating a pipeline, the next step is to add one or more crawlers. Crawlers determine what text

to process.

Creating an Unstructured Pipeline 360

1. In the pipeline, click the Crawlers tab.

2. Next, click the Add Input button. Anzo displays the Add Component dialog box. The New tab

is selected and lists all available crawlers. The Existing Components tab lists crawlers that
have been previously configured for other pipelines.

3. To add a new crawler, select the crawler. To add an existing crawler, click the Existing
Components tab and select a crawler. The list below describes each of the crawlers:

l File Based Dataset Crawler: Include this crawler to process data from a file-based

linked data set (FLDS) on a file store.

l Filesystem Crawler: Include this crawler to process documents, such as email
messages, PDF, XML, PowerPoint, Excel, OneNote, or Word files, and images, that are

available on a file store.

Creating an Unstructured Pipeline 361

l Graphmart RDF Crawler: Include this crawler to process RDF in an online graphmart or
specific data layer.

l Local Volume Dataset Crawler: Include this crawler to process RDF data that is stored
as a linked data set (LDS) in an Anzo journal.

4. After selecting a crawler, click OK. Anzo opens the Create dialog box for that crawler so that
you can configure it. Click a crawler name in the list below to view the details for that

component:

l File Based Dataset Crawler

l Filesystem Crawler

l Graphmart RDF Crawler

l Local Volume Dataset Crawler

File Based Dataset Crawler

l Title: Required field that specifies the unique name for this crawler.

l Description: Optional field that provides a description of this crawler.

Creating an Unstructured Pipeline 362

l Backing Dataset: Required field that specifies the Anzo dataset to crawl.

l Backing Ontology: Required field that specifies the model for the dataset.

l RDF Resource Type: Required field that specifies the resource type or class of data to
target with this crawler.

l Link Property: Optional field that specifies any link properties to crawl. A link property is

a property whose value identifies the location of a linked document. When linked

properties are specified, the crawler will crawl the linked documents. For example, in the

triples below, fileLocation is a link property:

<urn://someUnstructuredDocument> <urn://someProperty> "file metadata" ;

<urn://fileLocation> "/path/to/file.pdf" .

Note
In typical use cases, this crawler is configured to define either a Link Property or a

Content Property but not both.

l Content Property: Optional field that identifies any content properties to crawl. A
content property is a property whose value is a string literal and you want the crawler to

crawl and annotate those strings. For example, in the triples below, longDescription is
a content property:

<urn://someUnstructuredDocument> <urn://someProperty> "file metadata" ;

<urn://longDescription> "this is some interesting, likely long,

unstructured text

with a lot of information, and I want it to be annotated" .

l Base Path Connection: Required field whose value depends on whether you specified
a Link Property or a Content Property:

o If a Link Property was specified, the Base Path Connection is the base path to use
for resolving relative file paths in the Link Property values. For example, using the

example triples:

Creating an Unstructured Pipeline 363

<urn://someUnstructuredDocument> <urn://someProperty> "file metadata"

;

<urn://fileLocation> "/path/to/file.pdf" .

The <urn://fileLocation> value of /path/to/file.pdf could be a relative

path to a location like s3://location/bucket/path/to/file.pdf or

/opt/anzoshare/data/path/to/file.pdf. Therefore, the Base Path needs

to be specified to resolve any relative paths and locate the linked documents.

o If a Content Property was specified, the Base Path Connection is a directory on
the file store where the crawler can save a copy of the Content Property strings for

the Anzo Unstructured worker instances. Saving the content to a shared file

location avoids the overhead of sending the strings to the workers over the

network.

Filesystem Crawler

l Title: Required field that specifies the unique name for this crawler.

l Description: Optional field that provides a description of this crawler.

l File Crawl Location: Required field that specifies the file system crawl location. Click

the field to open the File Location dialog box:

Creating an Unstructured Pipeline 364

On the left side of the screen, select the storage location for the files to crawl. On the

right side of the screen, navigate to the directory that contains the files. Select a

directory, and then click OK.

l Crawl subfolders: Optional field that specifies whether to crawl the subdirectories
under the VFS Crawl Location. To crawl the subdirectories, select the Crawl subfolders
checkbox. To ignore subdirectories, clear the Crawl subfolders checkbox.

Graphmart RDF Crawler

Creating an Unstructured Pipeline 365

l Title: Required field that specifies the unique name for this crawler.

l Description: Optional field that provides a description of this crawler.

l Backing Graphmart: Optional field that specifies the graphmart to crawl. To configure
the grawler to crawl at the graphmart level, select one or more graphmarts in the

Backing Graphmart field and leave the Backing Layer field blank.

l Backing Layer: Optional field that specifies the data layer or layers that you want the
pipeline to crawl. To crawl specific layers and not an entire graphmart, make sure that

you leave the Backing Graphmart field blank and select the layers to crawl in the
Backing Layer field. If you specify both a Backing Graphmart and a Backing Layer, the
Backing Graphmart value supersedes the Backing Layer value, resulting in the entire

graphmart being crawled.

l Backing Ontology: Required field that specifies the model for the Backing Graphmart
or Data Layer.

l RDF Resource Type: Required field that specifies the resource type or class of data to
target with this crawler.

l Link Property: Optional field that specifies any link properties to crawl. A link property is

a property whose value identifies the location of a linked document. When linked

properties are specified, the crawler will crawl the linked documents. For example, in the

triples below, fileLocation is a link property:

<urn://someUnstructuredDocument> <urn://someProperty> "file metadata" ;

<urn://fileLocation> "/path/to/file.pdf" .

Note
In typical use cases, this crawler is configured to define either a Link Property or a

Content Property but not both.

l Content Property: Optional field that identifies any content properties to crawl. A
content property is a property whose value is a string literal and you want the crawler to

Creating an Unstructured Pipeline 366

crawl and annotate those strings. For example, in the triples below, longDescription is
a content property:

<urn://someUnstructuredDocument> <urn://someProperty> "file metadata" ;

<urn://longDescription> "this is some interesting, likely long,

unstructured text

with a lot of information, and I want it to be annotated" .

l Base Path Connection: Required field whose value depends on whether you specified
a Link Property or a Content Property:

o If a Link Property was specified, the Base Path Connection is the base path to use
for resolving relative file paths in the Link Property values. For example, using the

example triples:

<urn://someUnstructuredDocument> <urn://someProperty> "file metadata"

;

<urn://fileLocation> "/path/to/file.pdf" .

The <urn://fileLocation> value of /path/to/file.pdf could be a relative

path to a location like s3://location/bucket/path/to/file.pdf or

/opt/anzoshare/data/path/to/file.pdf. Therefore, the Base Path needs

to be specified to resolve any relative paths and locate the linked documents.

o If a Content Property was specified, the Base Path Connection is a directory on
the file store where the crawler can save a copy of the Content Property strings for

the Anzo Unstructured worker instances. Saving the content to a shared file

location avoids the overhead of sending the strings to the workers over the

network.

Creating an Unstructured Pipeline 367

Local Volume Dataset Crawler

l Title: Required field that specifies the unique name for this crawler.

l Description: Optional field that provides a description of this crawler.

l Backing Dataset: Required field that specifies the Anzo dataset to crawl.

l Backing Ontology: Required field that specifies the model for the dataset.

l RDF Resource Type: Required field that specifies the resource type or class of data to
target with this crawler.

l Link Property: Optional field that specifies any link properties to crawl. A link property is

a property whose value identifies the location of a linked document. When linked

properties are specified, the crawler will crawl the linked documents. For example, in the

triples below, fileLocation is a link property:

<urn://someUnstructuredDocument> <urn://someProperty> "file metadata" ;

<urn://fileLocation> "/path/to/file.pdf" .

Note
In typical use cases, this crawler is configured to define either a Link Property or a

Content Property but not both.

Creating an Unstructured Pipeline 368

l Content Property: Optional field that identifies any content properties to crawl. A
content property is a property whose value is a string literal and you want the crawler to

crawl and annotate those strings. For example, in the triples below, longDescription is
a content property:

<urn://someUnstructuredDocument> <urn://someProperty> "file metadata" ;

<urn://longDescription> "this is some interesting, likely long,

unstructured text

with a lot of information, and I want it to be annotated" .

l Base Path Connection: Required field whose value depends on whether you specified
a Link Property or a Content Property:

o If a Link Property was specified, the Base Path Connection is the base path to use
for resolving relative file paths in the Link Property values. For example, using the

example triples:

<urn://someUnstructuredDocument> <urn://someProperty> "file metadata"

;

<urn://fileLocation> "/path/to/file.pdf" .

The <urn://fileLocation> value of /path/to/file.pdf could be a relative

path to a location like s3://location/bucket/path/to/file.pdf or

/opt/anzoshare/data/path/to/file.pdf. Therefore, the Base Path needs

to be specified to resolve any relative paths and locate the linked documents.

o If a Content Property was specified, the Base Path Connection is a directory on
the file store where the crawler can save a copy of the Content Property strings for

the Anzo Unstructured worker instances. Saving the content to a shared file

location avoids the overhead of sending the strings to the workers over the

network.

5. When you have finished configuring the crawler, click Save. Anzo adds the crawler to the
pipeline and returns to the Crawlers screen. For example:

Creating an Unstructured Pipeline 369

6. If you want to change the crawler configuration, click the Edit icon () for the crawler and

modify the settings as needed. If you want to add another crawler to the pipeline, repeat the

steps above.

7. When you have finished adding crawlers, follow the instructions in Add Annotators to the

Pipeline to add one or more annotators to the pipeline.

Add Annotators to the Pipeline

After adding crawlers, the next step is to add one or more annotators. Annotators extract facts or

references in the text as annotations.

1. In the pipeline, click the Annotators tab.

2. Next, click the Add Output button. Anzo opens the Add Component dialog box. The New tab

is selected and lists the available annotators and the Existing Components tab lists

Creating an Unstructured Pipeline 370

annotators that have been previously configured for other pipelines.

3. To add a new annotator to the pipeline, click the annotator name to select it. To add an

existing annotator to the pipeline, click the Existing Components tab, and then select an
annotator. The list below describes each of the default annotators:

l Custom Relationship Annotator: Include this annotator to map relationships between
annotations based on the number of characters between the annotations.

l External Service Annotator: Include this annotator to hit an HTTP endpoint that

provides annotations.

l Keyword and Phrase Annotator: Include this annotator to create annotations based
on the phrases that you specify.

l Knowledgebase Annotator: Include this annotator to link structured and unstructured
data by finding instances in data layers, graphmarts, or Anzo linked datasets. Based on

the names and aliases of entities present or patterns that are indicative of the entities,

this annotator marks up the documents with the structured entities linked.

l Regex Annotator: Include this annotator to use regular expression rules to identify
entities such as email addresses, URLs, phone numbers, or any other entity that can be

matched using a regular expression.

Creating an Unstructured Pipeline 371

4. After selecting an annotator, click OK. Anzo opens the Create dialog box for the component.
Complete the fields to configure the annotator. The list below provides details about the

settings for the annotators that are typically used in pipelines. Click an annotator name to view

the details for that component:

l External Service Annotator

l Keyword and Phrase Annotator

l Knowledgebase Annotator

l Regex Annotator

External Service Annotator

Tip
For information about the options that are presented when you edit an External Service

Annotator, see Annotator Settings Reference.

l Title: Required field that specifies the unique name for this annotator.

l Description: Optional field that provides a description of this annotator.

Creating an Unstructured Pipeline 372

l HTTP Request Config: Required field that specifies the HTTP source object that

contains the URL and method to use when sending data for annotations.

l Document ID Response Path: Required field that specifies where to find the document
ID in the response.

l Entity Name Path: Required field that specifies the annotation object name path.

l Entity Class Path: Required field that specifies the class URI for an annotation.

Keyword and Phrase Annotator

Tip
For information about the options that are presented when you edit a Keyword and

Phrase Annotator, see Annotator Settings Reference.

l Title: Required field that specifies the unique name for this annotator.

l Description: Optional field that provides a description of this annotator.

l Phrase: Required field that specifies the terms or phrases to annotate. Type a word or
phrase in the field and then click Add to add the phrase. You can add any number of
phrases.

Creating an Unstructured Pipeline 373

Knowledgebase Annotator

Tip
For information about the options that are presented when you edit a Knowledgebase

Annotator, see Annotator Settings Reference.

l Title: Required field that specifies the unique name for this annotator.

l Description: Optional field that provides a description of this annotator.

l Backing Graphmart: Optional field that specifies the graphmart or graphmarts to
annotate.

Note
If you want the annotator to run against a linked dataset or Anzo knowledgebase

instead of a data layer or graphmart, leave the Backed Layer and Backed

Graphmart fields blank. After saving the pipeline, you can edit the pipeline and

specify a Backed Dataset at that time.

Creating an Unstructured Pipeline 374

l Backing Layer: Optional field that specifies the data layer or layers to annotate.

Note
The Backing Layer and Backing Graphmart fields are treated independently.

Layers that you select do not have to be part of the graphmart that you specify in

Backing Graphmart. And specifying a layer does not mean that you must select a
Backing Graphmart. However, any layers or graphmarts that you select must

contain classes and properties from the Backing Ontology or the data will not be
annotated.

l Backing Ontology: Required field that specifies the model for the backing data layers
and/or graphmart. Click the field and select a model from the drop-down list.

l Term Class: Required field that specifies the class of data for the annotations.

l Term Label Property: Required field that lists the primary name or label property of the
resources.

l Term Identifying Properties: Required field that specifies the properties that contain
names, aliases, or other identifiers to use for identifying the resources.

Regex Annotator

Creating an Unstructured Pipeline 375

Tip
For information about the options that are presented when you edit a Regex Annotator,

see Annotator Settings Reference.

l Title: Required field that specifies the unique name for this annotator.

l Description: Optional field that provides a description of this annotator.

l Regular Expression Rule: Required field that lists the regular expression rules for this
annotator. To add a rule, click drop-down field and select Create New. Anzo opens the
Create Regular Expression Rule dialog box where you can define the rule:

o Title: Required field that specifies the name of the rule.

o Class Structure: Required field that specifies the class in the model that should be
created for this rule. The value should be in the format group_number:class_

name, where group_number corresponds to a group in the regex capture. Each

rule should start with group 0. Include groups 1 and higher if needed to represent

parts of the expression that are contained in parentheses. The class_name is a

label that describes the type of data the rule will find. For example, for a rule that

finds hyphenated words 0:Hyphens.

o Description: Optional field that describes the rule.

o Regular Expression: Required field that specifies the regular expression to use
for finding matching entities.

Creating an Unstructured Pipeline 376

5. When you have finished configuring the annotator, click Save. Anzo adds the annotator to the
pipeline and returns to the Annotators screen. For example:

6. If you want to change the annotator configuration, click the Edit icon () for the annotator and

modify the settings as needed (see Annotator Settings Reference for information about

settings). If you want to add another annotator to the pipeline, repeat the steps above.

7. When you have finished adding annotators to the pipeline, proceed to Run the Pipeline below.

Run the Pipeline

When you are ready to run the pipeline, click the Run Pipeline button on the top right of the screen.
For example:

The process can take several minutes to complete. You can click the Progress tab to view details

such as the pipeline status, runtime, number of documents processed, and errors. For example:

Creating an Unstructured Pipeline 377

When the pipeline finishes, a new dataset becomes available in the Datasets catalog. From the

catalog, you can create a graphmart from the dataset so that you can explore and analyze the data.

For instructions, see Creating a Graphmart from a Dataset. You can also add the dataset to an

existing graphmart by following the steps in Adding a Dataset to a Graphmart.

Creating an Unstructured Pipeline 378

Running an Unstructured Pipeline

This page provides instructions for running an unstructured pipeline.

1. In the Anzo application, expand the Onboard menu and click Unstructured Data. Anzo
displays the Pipelines screen, which lists any existing unstructured pipelines. For example:

2. Click the name of the pipeline that you want to run. Anzo displays the pipeline Overview

screen. For example:

3. Click Run Pipeline to run the pipeline.

Running an Unstructured Pipeline 379

The process can take several minutes to complete. You can click the Progress tab to view details

such as the pipeline status, runtime, number of documents processed, and errors. For example:

If this is the first time the pipeline was run, a new dataset becomes available in the Datasets catalog.

From the catalog, you can create a graphmart from the dataset so that you can explore and analyze

the data. For instructions, see Creating a Graphmart from a Dataset. If the pipeline was run

previously, the existing dataset was updated and you can refresh or reload the graphmart that

contains the dataset to make the new data available for analytics.

Running an Unstructured Pipeline 380

Pipeline Settings Reference

The table below defines the Advanced settings that are available on the Overview tab when viewing

an unstructured pipeline.

Setting Description

Append
Timestamp

Controls whether to add a timestamp to unstructured document URIs. This
setting is enabled by default.

Diagnostic
Logging

Controls whether verbose diagnostic logging is enabled for the pipeline. This
setting is disabled by default. When enabled, debug-level logging is
performed for the duration of the pipeline.

Current Pipeline
Run

This setting is a pointer to the pipeline run object that tracks the ongoing
execution of the pipeline.

Pipeline Network
Connection

This setting specifies the network connection configuration to be used by the
pipeline's worker nodes to connect to the Anzo server. If not specified, this
setting defaults to the Unstructured Cluster connection configuration.

Persist Extracted
Text

Controls whether to persist the extracted text from documents. This setting is
enabled by default.

Persist HTML Controls whether to persist the extracted highlighted/annotated HTML from
documents. This setting is enabled by default.

Persist Original
Binary

Controls whether to persist the binary from the original documents. This
setting is enabled by default.

Persist Hit Spans Controls whether to persist the hit spans for the annotations of unstructured
documents. This setting is disabled by default.

Persist Nothing Controls whether RDF data about the documents or annotations are saved or

Pipeline Settings Reference 381

Setting Description

persisted. This setting is disabled by default.

Skip Elastic
Search Indexing

Controls whether to skip Elasticsearch indexing. This setting is disabled by
default.

Skip Elastic
Search JSON
creation

Controls whether to skip creating Elasticsearch JSON. This setting is
disabled by default.

Is Corpus
Cumulative

Controls whether to add the components of each pipeline run to the working
edition of the dataset. This setting is disabled by default.

Skip Text
Extraction

Controls whether to skip text extraction. This setting is disabled by default.

Delete Elastic
Search JSON
files

Controls whether to delete the Elasticsearch JSON files after they are
indexed. This setting is enabled by default.

Allow Empty
Documents

Controls whether to allow documents that have no text to proceed through
the pipeline. This setting is disabled by default.

Archive and Host
Content

Controls whether to download, cleanse, encapsulate, archive, and host
complete document content with inline artifacts. This setting is enabled by
default.

HTTP Fetch in
Archive

Controls whether the archiving process should resolve and download HTTP
URLs that are specified in documents. This setting is disabled by default.

Corpus Linked
Dataset

Specifies the FLDS used for documents and annotations from this pipeline.
This setting defaults to the name of the pipeline.

Pipeline Settings Reference 382

Setting Description

Corpus Name Specifies the name of the corpus (collection of documents) for the pipeline.

Phase Status
Persistence

Specifies how phase status metadata is persisted for each document in the
pipeline.

Write Status
Updates to Jnl

Controls whether status updates for pipeline runs are written to the journal.
This setting is enabled by default.

Write Status
Updates to FLDS

Controls whether status updates for pipeline runs are written to an FLDS.
This setting is disabled by default.

Write Original
Binary On
Timeout

Controls whether the original binary is written if the pipeline times out or
errors. This setting is disabled by default.

RamDisk
Directory
Location

Specifies an optional RamDisk base directory to create temporary files
under. Using a RamDisk may speed up the pipeline.

Use File Name as
Document Title

Controls whether to use the file's name on disk as the document title. This
setting is disabled by default.

RDF Statement
Buffer Size

Specifies the maximum number of statements to buffer before writing. The
default value is 10,000.

RDF File
Statement Count

Specifies the maximum number of statements to include in each RDF output
file.

Batch Size Specifies the number of documents to include in one batch.

Maximum Specifies the maximum number of issues that can be encountered in a run of

Pipeline Settings Reference 383

Setting Description

Allowed Session
Issues

this pipeline before failing the pipeline.

UI Update
Interval (in
milliseconds)

The interval of time to wait between running queries to update the data on the
pipeline Progress screen. The default value is 30,000 milliseconds (30
seconds).

Document
Processing
Timeout

Specifies the timeout in milliseconds for each document batch to be
processed. Leave this value unset (or set it to 0) to use the microservice
cluster's default timeout value.

Error On No
Documents
Found

Controls whether to fail the pipeline if no documents are found. This setting is
enabled by default.

Maximum
Pipeline Run
Status Journals

Specifies the maximum number of pipeline run status journals to keep before
aging them off to an FLDS. By default, only the status of the most recent run
of a pipeline remains stored in a status journal. All previous reports are
automatically converted to an FLDS and the original status journal is deleted.

Elastic Search
Bulk Actions

Specifies the maximum number of indexing actions to queue during
Elasticsearch indexing. The default value is 2,000.

Elastic Search
Bulk Size

Specifies the maximum size of the document queue during Elasticsearch
indexing. The default value is 5.

Elastic Search
Bulk Concurrent
Requests

This setting specifies the maximum number of concurrent bulk requests to
allow during Elasticsearch indexing. The default value is 1.

Elastic Search
Bulk Max

This setting specifies the maximum number of threads to use for
Elasticsearch indexing. The default value is 1.

Pipeline Settings Reference 384

Setting Description

Threads

Elastic Search
Mapping

This setting specifies (in JSON format) the mapping to use when indexing
unstructured documents in Elasticsearch.

Elastic Search
Pipeline
Configuration

This setting specifies (in JSON format) the Elasticsearch pipeline
configuration to use when indexing unstructured documents.

Elastic Search
Directory Write-
all

Controls whether to give write-all permission to the esi directory in the
output corpus FLDS.

Elasticsearch
Index Settings

This setting specifies (in JSON format) the index settings to use when
indexing unstructured documents in Elasticsearch.

Skip Teardown
Of Dynamic
Resources

Controls whether dynamic K8s-based resources associated with the pipeline
are left running after the pipeline is complete. This setting is disabled by
default. Enabling it can result in increased cloud resource usage.

Default Finish
Pending Writes
On Pipeline
Cancellation

Controls whether to finish any pending writes for documents during pipeline
cancellation. There is a flag in the cancellation request that can be used to
override this setting. This setting is enabled by default.

Post-persist
Postprocessor

Specifies any post-persist semantic postprocessors in the pipeline.

Rich Text
Extractor

Lists the HTML extractors to use in the pipeline.

Post Worker Specifies a service to invoke on documents after they are successfully

Pipeline Settings Reference 385

Setting Description

Service processed by the pipeline worker processes.

Pre-persist
Postprocessor

Specifies any pre-persist semantic postprocessors in the pipeline.

Status Journal
Base Path

Specifies the base path for storage of the status journal. By default, status
journals are written to a status_journals subdirectory in the Anzo Data
Store that is specified for the pipeline.

Content
Transformer

Specifies any content transformation and metadata extraction components to
use in the pipeline.

Document
Crawler Thread
Count

Specifies the number of threads to use for document crawling. The default
value is 4.

Worker Service
ID

Specifies the worker service ID to send requests to. If not specified, the
default is pipelineWorkerService.

Pipeline Settings Reference 386

Annotator Settings Reference

When you edit an existing annotator, additional options become available for refining the annotation

criteria or customizing the generated model or instance data. This topic describes the advanced

settings that are available when editing each type of annotator.

l External Service Annotator

l Keyword and Phrase Annotator

l Knowledgebase Annotator

l Regex Annotator

External Service Annotator

The table below defines the settings that are displayed when an External Service Annotator is

edited.

Setting Description

Title Required field that specifies the unique name for the annotator.

Description Optional field that provides a description of the annotator.

HTTP Request Config Required field that specifies the HTTP source object that contains
the URL and method to use when sending data for annotations.

Document ID Response
Path

Required field that specifies where to find the document ID in the
response.

Entity Name Path Required field that specifies the annotation object name path.

Entity Class Path Required field that specifies the base class URI for an annotation.

Result Path Root The path to the object that contains the annotation results.

Annotator Settings Reference 387

Setting Description

Store NLP Service
Response

Controls whether the service's response is stored in the binary store.

Result Field Path The external NLP-specific result configuration for returned entities.

Socket Timeout Specifies the socket timeout (in milliseconds) to use for requests
against the source.

Entity Snippet Path The snippet path for entities returned in the service response.

Entity End Offset Path The end text offset location in the document for entities returned in
the service response.

Entity Begin Offset Path The start text offset location in the document for entities returned in
the service response.

Entity Span Path The text offset location in the document for entities returned in the
service response.

Entity Text Path The text path for entities returned in the service response.

Entity ID Path The ID path for entities returned in the service response.

Document ID Request
Field

The Document ID parameter for the external service.

Class Name Property Specifies an annotation property whose value you want to map to
the name of the class. For example, if a Category property has the
value Disease and you want the name of the class to be "Disease,"
add Category to this field. When Class Name Property is not
defined, the class name is auto-generated.

External Service Annotator 388

Setting Description

Unintended Property
Names

A list of any property names to filter out. Type a name in the field and
then click Add to add the value.

Unintended Classes A list of any classes to filter out. Type a class in the field and then
click Add to add the value.

Unintended Instances A list of any entities or instances of the class to filter out. Type an
instance in the field and then click Add to add the value.

Is Combine Annotation
Instances

Controls whether to combine multiple instances of an extraction into
one annotation.

Create Additional
General Annotation Type

Controls whether the annotator creates a general shared annotation
type in addition to the specific annotation types that are created.

Explicit Property
Datatypes/Objecttypes

A list of keys that map property names to a particular object property
type.

Output the Detections Controls whether to include specific detections as an annotation
property.

Unintended Property
Values

A list of any property values to filter out. Type a value in the field and
then click Add to add the value.

Use General Annotator
Name in Ontology URI

Controls whether to use ExternalServiceAnnotator or the
specific annotator name in the ontology URI.

Entity URI Property Specifies an annotation property whose value you want to map to
the URIs for instances of the class. For example, if a Disease_ID
property has the value http://example.com/Asthma and you
want to use http://example.com/Asthma as the base URI for
instances of the class, add Disease_ID to this field. When Entity

External Service Annotator 389

Setting Description

URI Property is not defined, the URI is auto-generated based on the
name.

Entity Name Property Specifies an annotation property whose value you want to map to
the names for instances of the class. For example, if a Preferred_
Label property includes disease names and you want to use those
label values as the names for instances of the Disease class, add
Preferred_Label to this field. When Entity Name Property is not
defined, the name is auto-generated.

Domain Object Base
Class URI

If creating a general annotation type (Create Additional General
Annotation Type is enabled), this setting specifies the class to use
as the base type for the annotator's domain objects.

Class URI Property Specifies an annotation property whose value you want to map to
the class URI in the model. For example, if a Category_ID
property has the value http://example.com/Disease and you
want to use http://example.com/Disease as the base class
URI, add Category_ID to this field. When Class URI Property is
not defined, the URI is auto-generated based on the name.

Is Error Fatal Controls whether to fail the pipeline if this annotator fails to create
annotations.

Keyword and Phrase Annotator

The table below defines the settings that are displayed when a Keyword and Phrase Annotator is

edited.

Setting Description

Only Consider Text Controls whether to find phrases via a simplified format of the

Keyword and Phrase Annotator 390

Setting Description

document. Enabling this setting can be beneficial for a document
such as a rich HTML file. Enabling this option is less ideal for
documents with multibyte characters.

Require Nonstandard
Word Boundaries

Indicates whether the specified phrase can be present with or
without surrounding character breaks (e.g. for Chinese) or with
regex-nonstandard word boundaries (e.g. for Tagalog).

Title Required field that specifies the unique name for the annotator.

Description Optional field that provides a description of the annotator.

Phrase Required field that specifies the terms or phrases to annotate. Type
a word or phrase in the field and then click Add to add the phrase.
You can add any number of phrases.

Unintended Property
Names

A list of any property names to filter out. Type a name in the field and
then click Add to add the value.

Create Additional
General Annotation Type

Controls whether the annotator creates a general shared annotation
type in addition to the specific annotation types that are created.

Entity URI Property Specifies an annotation property whose value you want to map to
the URIs for instances of the class. For example, if a Disease_ID
property has the value http://example.com/Asthma and you
want to use http://example.com/Asthma as the base URI for
instances of the class, add Disease_ID to this field. When Entity
URI Property is not defined, the URI is auto-generated based on the
name.

Explicit Property
Datatypes/Objecttypes

A list of keys that map property names to a particular object property
type.

Keyword and Phrase Annotator 391

Setting Description

Entity Name Property Specifies an annotation property whose value you want to map to
the names for instances of the class. For example, if a Preferred_
Label property includes disease names and you want to use those
label values as the names for instances of the Disease class, add
Preferred_Label to this field. When Entity Name Property is not
defined, the name is auto-generated.

Domain Object Base
Class URI

If creating a general annotation type (Create Additional General
Annotation Type is enabled), this setting specifies the class to use
as the base type for the annotator's domain objects.

Unintended Classes A list of any classes to filter out. Type a class in the field and then
click Add to add the value.

Class Name Property Specifies an annotation property whose value you want to map to
the name of the class. For example, if a Category property has the
value Disease and you want the name of the class to be "Disease,"
add Category to this field. When Class Name Property is not
defined, the class name is auto-generated.

Unintended Instances A list of any entities or instances of the class to filter out. Type an
instance in the field and then click Add to add the value.

Is Combine Annotation
Instances

Controls whether to combine multiple instances of an extraction into
one annotation.

Class URI Property Specifies an annotation property whose value you want to map to
the class URI in the model. For example, if a Category_ID
property has the value http://example.com/Disease and you
want to use http://example.com/Disease as the base class
URI, add Category_ID to this field. When Class URI Property is
not defined, the URI is auto-generated based on the name.

Keyword and Phrase Annotator 392

Setting Description

Output the Detections Controls whether to include specific detections as an annotation
property.

Unintended Property
Values

A list of any property values to filter out. Type a value in the field and
then click Add to add the value.

Is Error Fatal Controls whether to fail the pipeline if this annotator fails to create
annotations.

Knowledgebase Annotator

The table below defines the settings that are displayed when a Knowledgebase Annotator is edited.

Setting Description

Title Required field that specifies the unique name for the annotator.

Description Optional field that provides a description of the annotator.

Backing Graphmart Optional field that specifies the graphmart or graphmarts to
annotate.

Backing Layer Optional field that specifies the data layer or layers to annotate.

Note
The Backing Layer and Backing Graphmart fields are

treated independently. Layers that you select do not have to

be part of the graphmart that you specify in Backing

Graphmart. And specifying a layer does not mean that you

must select a Backing Graphmart. However, any layers or

graphmarts that you select must contain classes and

Knowledgebase Annotator 393

Setting Description

properties from the Backing Ontology or the data will not be

annotated.

Backing Ontology Required field that specifies the model for the backing data layers
and/or graphmart.

Term Class Required field that specifies the class of data for the annotations.

Term Label Property Required field that lists the primary name or label property of the
resources.

Term Identifying
Properties

Required field that specifies the properties that contain names,
aliases, or other identifiers to use for identifying the resources.

Backing Dataset Optional field that specifies the dataset or datasets to annotate.

Case Sensitive Controls whether matches must be case-sensitive.

Invalidating Properties A list of any properties for which you do not want to find matching
resources.

Discard Matches Of
Common Words

Controls whether to discard matches of the most common words.

Discard Matches of
Substrings

A list of the substrings for which you want matches to be discarded.
Type a string in the field and then click Add to add the value.

Text Search Query
Pattern Precedence

When text search query properties are specified, this setting controls
whether resource names or aliases are included as matches. When
enabled, resource names and aliases will not be matched.

Knowledgebase Annotator 394

Setting Description

Lucene Pattern
Properties

A list of properties that contain Lucene query syntax for document
categorization.

Approximate Label
Properties

A list of properties that contain phrases that may be matched only
approximately, i.e., fault-tolerantly, via slightly alternate spellings or
misspellings.

Simplified Regex Pattern
Properties

A list of properties that contain simplified regular expressions.

Regex Pattern Properties A list of properties that contain regular expressions.

Strip Characters for
Match

Characters to strip out before determining if there is a match.

Clear Caches Controls whether to clear any existing caches when the pipeline is
run.

Rows Per Query The maximum number of rows to query at a time when paging
through the knowledgebase.

Minimum Hit Length The minimum span length that can count as a match.

Domain Object Base
Class URI

If creating a general annotation type (Create Additional General
Annotation Type is enabled), this setting specifies the class to use
as the base type for the annotator's domain objects.

Class URI Property Specifies an annotation property whose value you want to map to
the class URI in the model. For example, if a Category_ID
property has the value http://example.com/Disease and you
want to use http://example.com/Disease as the base class
URI, add Category_ID to this field. When Class URI Property is

Knowledgebase Annotator 395

Setting Description

not defined, the URI is auto-generated based on the name.

Entity URI Property Specifies an annotation property whose value you want to map to
the URIs for instances of the class. For example, if a Disease_ID
property has the value http://example.com/Asthma and you
want to use http://example.com/Asthma as the base URI for
instances of the class, add Disease_ID to this field. When Entity
URI Property is not defined, the URI is auto-generated based on the
name.

Is Combine Annotation
Instances

Controls whether to combine multiple instances of an extraction into
one annotation.

Unintended Instances A list of any entities or instances of the class to filter out. Type an
instance in the field and then click Add to add the value.

Explicit Property
Datatypes/Objecttypes

A list of keys that map property names to a particular object property
type.

Unintended Classes A list of any classes to filter out. Type a class in the field and then
click Add to add the value.

Unintended Property
Names

A list of any property names to filter out. Type a name in the field and
then click Add to add the value.

Create Additional
General Annotation Type

Controls whether the annotator creates a general shared annotation
type in addition to the specific annotation types that are created.

Output the Detections Controls whether to include specific detections as an annotation
property.

Unintended Property A list of any property values to filter out. Type a value in the field and

Knowledgebase Annotator 396

Setting Description

Values then click Add to add the value.

Entity Name Property Specifies an annotation property whose value you want to map to
the names for instances of the class. For example, if a Preferred_
Label property includes disease names and you want to use those
label values as the names for instances of the Disease class, add
Preferred_Label to this field. When Entity Name Property is not
defined, the name is auto-generated.

Class Name Property Specifies an annotation property whose value you want to map to
the name of the class. For example, if a Category property has the
value Disease and you want the name of the class to be "Disease,"
add Category to this field. When Class Name Property is not
defined, the class name is auto-generated.

Is Error Fatal Controls whether to fail the pipeline if this annotator fails to create
annotations.

Regex Annotator

The table below defines the settings that are displayed when a Regex Annotator is edited.

Setting Description

Title Required field that specifies the unique name for the annotator.

Description Optional field that provides a description of the annotator.

Regular Expression Rule Required field that lists the regular expression rules for this
annotator.

Case-Insensitive Enables or disables case-insensitive matching. By default, case-

Regex Annotator 397

Setting Description

insensitive matching assumes that only characters in the US-ASCII
character set are being matched. Unicode-aware case-insensitive
matching can be enabled by enabling Unicode Case Folding in
conjunction with this option.

Multiline Mode Enables or disable multiline mode. When multiline mode is enabled,
the expressions ^ and $match immediately after or before a line
terminator or the end of the input sequence. When multiline mode is
disabled, these expressions only match at the beginning and end of
the entire input sequence.

Allow Comments Controls whether whitespace and comments are allowed in a
pattern. When enabled, whitespace and embedded comments
starting with # are ignored until the end of a line.

Canonical Equivalence Controls whether canonical equivalence is taken into account when
finding matches. When enabled, characters are considered a match
if and only if their full canonical decompositions match. For example,
the expression a\u030A will match the string \u00E5.

Enable Dotall Controls whether dotall mode is used. When enabled, the
expression .matches any character, including a line terminator.
When disabled, . does not match line terminators.

Literal Parsing Controls whether literal parsing is employed. When enabled, the
input string that specifies the pattern is treated as a sequence of
literal characters and metacharacters and escape sequences have
no special meaning.

Unicode Case Folding Controls whether case-insensitive matching is done in a manner that
is consistent with the Unicode Standard. By default, Case-
Insensitive matching assumes that only characters in the US-ASCII

Regex Annotator 398

Setting Description

set are being matched.

Unix Lines Enables or disables Unix line mode. When enabled, only the \n line
terminator is recognized in the behavior of ., ^, and $.

Is Combine Annotation
Instances

Controls whether to combine multiple instances of an extraction into
one annotation.

Class URI Property Specifies an annotation property whose value you want to map to
the class URI in the model. For example, if a Category_ID
property has the value http://example.com/Disease and you
want to use http://example.com/Disease as the base class
URI, add Category_ID to this field. When Class URI Property is
not defined, the URI is auto-generated based on the name.

Entity URI Property Specifies an annotation property whose value you want to map to
the URIs for instances of the class. For example, if a Disease_ID
property has the value http://example.com/Asthma and you
want to use http://example.com/Asthma as the base URI for
instances of the class, add Disease_ID to this field. When Entity
URI Property is not defined, the URI is auto-generated based on the
name.

Class Name Property Specifies an annotation property whose value you want to map to
the name of the class. For example, if a Category property has the
value Disease and you want the name of the class to be "Disease,"
add Category to this field. When Class Name Property is not
defined, the class name is auto-generated.

Unintended Classes A list of any classes to filter out. Type a class in the field and then
click Add to add the value.

Regex Annotator 399

Setting Description

Entity Name Property Specifies an annotation property whose value you want to map to
the names for instances of the class. For example, if a Preferred_
Label property includes disease names and you want to use those
label values as the names for instances of the Disease class, add
Preferred_Label to this field. When Entity Name Property is not
defined, the name is auto-generated.

Unintended Instances A list of any entities or instances of the class to filter out. Type an
instance in the field and then click Add to add the value.

Unintended Property
Values

A list of any property values to filter out. Type a value in the field and
then click Add to add the value.

Create Additional
General Annotation Type

Controls whether the annotator creates a general shared annotation
type in addition to the specific annotation types that are created.

Output the Detections Controls whether to include specific detections as an annotation
property.

Explicit Property
Datatypes/Objecttypes

A list of keys that map property names to a particular object property
type.

Unintended Property
Names

A list of any property names to filter out. Type a name in the field and
then click Add to add the value.

Domain Object Base
Class URI

If creating a general annotation type (Create Additional General
Annotation Type is enabled), this setting specifies the class to use
as the base type for the annotator's domain objects.

Is Error Fatal Controls whether to fail the pipeline if this annotator fails to create
annotations.

Regex Annotator 400

Model

The topics in this section provide introductory information about data models, describe model

requirements, and include instructions for working with models.

In this section:
Model Concepts and Vocabulary 402

Managed Model Concepts 405

Model Requirements 407

Uploading a Model 412

Creating a Model 415

Editing a Custom Model 418

Editing a Managed Model 428

Downloading a Model 434

Defining Resource Templates 438

Model 401

Model Concepts and Vocabulary

Models define the business meaning of the source data. They describe the concepts, attributes, and

relationships in or across data sets. Instead of reflecting the format or schema of the source data,

models reflect the desired structure of the data after it is onboarded to Anzo. Anzo links data to

models to provide flexibility for capturing data coming from various sources and structures and to

enable users to search for and visualize data in Hi-Res Analytics dashboards or other applications.

Users can create models in the Models editor or import existing or external models (OWL

ontologies) to Anzo. Models can be shared and reused.

The following image shows a portion of the model for a dataset that captures sales activity for a

fictional website where people buy and sell tickets for sporting events, shows, and concerts.

Model Vocabulary

The table below defines key terms to know when working with models.

Term Description

Class Models are made up of classes. Classes describe a concept or a group of related
objects. For example, the model above contains Tickit Events, Tickit Dates, Tickit
Categories, Tickit Sales, and Tickit Listings classes.

Base Class A base class is a more general version of a class. For example, a film model might

Model Concepts and Vocabulary 402

Term Description

have a Person base class with subclasses that categorize types of people.

Subclass A subclass is a more specific version of another class. For example, in a film model
a Person class might have subclasses of Actors, Directors, and Producers.
Subclasses share the properties from the base class and can include additional
properties.

Property Properties are attributes that describe the data in a class. For example the Tickit
Events class has properties such as eventName, dateID, and startTime. There are
two types of properties:

l Data property: Relates a class to a simple or literal value. For example, in
the events class, the eventName and startTime properties relate to simple

values.

l Object property: Relates a class to another class. For example, the listID
property relates to the Tickit Sales and Tickit Events classes.

Property
Type

A property type is the data type of the values for the property, also known as the
Property Range.

Instance Instances are concrete occurrences of a class. For example, an event's name is an
instance of the Tickit Events class.

Simple
Value

A simple value is also known as a literal value. The list below describes literal
values:

l Numbers (for example, 15, -9, 10.35)

l Text strings (for example, "Jane Doe" or "a long description")

l Dates and times (for example, "13-Dec-2021", or "April, 2022")

l Boolean (true or false)

Model Concepts and Vocabulary 403

Term Description

Type Either a class or a simple value.

For conceptual information about Anzo-generated models, called managed models, see Managed

Model Concepts.

Model Concepts and Vocabulary 404

Managed Model Concepts

This topic provides an overview of managed models and includes important concepts to know when

working with them.

What is a Managed Model?

When you onboard a data source with the automated direct load workflow (as described in

Onboarding Data with the Automated Workflow) or manually onboard a source with a Direct Load

Step (as described in Onboarding Data with a Direct Load Step), a Managed Model is produced. A

managed model is generated, owned, and managed by the data layer that contains the auto-

generated or user-created Direct Load Step. If a Direct Load Step query is changed, additional

Direct Load Steps are added to the same layer, or the underlying source schema changes, the

managed model is automatically updated when the graphmart or layer is reloaded or refreshed.

Managed Models Cannot be Edited Outside of Direct Load Steps

Though a model that is generated in a Direct Load Step is registered in Anzo and is available for

viewing in the Model editor, the model is owned and managed by the layer that contains the Direct

Load Step. That means any manual changes made to the model outside of the step, such as from

the Model editor, will be overwritten any time the graphmart or layer is refreshed or reloaded. Do
not modify managed models except by editing (or adding) Direct Load Step queries. For
guidance on editing managed models, see Editing a Managed Model.

There is One Managed Model Per Data Layer

If you include multiple Direct Load Steps in the same layer, they will all update the same model. This

functionality can be useful if you want to align the data and generated model across multiple steps.

If you have multiple sources that are not intended to align or update the same model, create

separate data layers.

Managed Model Concepts 405

Deleting a Layer Deletes the Model

If you delete a layer that includes a managed model, the model is also deleted. Use caution when

referencing managed models outside of graphmarts. For example, if you create a dataset and

reference a managed model when you select the ontology, the reference will break if the data layer

that manages the model is deleted.

Managed Model Concepts 406

Model Requirements

To ensure that data structures are properly defined, Anzo requires that data models include certain

information and avoid unsupported information. This topic provides details about the requirements

and guidelines to follow when uploading or creating models.

Requirements

This section lists the requirements or rules to follow when uploading or creating a data model.

Models that are generated by Anzo during the auto-ingest process conform to these rules.

l Define each model as an owl:Ontology

l Define the model name with rdfs:label

l The named graph URI must match the ontology URI

l Define classes and concepts with owl:Class

l Define taxonomy with rdfs:subClassOf

l Define properties as owl:DatatypeProperty or owl:ObjectProperty

l Include rdfs:domain and rdfs:range for all properties

l Reference only Anzo-stored models

Define each model as an owl:Ontology

Define each data model as an owl:Ontology. To do so, include the following triple in the model:

<myOntology> a owl:Ontology

Where myOntology is the URI that names the model. The URI must be unique. To avoid

unexpected results when saving a model, do not include a hash (#) character at the end of the

model URI.

Define the model name with rdfs:label

Use an rdfs:label property to define name of the model as a string. Include the following triple:

Model Requirements 407

<myOntology> rdfs:label "My Ontology"^^xsd:string .

For example, you can use the following statement as a template for inserting owl:Ontology and

rdfs:label into the model:

<myOntology> a owl:Ontology ;

rdfs:label "My ontology"^^xsd:string .

The named graph URI must match the ontology URI

Make sure that the named graph URI for the model matches the ontology URI. For example:

<myOntology> { <myOntology> a owl:Ontology . }

Like a linked data set, an ontology is a core component that is used throughout the system. The

registries that store and track the graphs for core components, such as the ontology registry, expect

that each graph contains a resource that matches the graph URI and specifies the type of graph.

Having a mismatched graph and ontology URI can break core Anzo functionality.

Define classes and concepts with owl:Class

Use owl:Class for class or concept definitions. Do NOT include skos:Concept or rdfs:Class. For
example, the following statement requires modification to make it valid in an Anzo model:

<myConcept> a skos:Concept

Changing the statement as follows correctly uses owl:Class instead of skos:Concept:

<myConcept> a owl:Class ;

rdfs:label <businessFacingClassLabel> .

Define taxonomy with rdfs:subClassOf

Use rdfs:subClassOf for taxonomy. Do NOT use skos:broader. For example, the following
statement requires modification to make it valid in an Anzo model:

<childSkosConcept> skos:broader <parentSkosConcept> .

Changing the statement as follows correctly uses rdfs:subClassOf instead of skos:broader:

<childOwlClass> rdfs:subClassOf <parentOwlClass> .

Model Requirements 408

Define properties as owl:DatatypeProperty or owl:ObjectProperty

Define properties using owl:DatatypeProperty or owl:ObjectProperty. For example:

<myObjectProperty> a owl:ObjectProperty .

Or

<myDataTypeProperty> a owl:DatatypeProperty .

Include rdfs:domain and rdfs:range for all properties

Define rdfs:domain and rdfs:range for all properties. For example, the following property definition
is incomplete:

<myObjectProperty> a owl:ObjectProperty .

The statement below completes the definition by adding rdfs:label, rdfs:domain, and rdfs:range:

<myObjectProperty> a owl:ObjectProperty ;

rdfs:label <businessFacingPropertyLabel> ;

rdfs:domain <myClass> ;

rdfs:range <myOtherClass> .

The example below shows a valid data type definition:

<myDataTypeProperty> a owl:DatatypeProperty ;

rdfs:label <businessFacingPropertyLabel> ;

rdfs:domain <myClass> ;

<myDataTypeProperty> rdfs:range <literal> .

Note
When defining the property range for integer values, use xsd:int instead of xsd:integer.

Reference only Anzo-stored models

Models must be self-contained or include references only to models that are stored in Anzo.

Model Requirements 409

Guidelines

This section lists additional guidelines and important information to know when working with data

models in Anzo.

l Property Range Guidelines

l TriG is the preferred format for models to upload

l Load RDFS and OWL vocabularies as graphs

l Axiomatically defined classes and property hierarchies are not processed

Property Range Guidelines

When creating or editing properties in the model editor, Anzo offers several RDF property ranges or

data types to choose from. Certain types are preferred over others, however, because they are

treated consistently and predictably across systems. Cambridge Semantics recommends that you

specify one of the following preferred property range values:

l Boolean: For true or false values.

l Byte: For 1-byte integers from -128 to 127.

l Date: For date values that follow a format such as YYYY-MM-DD.

l Date time: For 8-byte date and time values that follow a format such as YYYY-MM-

DDThh:mm:ss. Note that dateTime values are normalized to GMT.

l Double: For up to 8-byte double floating point values.

l Duration: For a duration of time expressed as a number of years, months, days, hours,
minutes, and seconds in a format such as PnYnMnDTnHnMnS.

l Float: For up to 4-byte floating point values with potential decimal places.

l Int: For up to 4-byte integers from -2,147,483,648 to 2,147,483,647.

l Long: For up to 8-byte integers from –9,223,372,036,854,775,808 to

9,223,372,036,854,775,807.

Model Requirements 410

l Short: For up to 2-byte integers from -32,768 to 32,767.

l String: For character values of varying length.

l Time: For time values that follow a format such as hh:mm:ss.

TriG is the preferred format for models to upload

Anzo accepts model files in OWL (.owl), RDF (.rdf), TriG (.trig), TTL (.ttl), and XML (.xml) format.

The preferred format for models that will be uploaded to Anzo is TriG (.trig) format.

Load RDFS and OWL vocabularies as graphs

Anzo loads but does not process additional vocabulary data (such as rdf:subPropertyOf,

owl:sameAs, and owl:intersectionOf, etc.) if they are encoded in models. Models that contain

vocabularies rather than structural information should be loaded as RDF graphs instead. Anzo can

load any valid RDF data. Since RDFS, SKOS, and OWL are valid RDF formats, the vocabulary

information can be loaded as a graph, and the data can be interpreted with SPARQL in data layers

and Hi-Res Analytics.

Axiomatically defined classes and property hierarchies are not processed

When models include axiomatically defined classes or property hierarchies, Anzo loads the

information but does not process the data. For example, Anzo does not infer information from

axiomatically defined classes.

Model Requirements 411

Uploading a Model

This topic provides instructions for uploading an existing model to Anzo. Follow these instructions if

you have a model that was created outside of Anzo or was downloaded from Anzo as described in

Downloading a Model. Anzo accepts model files in OWL (.owl), RDF (.rdf), TriG (.trig), TTL (.ttl), and

XML (.xml) format.

Important
When uploading a model to Anzo, follow the requirements and guidelines defined in Model

Requirements.

If you want to import a version of a model that was exported from Anzo (as described in Exporting an

Artifact), follow the instructions in Importing Exported Versions of Artifacts to import the model.

Note
One of the following outcomes will occur if two users upload the same data model:

l If the second user does not have permission to modify the model that the first user

uploaded, the second user receives an access denied error and cannot upload the

model.

l If the second user does have permission to modify the model that the first user uploaded,

Anzo overwrites the existing model with the version from user two.

1. In the Anzo application, click Model. Anzo displays the Manage Data Model Working Set

screen. For example:

Uploading a Model 412

2. On the bottom left corner of the screen, click Upload Models. The Upload Data Models dialog
box opens.

3. To upload a model, drag and drop the file onto the dialog box or click the text to browse and

select the file on your computer. Anzo uploads the model that you selected and displays the

file name and size. For example:

Uploading a Model 413

If you want to upload additional models, you can repeat the process and drag and drop or

select files on the Upload Data Models dialog box.

4. If you want to add a tag or edit the tag that was specified in the uploaded model, you can click

Add Tags and specify the tag in the dialog box. Then click OK.

5. Click Done when you finish uploading models. The new models become available on the

Manage Data Model Working Set screen.

For information about editing models using the model editor, see Editing a Custom Model.

Uploading a Model 414

Creating a Model

This topic provides instructions for creating a new data model in the Anzo application. For

instructions on uploading an existing model to Anzo, see Uploading a Model.

1. In the Anzo application, click Model. Anzo displays the Manage Data Model Working Set

screen. For example:

2. Click the Add Model button on the top right of the screen and select New Model. Anzo
displays the Model editor.

Creating a Model 415

3. In the Label field, type a unique name for the model.

4. Provide the following optional information as needed:

l Description: A brief description of the model.

l Serialization Prefix: The prefix to use for this model when Anzo serializes it. For
example, the prefix for the Friend of a Friend (FOAF) model is "foaf," and the prefix for

Dublin Core is "dc."

Tip
The Prefix value is also used to provide hints when typing queries in the Query

Builder. When writing a query against a data source that has this model in scope,

typing in the PREFIX clause presents this Prefix value as a suggestion.

l Class Prefix: The custom URI template to follow for classes in this model. The value

must be a valid URI. When the Class Prefix is set, the URIs for the classes in this model

will follow the specified scheme. For example, if Class Prefix is set to

http://cambridgesemantics.com/class/ and a class called Employees is created in the
model, the URI that is generated for the Employees class will be

http://cambridgesemantics.com/class/Employees.

l Property Prefix: The custom URI template to follow for properties in this model. The

value must be a valid URI. When the Property Prefix is set, the URIs for the properties in

this model will follow the specified scheme. For example, if Property Prefix is set to

http://cambridgesemantics.com/property/ and a property called LastName is created
in the model, the URI that is generated for the LastName property will be

http://cambridgesemantics.com/property/LastName.

l Imports: Lists any definitions that you want to import from another model into this model.

To select models to import, click in the Imports field and select a model from the drop-

down list. Select the field again to select additional models.

l System Model: Indicates that the data model is a system model only and not related to

Creating a Model 416

business data.

l Hidden Model: Hides the data model so that it is not associated with business data.

5. Click Save to save the model.

For information about adding classes and properties to the new model, see Editing a Custom Model.

Creating a Model 417

Editing a Custom Model

This topic provides information about using the Anzo model editor to open a data model and modify

it to add, edit, or remove classes, properties, data ranges, and annotations.

Important
Do not modify auto-generated, layer-managed models. Changes will be overwritten whenever

the host graphmart or layer is reloaded or refreshed. For more information, see Managed

Model Concepts.

l Opening Models in the Editor

l Changing Model Components

l Class Editor Reference

l Property Editor Reference

Tip
Before editing a model, you have the option to create a backup of the current version. For

more information, see Creating and Restoring Versions of Artifacts.

Editing a Custom Model 418

Opening Models in the Editor

1. In the Anzo application, click Model. Anzo displays the Manage Data Model Working Set

screen. For example:

2. On the Manage Working Set screen, select the checkbox next to the model (or models) that

you want to add to the working set and edit. Then click OK. Anzo opens the selected model in
the editor. For example:

3. You can edit the following model-level settings or view the Changing Model Components

section below for information about working with classes, properties, annotations, and data

Opening Models in the Editor 419

ranges.

l Description: A brief description of the model.

l Serialization Prefix: The prefix to use for this model when Anzo serializes it. For
example, the prefix for the Friend of a Friend (FOAF) model is "foaf," and the prefix for

Dublin Core is "dc."

Tip
The Prefix value is also used to provide hints when typing queries in the Query

Builder. When writing a query against a data source that has this model in scope,

typing in the PREFIX clause presents this Prefix value as a suggestion.

l Class Prefix: The custom URI template to follow for classes in this model. The value

must be a valid URI. When the Class Prefix is set, the URIs for the classes in this model

will follow the specified scheme. For example, if Class Prefix is set to

http://cambridgesemantics.com/class/ and a class called Employees is created in
the model, the URI that is generated for the Employees class will be

http://cambridgesemantics.com/class/Employees.

l Property Prefix: The custom URI template to follow for properties in this model. The

value must be a valid URI. When the Property Prefix is set, the URIs for the properties in

this model will follow the specified scheme. For example, if Property Prefix is set to

http://cambridgesemantics.com/property/ and a property called LastName is created
in the model, the URI that is generated for the LastName property will be

http://cambridgesemantics.com/property/LastName.

l Imports: Lists any definitions that you want to import from another model into this

model. To select models to import, click in the Imports field and select a model from the

drop-down list. Select the field again to select additional models.

l System Model: Indicates that the data model is a system model only and not related to

business data.

l Hidden Model: Hides the data model so that it is not associated with business data.

Opening Models in the Editor 420

Changing Model Components

The sections below provides instructions for working with model components. When modifying

models, make sure that you click Save periodically to save your changes.

l Creating a New Class

l Creating a New Property

l Adding an Existing Property to a Class

l Editing a Class

l Deleting a Property

l Deleting a Class

l Adding a Data Range

l Adding an Annotation

Creating a New Class

Open the model menu by clicking the menu icon () to the right of the model name. Then select Add

Class.

Anzo opens the class editor so that you can configure the new class. See Class Editor Reference

below for information about class settings.

Creating a New Property

Open the class menu by clicking the menu icon () to the right of the class name. Then select Add

Property.

Changing Model Components 421

Anzo opens the property editor so you can configure the new property. See Property Editor

Reference below for information about property settings.

Adding an Existing Property to a Class

To add an existing property to a class, click the class in the left pane to display the class details in

the editor. In the editor, click in the Properties field and select the property that you want to add
from the drop-down list. For example:

Editing a Class

To change an existing class, select the class in the left pane. Anzo expands the class to show its

properties and displays the details for that class in the editor. You can make changes in the editor.

See Class Editor Reference below for information about class settings.

Deleting a Property

In the left pane of the working set, select the property that you want to delete. Anzo opens that

property in the editor. To remove the property, click the Delete button on the top right of the screen.
Then click Delete in the dialog box to confirm that you want to delete the property.

Deleting a Class

Click the menu icon () to the right of the class that you want to remove from the model.

Changing Model Components 422

Click Delete. Anzo displays a dialog box that asks if you want to delete only the class or all of the
subclasses and properties in the class. Select the appropriate option and then click Delete to
confirm that you want to delete the class. This action cannot be undone.Anzo removes the class
and saves the model.

Adding a Data Range

Click the menu icon () to the right of the model name. Then select Add Data Range. Anzo opens

the data range editor so that you can configure the new range.

Adding an Annotation

Click the menu icon () to the right of the model name. Then select Add Annotation. Anzo opens

the editor so that you can configure the annotation.

Changing Model Components 423

Class Editor Reference

This section describes each of the fields that are available for configuring classes.

Field Description

Label The name of the class.

Description A brief description of the class.

Parent
Classes

Lists any parent classes under which this class becomes a child or subclass.
Click in the field to select parent classes from the drop-down list. Or click the X to
the left of a class name to remove that parent class from the list.

Properties Lists the properties under this class. Click in the field to a property from the drop-
down list. Or click the X to the right of a property name to remove that property
from the list.

Inherited
Properties

Properties that the class has inherited from a super class or the model.

Preview
Property

Defines a property from the class to use as the "name" or entity on default
displays. For example, if there is a reference to entity X, and entity X has Name,
Title, and Label properties, you could specify that you want Title to display by
default instead of "X."

Resource
Template

Defines the Uniform Resource Identifier (URI) template to use for instances of
the class. You can construct URI templates by typing a value and pressing Enter
or by choosing an available property from the drop-down list. For more
information, see Defining Resource Templates.

Graph
Template

Defines the graph URI template to use for instances of the class. You can
construct graph URI templates by typing a value and pressing Enter or by
choosing an available property from the drop-down list. You can concatenate the

Class Editor Reference 424

Field Description

specified graph template value with values of properties in the class. For
example, http://cambridgesemantics.com/graph/ and Title

Class Editor Reference 425

Property Editor Reference

This section describes each of the fields that are available for configuring properties.

Field Description

Label The name of the property.

Description A brief description of the property.

Required Indicates whether a value is required for this property.

Multi Value Indicates whether more than one value can exist for this property.

Note
Some business intelligence (BI) applications have limitations on the

retrieval of multi-value properties. If you use the Anzo Data on Demand

service to query data from BI tools, consider whether your application

supports multi-value properties before creating them.

Has Data
Range

Indicates whether the property has a single data type or a data range. Selecting
this checkbox displays the Data Range field so that you can choose the data
range.

Property
Range

The data type for the property. See Property Range Guidelines for
recommendations on choosing property ranges.

Domain Lists the class or classes that the property belongs to.

Min
Cardinality

The minimum number of distinct values a property can have. When Min
Cardinality is blank, the number of values is unrestricted.

Max The maximum number of distinct values a property can have. When Max

Property Editor Reference 426

Field Description

Cardinality Cardinality is blank, the number of values is unrestricted.

Value
Restriction

Indicates whether to restrict the property’s values to certain data types or specific
values in a list.

Property Editor Reference 427

Editing a Managed Model

Managed models that are generated by a Direct Load Step are owned and managed by the data

layer that contains the Direct Load Step. Any changes made to the model outside of the step, such

as from the Model editor, are overwritten any time the graphmart or layer is refreshed or reloaded.

This topic provides guidance on updating the properties in a managed model by editing the Direct

Load Step query.

Tip
Before starting the procedure, you might want to start another session of Anzo. In the new

session, open in the Model editor the model that you will be updating. That way you can copy

model, class, and property URIs from the model while you edit the Direct Load Step query.

1. In the graphmart for which you want to update a model, click the Data Layers tab. Expand the
layer that was generated when you created the graphmart and find the Direct Load Step that

inserts the data.

2. Open the Direct Load Step for editing and click the Query tab. For example, the image below
shows the query that was generated to onboard data about books from a CSV file:

Editing a Managed Model 428

3. Make sure the following prefixes are declared in the PREFIX clause at the top of the query. If

any are missing, add them to the query:

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

4. Next, add the following GRAPH clause statements under the SERVICE clause:

GRAPH <model_URI> {

<property_URI> a owl:DatatypeProperty;

rdfs:comment "comment" ;

rdfs:label "property_label" ;

rdfs:domain <class_URI> ;

rdfs:range <dataype> .

[<property2_URI> a owl:DatatypeProperty;

rdfs:comment "comment" ;

rdfs:label "property2_label" ;

rdfs:domain <class_URI> ;

rdfs:range <datatype> .]

Editing a Managed Model 429

[...]

}

l model_URI: The URI of the model that was generated by the Direct Load Step. You can
copy the URI from the Model editor from the Details tab for the model. For example:

<http://cambridgesemantics.com/Layer/698d17.../Model>

l property_URI: The URI to use for the new property or the URI of the existing property

that you want to update. When adding a property, you can look at the URIs for other

properties in the model and follow the same scheme. For example:

<http://cambridgesemantics.com/Layer/6.../Model#GoodReads100kBooks.FirstPr

int>

l comment: A string that describes the property. For example, "Date the book

first went to print".

l property_label: The label to give the property. For example, "First Print Date".

l class_URI: The URI of the class that the existing property belongs to or the new
property should be added to. You can copy the URI from the Model editor from the

Details tab for the class. For example:

<http://cambridgesemantics.com/Layer/698d1794.../Model#GoodReads100kBooks>

l datatype: The URI for the datatype of the property. For example, xsd:date.

For example, the following query adds one new property to the model that is generated by the

Direct Load Step query shown above:

PREFIX good_reads_books_files:

<http://cambridgesemantics.com/DataSource/0e5ab8601249264a318b4a4bcfa81700/Goo

d_Reads_Books/>

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

INSERT {

GRAPH ${targetGraph} {

?subject ?predicate ?object .

Editing a Managed Model 430

}

}

WHERE {

SERVICE <http://cambridgesemantics.com/services/DataToolkit> {

GRAPH

<http://cambridgesemantics.com/Layer/698d179498f945a393f8a91ee9f1f611/Model> {

<http://cambridgesemantics.com/Layer/698d179498f945a393f8a91ee9f1f611/Model#Goo

dReads100kBooks.FirstPrint> a owl:DatatypeProperty;

rdfs:comment "Date the book first went to print" ;

rdfs:label "First Print Date" ;

rdfs:domain

<http://cambridgesemantics.com/Layer/698d179498f945a393f8a91ee9f1f611/Model#Goo

dReads100kBooks> ;

rdfs:range xsd:date .

}

[]

s:segment "false"^^xsd:boolean .

?generator a s:RdfGenerator, s:OntologyGenerator ;

s:as (?subject ?predicate ?object) ;

s:base ${targetGraph} .

good_reads_books_files:GoodReads_100k_books a s:FileSource ;

s:url "/nfs/data/csv/GoodReads_100k_books.csv" ;

s:model "GoodReads_100k_books" .

}

}

5. Next, if you added properties and the class for any of the new properties does not have a

primary key defined, you must create a key for that class. If all of the classes you referenced in

the query have primary keys, you can continue to the next step. If one or more of the classes

do not have primary keys, follow the instructions below:

a. Locate in the query the statement block for each class that needs a key defintion. For

example, in the query above, there is only one class, s:model "GoodReads_100k_

Books". If you have multiple classes, the query has several blocks, such as this

example:

...

emrdbsmall:emr_complaint a s:DbSource ;

s:using mysql_db:MySQL_DB ;

Editing a Managed Model 431

s:table "emrdbsmall.emr_complaint" ;

s:model "emr_complaint" .

emrdbsmall:emr_patient a s:DbSource ;

s:using mysql_db:MySQL_DB ;

s:table "emrdbsmall.emr_patient" ;

s:model "emr_patient" .

emrdbsmall:emr_complaintdescription a s:DbSource ;

s:using mysql_db:MySQL_DB ;

s:table "emrdbsmall.emr_complaintdescription" ;

s:model "emr_complaintdescription" .

...

b. At the end of the block for the class you want to add a key to, change the period (.) after

s:model to a semicolon (;).

c. Next, add the following line below s:model:

s:key ("key_property" [, "key_property2"] [, ...]) .

Where key_property is the label of the property to use as a key for the class. The

property that you choose must have unique values. If there is not a property in the class

with unique values, you can specify a combination of properties that would create a

unique value. Make sure that the value of key_property matches the label for that

property in the model. For example, for the query in step 4, the Isbn property can be

used as a unique key for the GoodReads_100k_Books class:

good_reads_books_files:GoodReads_100k_books a s:FileSource ;

s:url "/nfs/data/csv/GoodReads_100k_books.csv" ;

s:model "GoodReads_100k_books" ;

s:key ("Isbn") .

The final, completed query is shown below:

PREFIX good_reads_books_files:

<http://cambridgesemantics.com/DataSource/0e5ab8601249264a318b4a4bcfa81700

/Good_Reads_Books/>

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

Editing a Managed Model 432

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

INSERT {

GRAPH ${targetGraph} {

?subject ?predicate ?object .

}

}

WHERE {

SERVICE <http://cambridgesemantics.com/services/DataToolkit> {

GRAPH

<http://cambridgesemantics.com/Layer/698d179498f945a393f8a91ee9f1f611/Mode

l> {

<http://cambridgesemantics.com/Layer/698d179498f945a393f8a91ee9f1f611/Mode

l#GoodReads100kBooks.FirstPrint> a owl:DatatypeProperty;

rdfs:comment "Date the book first went to print" ;

rdfs:label "First Print Date" ;

rdfs:domain

<http://cambridgesemantics.com/Layer/698d179498f945a393f8a91ee9f1f611/Mode

l#GoodReads100kBooks> ;

rdfs:range xsd:date .

}

[]

s:segment "false"^^xsd:boolean .

?generator a s:RdfGenerator, s:OntologyGenerator ;

s:as (?subject ?predicate ?object) ;

s:base ${targetGraph} .

good_reads_books_files:GoodReads_100k_books a s:FileSource ;

s:url "/nfs/data/csv/GoodReads_100k_books.csv" ;

s:model "GoodReads_100k_books" ;

s:key ("Isbn") .

}

}

6. Save the step and then refresh or reload the graphmart or layer to update the model with the

new properties.

For more information about Direct Load Steps, see Directly Load a Data Source (Direct Load Step).

Editing a Managed Model 433

Downloading a Model

This topic provides instructions for downloading a data model from Anzo to your computer.

1. In the Anzo application, click Model. Anzo displays the Manage Data Model Working Set

screen. For example:

2. On the Manage Working Set screen, select the checkbox next to the model that you want to

download, and then click OK. Anzo opens the selected model in the editor. For example:

Downloading a Model 434

3. Open the model menu by clicking the menu icon () to the right of the model name. Then select

Download Model.

Anzo displays the Download Model dialog box:

4. In the Download Model dialog box, select the format to save the model in. By default Anzo

saves models in TRIG format. If you want to save the file in OWL format, select the OWL radio
button. Then click Download.

Anzo downloads the model to your computer in the selected format.

Note
When a model is downloaded from Anzo, the resulting TriG or OWL file size can be

significantly larger than the file size of the original data model file that was uploaded. The

original model likely includes prefix specifications and abbreviated URIs. When a model is

exported, however, Anzo replaces the prefixes with full URIs. In addition, the downloaded

model includes the Anzo-generated metadata for the model.

For example, the following simple example TTL content shows part of a data model that uses

prefixes:

Downloading a Model 435

@prefix csi: <http://cambridgesemantics.com/2017/02/ont#> .

csi:testModel a owl:Ontology ;

rdfs:label "Test Model"^^xsd:string .

csi:DOB a owl:Class;

rdfs:domain csi:Demographics ;

rdfs:label "DOB" ;

rdfs:range xsd:string .

csi:HEIGHT a owl:Class;

rdfs:domain csi:Demographics ;

rdfs:label "HEIGHT" ;

rdfs:range xsd:decimal .

After uploading the TTL file and then downloading the model in TriG format, the resulting file

includes full URIs as well as the model's metadata:

<http://cambridgesemantics.com/2017/02/ont#testModel> {

<http://cambridgesemantics.com/2017/02/ont#DOB> a

<http://www.w3.org/2002/07/owl#Class> ;

<http://www.w3.org/2000/01/rdf-schema#domain>

<http://cambridgesemantics.com/2017/02/ont#Demographics> ;

<http://www.w3.org/2000/01/rdf-schema#label> "DOB" ;

<http://www.w3.org/2000/01/rdf-schema#range>

<http://www.w3.org/2001/XMLSchema#string> .

<http://cambridgesemantics.com/2017/02/ont#HEIGHT> a

<http://www.w3.org/2002/07/owl#Class> ;

<http://www.w3.org/2000/01/rdf-schema#domain>

<http://cambridgesemantics.com/2017/02/ont#Demographics> ;

<http://www.w3.org/2000/01/rdf-schema#label> "HEIGHT" ;

<http://www.w3.org/2000/01/rdf-schema#range>

<http://www.w3.org/2001/XMLSchema#decimal> .

<http://cambridgesemantics.com/2017/02/ont#testModel> a

<http://www.w3.org/2002/07/owl#Ontology> ;

<http://www.w3.org/2000/01/rdf-schema#label> "Test Model" .

}

<http://cambridgesemantics.com/registries/Ontologies> {

<http://cambridgesemantics.com/registries/Ontologies>

<http://openanzo.org/ontologies/2008/07/Anzo#defaultNamedGraph>

<http://cambridgesemantics.com/2017/02/ont#testModel> ;

a <http://openanzo.org/ontologies/2008/07/Anzo#Dataset> .

}

<http://openanzo.org/metadataGraphs

(http%3A%2F%2Fcambridgesemantics.com%2F2017%2F02%2Font%23testModel)> {

Downloading a Model 436

<http://cambridgesemantics.com/2017/02/ont#testModel>

<http://openanzo.org/ontologies/2008/07/Anzo#canBeAddedToBy>

<http://openanzo.org/system/internal/sysadmin> ;

<http://openanzo.org/ontologies/2008/07/Anzo#canBeReadBy>

<http://openanzo.org/Role/everyone> ,

<http://openanzo.org/system/internal/sysadmin> ;

<http://openanzo.org/ontologies/2008/07/Anzo#canBeRemovedFromBy>

<http://openanzo.org/system/internal/sysadmin> .

...

}

Downloading a Model 437

Defining Resource Templates

When you open a data model in the Model editor, there is a Resource Template setting for each of
the classes in the model. A Resource Template defines the Uniform Resource Identifier (URI)

pattern that Anzo should follow when ingesting data and generating the URIs for the instances of

each class. Defining a Resource Template for the classes in your models helps link and relate data

by using URI patterns that express the meaning of the data and combine similar concepts.

Additionally, simpler and more meaningful URIs are easier to read and therefore easier to write in

queries.

Important
Keep the following points in mind when defining class instance URI patterns:

l Do not modify auto-generated, layer-managed models. Changes will be overwritten

whenever the host graphmart or layer is reloaded or refreshed. For more information,

see Managed Model Concepts.

l Avoid joining data that should not be joined. For example, using a property such as

YearProduced in a movies Resource Template would group all movies from a given year

as a single instance.

l Resource Templates with multiple components must have all components present. If a

component is missing, Anzo generates random strings for missing Resource Template

components.

l Resource templates do not work across different classes. You must define resource

templates on individual classes.

Tip
For property URIs, the default URI prefix is http://cambridgesemantics.com/. The value is
controlled by the URI Prefix option in server settings. See Configure URI Prefix and SPARQL

Options in the Administration Guide for more information.

Defining Resource Templates 438

https://docs.cambridgesemantics.com/anzo/v5.4/userdoc/admin-anzo-settings.htm#sparql-endpoint
https://docs.cambridgesemantics.com/anzo/v5.4/userdoc/admin-anzo-settings.htm#sparql-endpoint

1. In the Anzo application, click Model. Anzo displays the Manage Data Model Working Set

screen. For example:

2. On the Manage Working Set screen, select the checkbox next to the model (or models) that

you want to add to the working set for editing. Then click OK. Anzo opens the selected model
in the editor. For example:

3. Click the Details tab.

Defining Resource Templates 439

4. Select a class in the model to display the settings for that class. Then scroll down to the

Resource Template field. For example, the image below shows the Resource Template field

for the selected Movie Actors class.

5. Click the Resource Template field and specify the URI pattern to use for instances of this
class. First, type a base value in the field and press Enter to add the value to the field. For
example, for Movie Actors in the step above:

http://cambridgesemantics.com/Movie/Actor.

Then click the field again and select a property in the class that defines the class, i.e.,

contains unique values. For example, in the Movie Actors class, Actor ID provides unique

values.

6. Click Save to save the change, and then select another class for which to set a Resource
Template. Repeat the step above for each class in the model.

Defining Resource Templates 440

Blend

This section provides information about working with datasets and blending data in graphmarts.

In this section:
Working with Datasets 442

Working with Graphmarts 481

Profiling Datasets and Graphmarts 604

Blend 441

Working with Datasets

The topics in this section provide guidance on working with datasets in the Datasets catalog.

In this section:
Adding an Empty Dataset for an Export Step 443

Importing an Existing Dataset (FLDS) 446

Creating a Dataset from RDF Files 451

Managing Dataset Editions 456

Creating a Graphmart from a Dataset 466

Adding a Dataset to a Graphmart 471

Dataset FAQ 475

Working with Datasets 442

Adding an Empty Dataset for an Export Step

Follow the steps below to create an empty dataset that can be used to create an FLDS from the data

that is output from an Export Step.

1. In the Anzo application, expand the Blend menu and click Datasets. Anzo displays the
Datasets screen, which lists the catalog of datasets. For example:

Adding an Empty Dataset for an Export Step 443

2. On the Datasets screen, click Add Dataset. Anzo opens the Create Dataset dialog box.

3. Select the Empty Dataset radio button.

4. Type a name for the new dataset in the Title field and an optional description in the
Description field.

Adding an Empty Dataset for an Export Step 444

5. Click the RDF File Location field to open the File Location dialog box.

6. Find and select the directory where the FLDS for this dataset should be created. If needed,

you can click Create New Folder to create a new directory. Then click OK to close the dialog

box and return to the Create Dataset screen.

7. Next, if you know which model or models are associated with the data that you plan to export,

select the models from the Ontologies drop-down list. Leave Ontologies blank if you do not
know which models apply or do not want to select one at this time. When the Export steps

runs, Anzo automatically exports any models that are related to the exported data.

8. Lastly, the RDF Format setting defaults to ttl.gz, meaning files that are output to this dataset
will be in compressed Turtle format. This is the ideal format for preserving space on the file

store. If you do not want the files to be compressed, you can change the value to ttl.

9. Click Save to save the empty dataset and return to the Datasets screen. The new dataset

becomes available as a selection when choosing the Target FLDS for an Export Step.

For more information about Export Steps, see Export Data to an FLDS (Export Step).

Adding an Empty Dataset for an Export Step 445

Importing an Existing Dataset (FLDS)

Follow the instructions below to add an existing FLDS to the Datasets catalog. Make sure that the

FLDS meets the following File Requirements.

File Requirements

To add an FLDS to the Datasets catalog, the location of the files, the file format, and the directory

structure must meet the following requirements:

l Supported File Locations: Files can be staged on a configured file store or they can be
uploaded from your computer as a .zip file.

l Supported Directory Structure: FLDS directories should contain an flds.trig file, an onts
directory that includes the model .trig file, and an rdf.ttl or rdf.ttl.gz directory that contains the
data files. For example:

Note
Models must be in TriG format, regardless of the file type of the data files.

LoadEmployees_f7b1f

├── flds.trig

├── onts

│ └── Employees.trig

└── rdf.ttl.gz

└── Loadnew_employees_8be23.ttl.gz

└── 20191021034225.ttl.gz

└── part-00000.ttl.gz

└── part-00001.ttl.gz

└── part-00003.ttl.gz

Importing an FLDS

Follow the steps below to import an FLDS from the file store or from a .zip file on your computer.

1. In the Anzo application, expand the Blend menu and click Datasets. Anzo displays the
Datasets screen, which lists the catalog of datasets. For example:

Importing an Existing Dataset (FLDS) 446

2. On the Datasets screen, click Add Dataset. Anzo opens the Create Dataset dialog box.

Importing an Existing Dataset (FLDS) 447

3. Select the From Existing Dataset radio button.

4. Click the RDF File Location field to open the File Location dialog box.

5. Follow the appropriate steps below depending on whether the FLDS is on your computer or

the shared File Store:

If the file is on your computer:

a. As a best practice, check the upload location that is listed in the Upload To field by
hovering your pointer over the value to view the tooltip. Make sure the upload location is

a directory on the shared file store and not in the server installation path. If the file is not

Importing an Existing Dataset (FLDS) 448

uploaded to the shared file store it is not accessible by applications like AnzoGraph. In

addition, other users cannot create graphmarts from the data source because they

typically do not have access to the file location.

For example, viewing the Upload To location for the screen above shows that the file will

be uploaded to the server installation path, /opt/Anzo/Server/data...

If your Upload To location is configured to upload the file to the server installation path,

click Change and select an upload location that is on the shared file store. For example,
the image below shows the Upload Folder Location dialog box that is presented after

clicking Change. A folder called fileUploads is selected on the shared store.

b. Drag and drop the file onto the screen or click browse to navigate to the file and select it.
Anzo attaches the file and the OK button becomes active.

c. Click OK. The file is added to the RDF File Location field on the Create Dataset screen.

If the files are on the File Store:

a. Click the From File Store radio button. Anzo displays the file selection dialog box. For
example:

Importing an Existing Dataset (FLDS) 449

b. On the left side of the screen, select the file store that hosts the FLDS. On the right side

of the screen, navigate to the root directory for the dataset. This is the directory that

contains the flds.trig file, the onts directory, and the rdf.ttl or rdf.ttl.gz directory.

c. Select the root directory for the FLDS and then click OK. The location is added to the
RDF File Location field on the Create Dataset screen.

6. Click Save to import the FLDS and return to the Datasets screen.

You can now select the dataset in the catalog and create a new graphmart or add the dataset to an

existing graphmart. See Creating a Graphmart from a Dataset or Adding a Dataset to a Graphmart

for instructions.

Importing an Existing Dataset (FLDS) 450

Creating a Dataset from RDF Files

Source data that is not in RDF format is onboarded through the automated direct data load workflow

or unstructured pipelines, where the data is converted to RDF format. If you have data that is

already in RDF format in Turtle or N-Triple files, those files can be added to the Datasets catalog

directly, making the data available to add to a graphmart for loading and analyzing in AnzoGraph.

Note
To import data from CSV, JSON, XML, Parquet, or SAS files, follow the processes described

in Adding Data Sources.

Follow the instructions below to create a dataset from a directory of Turtle or N-Triple files. Make

sure that the files and directory meet the requirements in File Requirements.

File Requirements

To add data to the Dataset catalog, the location of the files, the file format, and the directory

structure must meet the following requirements:

l Supported File Locations: Files can be staged on a configured file store, or they can be
uploaded from your computer as a .zip file.

l Supported File Formats: Files must be in one of the following formats:
o Turtle (.ttl file type)

o N-Triple (.n3 and .nt file types)

Either of the file types listed above can be compressed in GZIP format and named as

<filename>.<filetype>.gz files.

l Supported Directory Structure: When importing RDF files that are not part of an FLDS, the

files must be placed in a directory named rdf.<filetype> or rdf.<filetype>.gz. Stage
uncompressed TTL files in a directory called rdf.ttl, and stage compressed TTL files in a
directory called rdf.ttl.gz. Stage uncompressed N-Triple files in a directory called rdf.nt or
rdf.n3, depending on the file type extension. Place compressed files in an rdf.nt.gz or
rdf.n3.gz directory. For example:

Creating a Dataset from RDF Files 451

External-RDF-Top-Level-Directory

└── rdf.ttl.gz

└── external-rdf-file1.ttl.gz

└── external-rdf-file2.ttl.gz

└── external-rdf-file3.ttl.gz

Important
All files inside an rdf.<filetype> or rdf.<filetype>.gz directory must be the same format

and end in the same extension. Data in mixed formats will not load successfully. If you

plan to import multiple file types, organize files into separate directories by file extension

type, and then import each directory separately.

Note
To upload files from your computer, use the same directory structure as shown above.

Zip the top-level directory so that the upload file is External-RDF-Top-Level-

Directory.zip and contains the rdf.ttl.gz directory.

Importing RDF Files

Follow the steps below to create a dataset from RDF files.

Tip
Anzo provides the option to link the files to an existing data model during the import. If the

model is not yet available in Anzo, consider uploading it before importing the RDF files. See

Uploading a Model for instructions. You are not required to include a model at import time; a

model can be associated with a data set at any time. How do I associate a model with a

dataset?

1. In the Anzo application, expand the Blend menu and click Datasets. Anzo displays the
Datasets screen, which lists the catalog of datasets. For example:

Creating a Dataset from RDF Files 452

2. On the Datasets screen, click Add Dataset. Anzo opens the Create Dataset dialog box.

3. The From Existing RDF radio button is selected by default. Type a name for the new dataset

in the Title field and an optional description in the Description field.

4. Click the RDF File Location field to open the File Location dialog box and follow the

appropriate steps below depending on the location of the files.

Creating a Dataset from RDF Files 453

If you are uploading a .zip file from your computer:

a. As a best practice, check the upload location that is listed in the Upload To field by
hovering your pointer over the value to view the tooltip. Make sure the upload location is

a directory on the shared file store and not in the server installation path. If the file is not

uploaded to the shared file store it is not accessible by applications like AnzoGraph. In

addition, other users cannot create graphmarts from the data source because they

typically do not have access to the file location.

For example, viewing the Upload To location for the screen above shows that the file will

be uploaded to the server installation path, /opt/Anzo/Server/data...

If your Upload To location is configured to upload the file to the server installation path,

click Change and select an upload location that is on the shared file store. For example,
the image below shows the Upload Folder Location dialog box that is presented after

clicking Change. A folder called fileUploads is selected on the shared store.

b. Drag and drop the .zip file with the RDF files onto the screen or click Browse to navigate
to the file on your computer and select it.

c. Click OK to close the dialog box and return to the Create Dataset screen.

Creating a Dataset from RDF Files 454

If the files are on the File Store

a. Select the From File Store radio button.

b. Find and select the rdf.<filetype> directory that you want to import, and then click OK to

close the dialog box and return to the Create Dataset screen.

5. If you want to associate a model with this dataset, click the Ontologies drop-down list and
select the model. To include a system model, select the Include System Data checkbox. If
you do not want to associate a model with the data at this time, leave the Ontologies field

blank.

Note
Datasets without a model cannot be viewed in Hi-Res Analytics dashboards, but the

imported data can still be queried. A model can be associated with the data set at a later

time. How do I associate a model with a dataset?

6. Click Save. Anzo creates the FLDS and adds the new dataset to the Datasets catalog, and

return to the Datasets screen.

Note
Anzo generates an flds.trig file at the same level as the rdf.<filetype> directory. The file

contains metadata about the load files.

You can now select the dataset in the catalog and create a new graphmart or add the dataset to an

existing graphmart. See Creating a Graphmart from a Dataset or Adding a Dataset to a Graphmart

for instructions.

Creating a Dataset from RDF Files 455

Managing Dataset Editions

The topics in this section introduce the concepts to know when working with editions and provide

instructions for creating, deleting, and modifying editions.

l Introduction to Editions

l Creating an Edition

l Modifying an Edition

l Deleting a Saved Edition

l Limiting the Number of Editions in a Dataset

Introduction to Editions

Editions are collections of the data components that are published by an unstructured pipeline or

generated by an Export Step in a graphmart. Editions can be assembled by users and can include

any subset of components. This topic introduces you to the concepts that are helpful to know when

working with editions.

l What is a Data Component?

l What is the Managed Edition?

l What is a Saved Edition?

What is a Data Component?

A Data Component is the data that is generated by a successful run of an unstructured pipeline or
by the processing of an Export Step in a graphmart. Each time a pipeline or step runs to completion,

a new data component is created that contains the version of the data that was generated by that

run.

All data components are automatically included in the Managed Edition (see What is the Managed

Edition?) and any of the components can be added to a Saved Edition (see What is a Saved

Edition?).

Managing Dataset Editions 456

What is the Managed Edition?

When an unstructured pipeline runs or an Export Step is processed, the resulting data is added to

the Managed Edition. This Edition is managed by Anzo and always contains all of the published
data components.

The Managed Edition cannot be changed, but it can be cloned (via the Actions menu) and saved as
a Saved Edition. Saved Editions can be modified.

What is a Saved Edition?

A Saved Edition is a user-assembled collection of data components. A Saved Edition can contain

any combination of and any version of data components. Saved Editions can be created from

scratch or can be cloned from the Managed Edition or another Saved Edition.

The Managed Edition or any Saved Edition can be added to a graphmart for analysis.

Creating an Edition

Follow the instructions below to create a new edition.

1. In the Anzo application, expand the Blend menu and click Datasets. Anzo displays the
Datasets screen, which lists the catalog of datasets. For example:

Creating an Edition 457

2. Click the dataset for which you want to create an edition. Anzo displays the Explore tab for the

dataset. Click the Overview tab, which lists the existing editions. For example:

3. To create a new edition from scratch, click the Create New Edition button at the bottom of the

screen.

Tip
If you want to create an edition by cloning the Managed Edition, click the menu icon ()

in the Actions column for the Managed Edition and select Clone Edition. To clone a
Saved Edition, click the menu icon for the Saved Edition and select Clone Edition.

The Create New Edition (or Clone Edition) screen is displayed. For example:

Creating an Edition 458

4. Specify a name for the edition in the Title field and include an optional description in the
Description field.

5. In the Data Components list, select the checkbox next to each component that you want to

add to this edition. For example:

6. When you are finished selecting data components, click Save to save the edition. The new
edition is added to the list of Saved Editions on the Overview screen. For example:

Creating an Edition 459

From the Actions menu for an edition, you can create a graphmart, or you can browse, clone, or
delete the edition.

Modifying an Edition

You cannot change an existing edition, but you can clone and edit a copy of an edition. Follow the

steps below to create a new edition based on an existing version.

1. In the Anzo application, expand the Blend menu and click Datasets. Anzo displays the
Datasets screen, which lists the catalog of datasets. For example:

2. Click the dataset for which you want to modify an ddition. Anzo displays the Explore tab for the

dataset. Click the Overview tab, which lists the existing editions. For example:

Modifying an Edition 460

3. Click the menu icon in the Actions column for the edition that you want to copy and select

Clone Edition. Or select Browse Edition if you want to review the edition before making a

copy. When you are ready to make a copy, click the Edit a Copy button. Anzo opens the
Edition for editing. For example:

4. Specify a name for the edition in the Title field and include an optional description in the
Description field.

Modifying an Edition 461

5. To make changes to the edition, select or clear the Data Component checkboxes on the left

side of the screen to include or exclude components.

Note
When you make changes to an edition while creating or changing a graphmart, Anzo

creates a copy of the edition with the changes and uses the copy as a dataset in the

graphmart. The original published edition remains unchanged.

6. When you have finished modifying the edition, click Save. Anzo creates the edition and adds it
to the list of Saved Editions on the Overview screen.

The new edition is now available to add to a new or existing graphmart. To quickly create a new

graphmart, you can click the menu icon in the Actions column for the new edition and select Create
Graphmart with this Edition.

Deleting a Saved Edition

Follow the steps below to delete a Saved Edition.

Note
Before deleting an edition, ensure that there are no graphmarts that require that edition.

Tip
You cannot delete the Managed Edition, but users with administrative privileges can clear out

the existing components so that the edition is recreated from scratch the next time the pipeline

is published. For instructions, see How do I clear the components from the Managed Edition?

1. In the Anzo application, expand the Blend menu and click Datasets. Anzo displays the
Datasets screen, which lists the catalog of datasets. For example:

Deleting a Saved Edition 462

2. Click the dataset for which you want to delete an edition. Anzo displays the Explore tab for the

dataset. Click the Overview tab, which lists the existing editions. For example:

3. In the list of Saved Editions, click the menu icon in the Actions column for the edition that you

want to delete and select Delete. Anzo displays a confirmation message. Click OK to confirm

the delete operation and remove the edition.

Deleting a Saved Edition 463

Limiting the Number of Editions in a Dataset

By default, there is no limit on the number of editions that can be created and preserved in a

dataset. Each time an unstructured pipeline or Export Step is run, a new edition is generated and

the TTL for that edition is written to disk. You can modify a dataset, however, to set a limit on the

number of editions to archive. When a limit is set, Anzo to ages off and removes older editions from

disk. Follow the steps below to limit the number of editions for a dataset.

1. In the Anzo application, expand the Blend menu and click Datasets. Anzo displays the
Datasets screen, which lists the catalog of datasets. For example:

2. Click the dataset for which you want to configure the maximum number of editions. The

Explore screen is displayed.

3. Click the Overview tab. Then click Advanced to expand the screen and show the advanced

settings. The image below shows the settings.

Limiting the Number of Editions in a Dataset 464

4. Click in the Maximum Number of Archives field to make it editable. Then type the number of
archived editions that you want to keep for the dataset. For example:

5. Click the checkmark icon () to save the change.

The dataset is now configured to limit the number of editions that are retained. When the maximum

number is reached, Anzo ages off and removes the oldest edition. For unstructured datasets, Anzo

also removes the corresponding Elasticsearch Index JSON backups and pipeline runs.

Limiting the Number of Editions in a Dataset 465

Creating a Graphmart from a Dataset

Follow the steps below to create a new graphmart from a dataset in the Datasets catalog.

1. In the Anzo application, expand the Blend menu and click Datasets. Anzo displays the
Datasets screen, which lists the catalog of datasets. For example:

2. In the catalog, click the checkbox next to each dataset that you want to add to the new

graphmart. Hover the pointer over an item to display the checkbox in the left column. Anzo

adds the datasets to the shopping cart and additional icons become available at the bottom of

the screen. For example:

Creating a Graphmart from a Dataset 466

3. Click the Create Graphmart button. Anzo displays the Create Graphmart screen and
populates the Title field by appending "Graphmart" to the name of the dataset.

4. On the Create Graphmart screen, you can edit the Title and add an optional Description.

5. By default the current working edition (Managed Edition) of the dataset is selected. If you want

to select a different edition, follow these steps:

a. click the Modify Edition () icon in the Actions column. The Modify Edition dialog box is

displayed. For example:

Creating a Graphmart from a Dataset 467

b. To choose a different edition, click the drop-down list at the top of the screen and select

the edition to use.

c. If you want to make changes to the selected edition, select or clear the Data Component

checkboxes on the left side of the screen to include or exclude components.

Tip
You can also rename a component by clicking the menu icon in the Actions column

and selecting Rename Component. In addition, you can remove a component
from a dataset by clicking the Actions menu and selecting Remove Component
from Dataset. However, note that choosing this option deletes the component
from the edition and deletes that component's data from the file system.

d. When you are finished making changes, choose one of the following options for saving

the changes:

l To save the changes as a new edition, click Save As New Edition on the left side
of the screen. The Create New Edition dialog box is displayed. Specify a Title and

optional Description and click Save.

Creating a Graphmart from a Dataset 468

l To save the changes as a copy of the existing edition, click Save Customizations.
Anzo clones the edition and adds the copy to the list on the Create Graphmart

screen.

6. To create the graphmart without activating it, click Create. If you want to create the graphmart
and activate it, click Create & Activate. Anzo creates the graphmart and displays the
Overview screen. For example:

Note
If you activate the graphmart and have more than one static AnzoGraph engine

configured or you have a Cloud Location configured for dynamic AnzoGraph

deployments, Anzo displays a Select an AnzoGraph Query Engine dialog box. Click
the drop-down list to select the engine to load the graphmart to, or select Spin up new
AnzoGraph (if available) to deploy a new instance. Then click OK.

Creating a Graphmart from a Dataset 469

Tip
If you want to cancel graphmart activation while data is loading, open the Activity Log by
clicking the Activity Log icon () in the main menu bar. Then click Cancel for the

Provisioning...graphmart activity. For example:

When graphmart creation is complete and the graphmart is activated, the data is available to access

and analyze. For more information, see Access & Analyze. For more information about graphmarts,

see Working with Graphmarts.

Creating a Graphmart from a Dataset 470

Adding a Dataset to a Graphmart

This topic provides instructions for adding a dataset from the Datasets catalog to an existing

graphmart.

1. In the Anzo application, expand the Blend menu and click Graphmarts. Anzo displays a list
of the existing graphmarts. For example:

2. On the Graphmarts screen, click the name of the graphmart that you want to add data to.

Anzo displays the Overview.

3. Click the Datasets tab. The screen lists the datasets in the graphmart. For example, the
image below shows a graphmart without any datasets because this is a graphmart that was

auto-generated from a data source:

Adding a Dataset to a Graphmart 471

4. Click the Add Dataset button. The Select Dataset dialog box is displayed.

5. In the dialog box, select the checkbox next to the dataset that you want to add, then click Add.
Anzo adds the dataset to the graphmart. (A new data layer is generated with a Load Dataset

Step that will load the dataset.)

6. By default the current working edition (Managed Edition) of the dataset is selected. If you want

to select a different edition, follow these steps:

a. Click the Edit icon () in the Actions column. The Modify Edition dialog box is displayed.

For example:

Adding a Dataset to a Graphmart 472

b. To choose a different edition, click the drop-down list at the top of the screen and select

the edition to use.

c. If you want to make changes to the selected edition, select (to include) or clear (to

exclude) the data component checkboxes on the left side of the screen.

Note
When you make changes to an edition while creating or changing a graphmart,

Anzo creates a copy of the edition (with the changes) and uses the copy as a

dataset in the graphmart. The original published edition remains unchanged.

d. When you are finished making changes, choose one of the following options for saving

the changes:

l If you want to save the changes as a new Saved Edition, click Save As New
Edition. Anzo displays the Create New Edition dialog box. Specify a Title and

optional Description for the edition, and click Save. Then click Save
Customizations on the Modify Edition screen.

Adding a Dataset to a Graphmart 473

l If you want to save the changes as a copy of the existing edition, click Save
Customizations. Anzo clones the edition and adds the copy to the list on the
screen.

7. To reload the graphmart and add the new dataset to AnzoGraph, click the Data Layers tab,
and then click the Reload button ().

Tip
If you want to cancel graphmart activation while data is loading, open the Activity Log by
clicking the Activity Log icon () in the main menu bar. Then click Cancel for the

Provisioning...graphmart activity. For example:

Once the graphmart is loaded into AnzoGraph, the data is available to access and analyze. For

more information, see Access & Analyze.

Adding a Dataset to a Graphmart 474

Dataset FAQ

This topic provides answers to frequently asked questions about datasets.

l How do I find the URI for a dataset?

l How do I find the catalog entry URI for a dataset?

l How do I associate a model with a dataset?

l How do I clear the components from the Managed Edition?

How do I find the URI for a dataset?

Anzo displays dataset details on the Overview screen for the dataset. To view and copy a dataset

URI, go to the Overview tab for the dataset. The URI is under General information on the right side

of the screen. You can click the clipboard icon () to copy the URI.

How do I find the catalog entry URI for a dataset?

To query from a remote client (such as over the SPARQL endpoint) a linked data set (LDS) that is

stored in a local volume, you need to specify the catalog entry URI for that LDS as the target data

set. The catalog entry URI uniquely identifies an LDS because it encodes both the LDS and its data

source (local volume) in the URI. Follow the steps below to find the catalog entry for an LDS.

1. First, retrieve the URI for the dataset whose catalog entry URI you want to find. For

instructions, see How do I find the URI for a dataset? above.

Dataset FAQ 475

2. Next, open the Find tab in the Query Builder. In the Anzo application, expand the Access
menu and click Query Builder. Then click the Find tab. The Find screen opens and the
System Datasource is selected as the target data source.

3. If the LDS is in a different volume, click the Source drop-down list and select the appropriate
volume. Typically, linked data sets are stored in the system volume.

4. Paste in the Object field the LDS URI that you copied in the first step. Then click Find. Anzo
returns the set of quads for which the LDS URI is the object. For example:

5. In the Subject field in the results, look for a URI that begins with
http://openanzo.org/catEntry. The value is the catalog entry URI for the LDS. For example:

Dataset FAQ 476

6. Copy the entire URI. This is the URI to use as the target data source for SPARQL endpoint

queries against the LDS. For more information about the SPARQL endpoint, see Access the

SPARQL Endpoint.

How do I associate a model with a dataset?

Follow the instructions below to associate a model that is in Anzo with an onboarded dataset.

1. In the Anzo application, expand the Blend menu and click Datasets. Anzo displays the
Datasets catalog, which lists the existing datasets.

2. Click the dataset that you want to add a model to. Anzo displays the Explore screen for the

dataset.

3. Click the Overview tab. Under the Description field, click Advanced to display the advanced
options. For example:

4. Click in the Models field to make it editable, then click the Models drop-down and select the
model to add to this dataset. To include a system model, select the Include System Data
checkbox. To select multiple models, click the drop-down list again and select another model.

5. When you have finished selecting models, click the checkmark icon () to save the change

and associate the model or models with the dataset.

Dataset FAQ 477

How do I clear the components from the Managed Edition?

Follow the instructions below if you want to clear out all of the existing components from the

Managed Edition so that the edition is recreated from scratch the next time the pipeline is published

or the dataset is exported from a graphmart.

Note
Permission to Manage Semantic Services is required to complete this task.

1. First, copy the URI of the dataset for which you want to clear the Managed Edition. How do I

find the URI for a dataset?

2. Next, In the Administration application, expand the Monitoring & Diagnostics menu and
select Semantic Services.

3. Search for the LinkedDataService and view its details. Then click the Service Builder tab in
Semantic Service Details.

4. Click the Please Select an Operation field and select clearWorkingEdition from the drop-

down list. The Request Statements for the service call are populated:

5. Toward the bottom of the request, replace the <temp://value_to_fill_in_1> placeholder URI
with the URI for the dataset.

Dataset FAQ 478

<http://serviceRequesta9e72cca-a79b-42f6-94a7-1ef9dfb1e65c> {

<http://serviceRequesta9e72cca-a79b-42f6-94a7-1ef9dfb1e65c> a

ld:ClearWorkingEditionRequest ;

ld:fldsToClear <temp://value_to_fill_in_1> ;

ld:typesToClear <temp://value_to_fill_in_0> .

<temp://value_to_fill_in_1> a ld:FileBasedLinkedDataSet .

}

For example:

<http://serviceRequesta9e72cca-a79b-42f6-94a7-1ef9dfb1e65c> {

<http://serviceRequesta9e72cca-a79b-42f6-94a7-1ef9dfb1e65c> a

ld:ClearWorkingEditionRequest ;

ld:fldsToClear

<http://csi.com/FileBasedLinkedDataSet/ee8d3d5792fd218a03b70fdf850b6a4c> ;

ld:typesToClear <temp://value_to_fill_in_0> .

<http://csi.com/FileBasedLinkedDataSet/ee8d3d5792fd218a03b70fdf850b6a4c> a

ld:FileBasedLinkedDataSet .

}

6. Comment out the ld:typesToClear <temp://value_to_fill_in_0> line. For

example:

<http://serviceRequesta9e72cca-a79b-42f6-94a7-1ef9dfb1e65c> {

<http://serviceRequesta9e72cca-a79b-42f6-94a7-1ef9dfb1e65c> a

ld:ClearWorkingEditionRequest ;

ld:fldsToClear

<http://csi.com/FileBasedLinkedDataSet/ee8d3d5792fd218a03b70fdf850b6a4c> ;

ld:typesToClear <temp://value_to_fill_in_0> .

<http://csi.com/FileBasedLinkedDataSet/ee8d3d5792fd218a03b70fdf850b6a4c> a

ld:FileBasedLinkedDataSet .

}

7. Click the Run Service button to clear the edition. Anzo returns a response such as the
following example when the request is processed:

@prefix n-1060687345: <http://openanzo.org/ClearWorkingEditionResponse/> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix ld: <http://cambridgesemantics.com/ontologies/2009/05/LinkedData#> .

@prefix ss: <http://openanzo.org/ontologies/2008/07/SemanticService#> .

Dataset FAQ 479

n-1060687345:effbda5b-ce9c-4190-abb1-6f6efd07f5d8 {

n-1060687345:effbda5b-ce9c-4190-abb1-6f6efd07f5d8 ld:wasWorkingEditionCleared

"true"^^<http://www.w3.org/2001/XMLSchema#boolean> .

n-1060687345:effbda5b-ce9c-4190-abb1-6f6efd07f5d8 rdf:type

ld:ClearWorkingEditionResponse .

n-1060687345:effbda5b-ce9c-4190-abb1-6f6efd07f5d8 rdf:type ss:ServiceResponse

}

Now, if you browse the Managed Edition for the dataset, you will see that the edition does not

contain any data components.

Dataset FAQ 480

Working with Graphmarts

The topics in this section provide guidance on working with graphmarts.

In this section:
Creating a Graphmart 482

Copying a Graphmart 483

Graphmart Settings Reference 485

Creating an Elasticsearch Index from a Graphmart 489

Adding Data Layers to Graphmarts 497

Adding Steps to Layers 512

Creating Data on Demand Endpoints 574

Sharing Access to Graphmarts 592

Graphmart FAQ 601

Working with Graphmarts 481

Creating a Graphmart

Besides importing an exported graphmart, there are four ways to create a new graphmart:

1. You can create a graphmart directly from a connected data source. For instructions, see

Creating a Graphmart from a Data Source.

2. You can create a graphmart from a dataset in the Datasets catalog. For instructions, see

Creating a Graphmart from a Dataset.

3. You can create a graphmart by copying an existing one. For instructions, see Copying a

Graphmart.

4. Or you can create an empty graphmart and build it from scratch by adding data layers and

steps that load and transform data. To create an empty graphmart, go to the Graphmarts

screen in the Anzo application, click Add Graphmart, and select Create New Graphmart.
See Graphmart Settings Reference for information about graphmart settings, and see Adding

Data Layers to Graphmarts for information about adding layers and steps.

Creating a Graphmart 482

Copying a Graphmart

Follow the instructions below if you want to create a graphmart by making a copy of an existing

graphmart and its data layers and steps. For instructions on creating a new graphmart from scratch,

see Creating a Graphmart.

1. In the Anzo application, expand the Blend menu and click Graphmarts. Anzo displays a list
of the existing graphmarts. For example:

2. On the Graphmarts screen, click the name of the graphmart that you want to copy. Anzo

displays the graphmart Overview. At the top of the screen, click the Save a Copy button.

The Clone dialog box is displayed. For example:

Copying a Graphmart 483

3. In the Clone dialog box you have the option to edit the new graphmart name in the Clone Title
field and modify the description in the Clone Description field.

4. When you are ready to save the copy, click Save a Copy.

Anzo creates and displays the new graphmart. You can proceed with modifying the graphmart

settings, changing and adding datasets, data layers, or Data on Demand endpoints, or activating

the new graphmart.

Copying a Graphmart 484

Graphmart Settings Reference

This topic describes the graphmart configuration settings that are available on the graphmart

Overview tab.

Setting Description

Load Priority If you want Anzo to prioritize the order in which graphmarts are activated when
reconnecting to AnzoGraph or resetting and reloading AnzoGraph, you can
designate a Load Priority for each graphmart. When reloading AnzoGraph,
Anzo activates the graphmarts in sequence, starting with the lowest Load
Priority number. The default value is 100.

Metrics Profile Data Upon Activation

This setting is disabled by default and controls whether a data profile is

automatically generated each time the graphmart is activated. For

information about data profiles, see Generating a Graphmart Data Profile.

Disable Load Disable Populating Counts During Load Operations

Graphmart Settings Reference 485

Setting Description

Counts This setting is disabled by default controls whether Anzo periodically sends

select (count(*) as ?count)... queries to AnzoGraph to count the

total number of statements that are being loaded in each data layer.

Disabling the load counts may increase load performance as it decreases

the number of queries that run during graphmart activation.

Data Loading
Settings

Load Layers that Do Not Fail

This setting is enabled by default and controls what to do if a data layer fails

during graphmart activation. When enabled (the default setting), the

graphmart is configured to load all layers that succeed and skip any layers

that fail. When disabled, the entire graphmart activation is aborted if any

layer fails.

Ignore Source
Errors

Ignore any Step or View's Source Layer if they Failed to Load

This setting is enabled by default and controls what to do if a source that is

referenced by a step or view fails to load. For example, if the source for a

Query Step is set to "All Previous Layers Within Graphmart" and one of the

previous layers fails to load, this setting controls whether to run the Query

Step but ignore the failed layer or fail the step since one of the sources

failed.

If Ignore Source Errors is enabled (the default setting), Anzo ignores the
failed source and runs the step against the sources that did not fail. For

example, if ${usingSources} in a Query Step translates to

USING <layer1>

USING <layer2>

USING <layer3>

And layer1 failed to load, Anzo runs the Query Step but ignores layer1 and

automatically changes the query to

Graphmart Settings Reference 486

Setting Description

USING <layer2>

USING <layer3>

If Ignore Source Errors is disabled and a source layer fails, any steps or
views that use that source will also fail since the source is not available.

Leave
Graphmart
Online During
Refresh

When Refreshing Layers, Leave Graphmart and Layer Online

This setting is disabled by default and controls whether a graphmart

remains online while it is being refreshed in AnzoGraph. When this option is

enabled, if a user clicks the Refresh button to refresh a graphmart (or the
Refresh icon on a data layer), Anzo copies the existing layers into

temporary graphs so that the data remains online while the original graphs

are refreshed. When the refresh is complete, the temporary graphs are

deleted.

Note
This setting applies only to Refresh operations. If Leave Graphmart
Online During Refresh is enabled and a user clicks Reload, the data
layers will not remain online. During reloads all of the data is dropped

and then loaded again.

Manual Refresh
Graphmart

Once Loaded, Changes only Pushed to AnzoGraph Manually (Only
Affects Journal Based Data)

This setting is enabled by default and controls whether changes to a dataset

in this graphmart are automatically deployed to AnzoGraph without

requiring a manual refresh or reload of the graphmart. This setting only

applies to graphmarts with Load Dataset Steps that load a journal-based

data set, such as a system metadata graph. When this option is enabled,

changes to the journal-based data set are only deployed to AnzoGraph

when the graphmart is manually reloaded or refreshed. When this option is

Graphmart Settings Reference 487

Setting Description

disabled, changes to the dataset are automatically loaded to AnzoGraph

without requiring a manual refresh.

Generate
Statistics After
Each Layer

Call Generate Statistics after Loading Each Layer, Instead of Only at the
End

Typically the AnzoGraph connection is configured to automatically initiate

AnzoGraph's internal statistics gathering queries after loading a graphmart.

However, if a user refreshes individual layers rather than the entire

graphmart, those queries are not triggered. Enabling this setting initiates

the statistics gathering queries each time a layer is loaded. This helps the

AnzoGraph query planner generate ideal query execution plans for queries

that are run against the refreshed data layers.

Require
Elasticsearch

This Graphmart Requires Elasticsearch

This setting is disabled by default. If you plan to include unstructured

datasets in this graphmart or configure a data layer that creates an

Elasticsearch index, you can enable this option to ensure that Anzo

validates the connection to Elasticsearch whenever this graphmart is

activated, reloaded, or refreshed.

Graphmart Settings Reference 488

Creating an Elasticsearch Index from a Graphmart

By associating an Elasticsearch index with a data layer, you can load data from a graphmart to an

Elasticsearch index, enabling you to perform free-text and pattern searches on your knowledge

graphs. This topic provides instructions for configuring a workflow that generates an Elasticsearch

index and snapshot from a graphmart.

l Prerequisites

l Add an Export Step to the Graphmart

l Add a Layer to Manage the Index

l Add a Step to Create the Index

l Add a Step to Take a Snapshot of the Index

Prerequisites

Before configuring a graphmart to create an Elasticsearch index, make sure that the following

requirements are met:

1. A supported version of Elasticsearch is installed and configured. For more information, see

Elasticsearch Requirements in the Deployment Guide.

2. The Elasticsearch instance is connected to Anzo. See Connecting to Elasticsearch in the

Administration Guide for more information.

3. The AnzoGraph instance that you will load the graphmart to is also connected to

Elasticsearch. Configure the connection by selecting the Elasticsearch instance in the

Elasticsearch Configuration field in the AnzoGraph configuration. For more information,
see Connecting to AnzoGraph in the Administration Guide.

Add an Export Step to the Graphmart

First, if a file-based linked data set (FLDS) has not been generated for this graphmart, add an

Export Step to the last layer in the graphmart so that all of the graph data is exported to an FLDS
on the file store. For instructions on adding an Export Step, see Export Data to an FLDS (Export

Creating an Elasticsearch Index from a Graphmart 489

https://docs.cambridgesemantics.com/anzo/v5.4/userdoc/unstructured-es-reqs.htm
https://docs.cambridgesemantics.com/anzo/v5.4/userdoc/admin-connect-elasticsearch.htm
https://docs.cambridgesemantics.com/anzo/v5.4/userdoc/admin-connect-elasticsearch.htm

Step).

If the graphmart has an Export Step, note the Target FLDS for the step and proceed to Add a Layer

to Manage the Index below.

Add a Layer to Manage the Index

Follow the steps below to add a layer to a graphmart and configure it to manage an Elasticsearch

index.

1. Add a new data layer to the graphmart. This new layer will be associated with the

Elasticsearch index and contain steps to generate the index and snapshot. For instructions on

adding a layer, see Creating a New Layer.

2. In the new layer, click the Elasticsearch Indexing tab. Then select the Associate an
Elasticsearch index with this layer checkbox. When this setting is enabled, Anzo creates

an index on the Elasticsearch server and links this layer to that index.

Note
Though the index will be populated with data from other layers in the graphmart, you do

not need to modify those layers to associate them with the index. Associate an
Elasticsearch index with this layer should be disabled on all layers that do not
contain Elasticsearch Indexing Steps.

3. The Advanced settings on this screen relate to managing the index's life cycle. It is not

necessary to modify the settings to successfully generate an index for the graphmart. If you

have an advanced use case, such as a case that requires linking this layer to an existing index

or needing to add custom Elasticsearch-specific index or mapping configurations, expand

Creating an Elasticsearch Index from a Graphmart 490

Advanced to access the options. The list below describes the available settings.

l Elasticsearch Index Name: By default, the new index is given a system-generated

name. If you are linking this layer to an existing index, add the existing index name to

this field. Or, if you plan to reference this index elsewhere and want to give it a human-

readable name, you can specify a custom name.

l Clear Elasticsearch index before this layer executes: This option is enabled by
default and configures the layer so that the index is cleared and recreated each time this

layer is run.

l Delete Elasticsearch index on layer unload: This option is enabled by default and
configures the layer so that the index is deleted any time the layer is deactivated or

reloaded. The index is recreated during the reload or when the graphmart is activated

again. If you do not want the index to be deleted when the layer is offline, clear the

checkbox.

l Elasticsearch Index Settings: This field can be used to add any Elasticsearch-specific
index settings that you want to apply. Add the settings in the following JSON format:

{

"index": {

Creating an Elasticsearch Index from a Graphmart 491

"<settings_and_values>"

}

}

For example:

{

"index": {

"number_of_shards": "1",

"number_of_replicas": "0",

"routing": {

"allocation": {

"include": {

"_tier_preference": null

}

}

}

}

}

l Elasticsearch Index Mapping: This field can be used to add any Elasticsearch-specific
mapping properties that you want to apply. Add the properties in the following JSON

format:

{

"properties": {

"<properties_and_values>"

}

}

For example:

{

"properties": {

"movie_Abstract": { "type": "keyword" },

"movie_ID": { "type": "long" },

"movie_Title": { "type": "text" }

}

}

4. When you have finished configuring the layer, click Save to add it to the graphmart and return
to the Data Layers screen. Then proceed to Add a Step to Create the Index below.

Creating an Elasticsearch Index from a Graphmart 492

Add a Step to Create the Index

Follow the steps below to add an Elasticsearch Indexing Step to the new layer and configure it to

generate an index.

1. On the Data Layers screen, click the menu icon () for the new layer and select Add

Step/View.

2. On the Add Step/View screen, select Elasticsearch Indexing Step and click OK. The Create
dialog box is displayed.

3. On the Details tab, add a name for the step in the Title field, and configure any optional
settings. For details about the settings, see Create an Elasticsearch Index (Elasticsearch

Indexing Step).

4. When you have finished configuring the Details tab, click the Query tab. The tab includes a
template for writing a SPARQL SELECT query that incorporates the Graph Data Interface

(GDI) service to generate an index on the Elasticsearch server.

Creating an Elasticsearch Index from a Graphmart 493

Unlike queries for other steps, this step does not run an INSERT query because the data is

not being inserted into AnzoGraph. Edit the template as needed. You can click the Preview in
Query Builder button to open the query in the Query Builder, where you can perform practice

runs to see results without having to refresh the layer. For more information about writing GDI

queries against an Elasticsearch source, see Querying an Elasticsearch Source.

Important
Do not include Elasticsearch connection or index parameters in the query. Anzo

automatically populates that information from the AnzoGraph configuration when the

step is run.

5. When you have completed the indexing query, click Save to save the configuration and add
the step to the layer.

6. Next, users typically add an Elasticsearch Snapshot Step to the same layer. The step takes a

snapshot of the index and saves it to the dataset (FLDS) on disk. Storing the snapshot with

Creating an Elasticsearch Index from a Graphmart 494

the FLDS ensures that the index is included if the dataset is added to another graphmart. If

you want to create a snapshot, continue to Add a Step to Take a Snapshot of the Index below.

Add a Step to Take a Snapshot of the Index

Follow the steps below to add an Elasticsearch Snapshot Step to the new layer and configure it to

save a snapshot of the index to the FLDS.

1. On the Data Layers screen, click the menu icon () for the new layer and select Add

Step/View.

2. On the Add Step/View screen, select Elasticsearch Snapshot Step and click OK. The
Create dialog box is displayed.

3. On the Details tab, add a name for the step in the Title field.

4. Click the Target FLDS field and select the FLDS that is created by the Export Step in the

graphmart.

5. Configure any other optional settings on the Details tab. For information about the settings,

see Take a Snapshot of an Index (Elasticsearch Snapshot Step).

6. Click Save to save the configuration and add the step to the layer.

Creating an Elasticsearch Index from a Graphmart 495

Once you have finished configuring the new layer and steps, reload the graphmart to generate (or

update) the FLDS, create the Elasticsearch index, and save a snapshot of the index to the FLDS.

Creating an Elasticsearch Index from a Graphmart 496

Adding Data Layers to Graphmarts

The topics in this section provide instructions for creating and configuring data layers. For

conceptual information about graphmarts, layers, and steps, see Graphmart Concepts in the

Getting Started Guide.

l Creating a New Layer

l Cloning a Layer

l Using Query Contexts

l Defining Execution Conditions

l Advanced Data Access Settings

Creating a New Layer

Follow the steps below to create a new data layer in a graphmart. For instructions on creating a new

layer by copying an existing one, see Cloning a Layer.

1. In the Anzo application, expand the Blend menu and click Graphmarts. Anzo displays a list
of the existing graphmarts. For example:

2. Click the name of the graphmart that you want to add a layer to. The Overview tab is

displayed. For example:

Adding Data Layers to Graphmarts 497

https://docs.cambridgesemantics.com/anzo/v5.4/userdoc/graphmart-concepts.htm

3. Click the Data Layers tab. Anzo displays the existing data layers. For example:

Creating a New Layer 498

4. Click Add and select New Layer. Anzo displays the Create dialog box.

5. Specify a name for the layer in the Title field and an optional description in the Description
field.

6. Determine how you want to control changes to this layer's dependent data models:

l If you want Anzo to automatically deploy to AnzoGraph any changes to the related

models without having to manually refresh the layer or graphmart, select the Auto
Deploy Ontology Changes checkbox.

Note
The Manual Refresh Graphmart setting on the graphmart must be disabled for
automatic deployment of models to work. See Graphmart Settings Reference for

information about graphmart settings.

l If you want model changes to be deployed to AnzoGraph only when this layer (or entire

graphmart) is refreshed or reloaded, leave the Auto Deploy Ontology Changes
checkbox empty (disabled).

7. Determine whether to Disable Loading Counts for this layer. This setting controls whether
Anzo periodically sends COUNT queries to AnzoGraph while this layer is reloading or

refreshing. Disabling the load counts may increase load performance as it decreases the

number of queries that are executed during loads.

Creating a New Layer 499

8. Click Save to add the new layer to the graphmart and return to the Data Layers screen.

The new layer becomes the last layer in the graphmart. If you want to change the order of the layers,

you can click the black bar on the left side of a layer and drag the layer up or down. Data layers are

processed from top to bottom.

Tip
The Refresh icon () on the new layer indicates that the layer is out of sync with the data that

is in AnzoGraph. Once you configure the new layer and add data processing steps, you can
click the Reload button () at the top of the screen to reload the entire graphmart, or you can

click the Refresh icon () on the layer to reload only that layer.

See Adding Steps to Layers for instructions on creating steps.

Cloning a Layer

Follow the steps below to create a new data layer by copying an existing one from any graphmart.

For instructions on creating a layer from scratch, see Creating a New Layer.

1. In the Anzo application, expand the Blend menu and click Graphmarts. Anzo displays a list
of the existing graphmarts. For example:

Cloning a Layer 500

2. Click the name of the graphmart that you want to add a layer to. The Overview tab is

displayed. For example:

3. Click the Data Layers tab. Anzo displays the existing data layers. For example:

4. click Add and select Add Existing. Anzo opens the Select a value to add dialog box, which
lists the existing layers for all graphmarts. For example:

Cloning a Layer 501

5. Select the layer that you want to copy and click OK. The Clone dialog box is displayed. For
example:

6. In the Clone dialog box, you have the option to edit the Clone Title and/or Clone
Description.

7. Click Save As to add the cloned layer and any steps that the layer contains to the graphmart.

The new layer becomes the last layer in the graphmart. If you want to change the order of the layers,

you can click the black bar on the left side of a layer and drag the layer up or down. Data layers are

processed from top to bottom.

Cloning a Layer 502

Tip
The Refresh icon () on the new layer indicates that the layer is out of sync with the data that

is in AnzoGraph. Once you configure the new layer and add data processing steps, you can
click the Reload button () at the top of the screen to reload the entire graphmart, or you can

click the Refresh icon () on the layer to reload only that layer.

See Adding Steps to Layers for instructions on creating steps.

Using Query Contexts

When you use the Graph Data Interface (GDI) for querying data sources, you may connect to

sources that require input of sensitive connection and authorization information such as keys,

tokens, and user credentials. When configuring a step that runs a GDI query, Cambridge Semantics

recommends that you refer to a Query Context whenever possible. Contexts store sensitive

information as key-value pairs. Queries reference only the keys from the context and the sensitive

values are abstracted from the requests that are sent to the data source and AnzoGraph. This topic

provides information on configuring Query Contexts and referring to Context Variables in a query.

l Overview of Query Contexts

l Referencing Context Variables in a Query

Overview of Query Contexts

Query contexts are accessible from the Query Context tab that is available when creating or editing
a data layer or step. The image below shows the Query Context tab for a layer.

Using Query Contexts 503

Context Providers

Connections in Anzo implement the Context Provider interface. For example, file store
connections and data source connections provide contexts (in the form of JSON objects) that

contain key-value pairs. The contexts contain the source connection details such as URLs,

database names, user names, passwords, and tokens. A context is passed to the data source

when a request is made against that source. To use one of the Anzo-generated Context

Providers that was created for a pre-existing connection, select that provider from the drop-down

list. When you select a provider, the variables from that context are displayed under Context

Variables, as shown in the image below:

Using Query Contexts 504

Context Variables

When you select a Context Provider, the variables from the selected context are displayed under

Context Variables. You can copy the text and then use any key in the list as a variable in any

query that connects to this data source. Typically there are two versions of each variable. Either

version can be used in a query. The short versions are generated from the long versions for ease

of use and readability in queries. For information about referencing variables in a query, see

Referencing Context Variables in a Query below.

Custom Context

Custom Contexts are user-defined key-value pairs that are not associated with a particular

Context Provider. To add a key and define its value, click the Add Key button. Then specify the
Key Name and Key Value in the Create Context Key dialog box. Click Create to add the key-
value pair to the context.

Using Query Contexts 505

Tip
When defining custom keys at the layer level, make sure that the key names are unique. A

layer may have different steps that connect to different sources but reference the same

custom context. The image below, for example, creates URL, username, and password

Context Keys for a MySQL database.

Referencing Context Variables in a Query

The format that you use for referencing a Context Variable in a query depends on the type of

AnzoGraph plugin or extension that is being called by the query. Generally, contexts are only used

in steps that contain GDI queries. When referencing context keys in GDI queries, use the following

format:

{{@context_key_name}}

For example, the following GDI query references three variables from the Context Provider shown

above: url, user, and password.

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT DISTINCT *

WHERE

{

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

Using Query Contexts 506

{

?data a s:DbSource ;

s:url "{{@db.718cc8ab3e9fb2b22345ad4dc31e685c.url}}" ;

s:username "{{@db.718cc8ab3e9fb2b22345ad4dc31e685c.user}}" ;

s:password "{{@db.718cc8ab3e9fb2b22345ad4dc31e685c.password}}" ;

s:selector "[dbo].[FILM]" ;

?year ("[YEAR]" xsd:int);

?length (xsd:int) ;

?title (xsd:string) ;

?subject ("[dbo].[FILM].[SUBJECT]" xsd:string) ;

?actor ("[ACTOR]" xsd:string) ;

?actress (xsd:string) ;

?director (xsd:string) ;

?popularity (xsd:int) ;

?awards (xsd:string) ;

?image (xsd:string) .

FILTER(?year >= 1990 && ?year < 2000)

FILTER(?subject = "Drama" || ?subject = "Action")

FILTER(?length <= 90)

}

}

Defining Execution Conditions

Execution conditions can be defined at the data layer or step level and are used to conditionalize the

execution of the layer or step based on the result of a specified Validation Condition.

Note
Validation Conditions are defined in Validation Steps. In order to set up an Execution

Condition, the Graphmart needs to have at least one Validation Step that defines a
Condition Variable. Validation Conditions can be used across all Data Layers in the same
Graphmart. For guidance on configuring a Validation Step, see Validate the Data (Validation

Step).

This topic focuses on configuring an execution condition at the data layer level.

Defining Execution Conditions 507

Configuring an Execution Condition

Execution Conditions are configured from the Execution Condition tab that is available when
creating or editing a layer or step. The image below shows the Execution Condition tab for a layer.

Enable Layer Based on Boolean Condition

This setting indicates whether to enable this data layer only if the returned value from the

Validation Condition is either true or false. You specify true or false in the Conditional Variable
If Result field. If the Validation Condition fails, the layer is disabled.

Conditional Variable

This field specifies the variable that you want to base this execution condition on. If the list is

empty, that means either there are no Validation Steps in the graphmart or a Validation Step

exists but it does not include a Condition Variable (defined on the Options tab). Refer to Validate

the Data (Validation Step) for more information.

Conditional Variable If Result

If you enabled the Enable Layer Based on Boolean Condition setting, select true or false
from the drop-down list. The data layer will be enabled only if the result of the Validation Step

Query matches the value that you specified. If Enable Layer Based on Boolean

Condition is disabled, leave this field blank.

Defining Execution Conditions 508

Advanced Data Access Settings

This topic provides reference information about the Advanced Data Layer Hi-Res Analytics settings

that control how a layer is exposed to and affects Hi-Res Analytic dashboards.

Important
Changing these settings can have unexpected consequences.

The Advanced Hi-Res Analytics settings are available on the Data Access tab when you create or
edit a data layer:

The sections below describe each of the available settings:

l Display data outputted by the layer in Hi-Res Analytics dashboards

l Display Layer in Data Layers in Hi-Res Analytics

l User can both view and hide the data outputted by the layer

l By default, the data outputted by the layer is visible

l Hide from Other Layers

Display data outputted by the layer in Hi-Res Analytics dashboards

This setting controls whether the data generated by the steps is available to query and display in Hi-

Res Analytics dashboards:

Advanced Data Access Settings 509

l When the setting is enabled (the default value), the layer's data is available to dashboards.

l When the setting is disabled, other data layers in the graphmart can use the layer's data, but
the data is not available to dashboards.

Display Layer in Data Layers in Hi-Res Analytics

This setting controls whether Anzo displays the layer in the Data Layers panel on Hi-Res Analytics

dashboards. The image below shows an example Data Layers panel:

l When the setting is enabled (the default value), the layer is listed in the Data Layers panel in
dashboards.

l When the setting is disabled, the layer's data is always used in dashboards but users do not
see the layer listed in the Data Layers panel.

User can both view and hide the data outputted by the layer

This setting controls whether users have the option to show and hide the layer in the Data Layers

panel on dashboards:

l When the setting is enabled (the default value), the layer is listed in the Data Layers panel in
dashboards and users have the option to show and hide the layer.

l When the setting is disabled, whether the layer shows up in the Data Layers panel depends
on the By default, the data outputted by the layer is visible setting. If the layer is visible in
the Data Layers panel ("By default, the data outputted by the layer is visible" is enabled),

users cannot toggle it on and off.

By default, the data outputted by the layer is visible

This setting controls whether the data that is generated by the steps in the layer is visible in queries

and Hi-Res Analytics dashboards:

Advanced Data Access Settings 510

l When the setting is enabled (the default value), the layer is listed in the Data Layers panel in
dashboards and is selected by default. The layer's data is also included by default when

queries are run against the graphmart.

l When the setting is disabled, the layer shows up in the Data Layers panel but is not selected.
To include the layer's data in Hi-Res Analytic queries, users must select the layer. In addition,

the layer's data is automatically excluded from queries that are run against the graphmart. To

include data from the layer in results, the queries must explicitly list the layer's URI.

Hide from Other Layers

This setting controls whether the other layers in the graphmart can act upon the source data in this

layer.

l When the setting is disabled (the default value), this layer is available as a choice in the
Source data to act upon drop-down list when a step's source is configured.

l When the setting is enabled, this layer is not listed as a choice in the Source data to act
upon list when the a step's source configured.

Advanced Data Access Settings 511

Adding Steps to Layers

The steps in a data layer perform the data operations, such as loading, creating, deleting, changing,

or exporting data. You can add any number of steps to a layer. The topics in this section provide

information about configuring each type of step.

l Directly Load a Data Source (Direct Load Step)

l Create an Elasticsearch Index (Elasticsearch Indexing Step)

l Take a Snapshot of an Index (Elasticsearch Snapshot Step)

l Export Data to an FLDS (Export Step)

l Load a Dataset from the Catalog (Load Dataset Step)

l Pre-Compile a Query (Pre-Compile Query Step)

l Create a Reusable Query Template

l Run a Transformation Query (Query Step)

l Infer New Data (RDFS+ Inference Step)

l Validate the Data (Validation Step)

l Construct a View of the Data (View Step)

Directly Load a Data Source (Direct Load Step)

With no mapping required, a Direct Load Step can be used to automatically generate a graph and

model for a data source. The Direct Load Step is the only type of step with the ability to manage

generated models. A model that is generated by a Direct Load Step is automatically registered in

Anzo is linked to and managed by the layer that contains the step. If a query is changed, additional

Direct Load Steps are added to the same layer, or the underlying source schema changes, the

managed model is automatically updated when the graphmart is reloaded or refreshed. Follow the

steps below to create a Direct Load Step.

Adding Steps to Layers 512

1. Go to the graphmart for which you want to add a step and then click the Data Layers tab.

2. On the Data Layers tab, find the layer that you want to add the step to. Click the menu icon ()

for that layer and select Add Step/View. The Add Step/View dialog box is displayed with the

New tab selected.

3. To create a new Direct Load step, select Direct Load Step and then click OK. If you want to
clone an existing step, click the Existing Steps tab, select the step that you want to clone,
and then click OK. Anzo creates or clones the step and displays the Details tab:

Directly Load a Data Source (Direct Load Step) 513

4. On the Details tab, configure the following options as needed:

l Title: The required name of the step.

l Description: An optional short description of the step.

l Enabled: When creating a new step, the Enabled option is selected by default,

indicating that the step is enabled and will run when the layer is loaded or refreshed. If

you want to disable the step so that it is not processed, clear the Enabled checkbox.

l Source: The source data that this step should act upon. Steps can build upon the data
generated by steps in other layers or can be self-contained, applying changes that relate

only to the data defined in the layer that contains this step. You can select any number of

the following options:

o Self: This option is selected by default and means that the step runs against the
data that is in the parent layer.

o All Previous Layers Within Graphmart: This option means that the step runs
against the data in all of the successful layers that precede the layer this step is in.

Any failed layers are ignored.

o Previous Layer Within Graphmart: This option means that the query runs
against the data that is in the one layer that precedes the layer this step is in.

o Layer Name: The Source drop-down list also includes options for layer names.

You can choose a specific layer to act upon the data in that layer.

l Data models: This optional field specifies the model or models to associate with this
step. By default, Managed is selected. If you are onboarding a source that does not
have a model, make sure Managed remains specified so that the step generates a

model. See Important Notes on Managed Models below for more information about

managed models.

Directly Load a Data Source (Direct Load Step) 514

The Data Models list displays all of the available models. By default, the field is set to
Exclude System Data (). If you want to choose a system model, click the toggle button

on the right side of the field to change it to Include System Data (). When system data

is included, the drop-down list displays the system models in addition to the user-

generated models.

l Pre-Run Generate Statistics: This option controls whether to initiate AnzoGraph's
internal statistics gathering queries before running the query to pre-compile. The

statistics gathering helps ensure that the AnzoGraph query planner generates ideal

query execution plans for queries that are run against the graphmart.

5. When you have finished configuring the Details tab, click the Query tab. This tab defines the
query that this step should run.

6. Typically Direct Load Step queries are GDI RDF and Ontology Generator queries. Using a

relatively simple SPARQL query, the GDI Generators recognize the structure of a data source

and automatically generate the necessary statements. Invoking the Generators is preferable

when the structure of the data is very complex, such as a JSON data source with many inner

repeating structures or a database with many tables and keys. When the source contains

complex structures, only the required statements are generated, avoiding cross-products and

optimizing query execution and memory usage. For details about writing GDI Generator

queries, see GDI Generator Query Syntax.

Directly Load a Data Source (Direct Load Step) 515

Note
If your query connects to a source that requires input of connection and authorization

information, Cambridge Semantics recommends that you do not include the connection

and authorization values directly in the query. Instead, replace those values with

Context Variables from a Query Context. You can access Context Providers for each

data source from the step's Query Context tab. For detailed information about query

contexts and referencing variables in a query, see Using Query Contexts.

7. When you have finished writing the query, click Save to save the step configuration.

Once the Details tab is configured and the query is written, the step can be run. For information

about running this step conditionally by setting up an execution condition, see Defining Execution

Conditions.

Important Notes on Managed Models

Though an ontology that is generated in a Direct Load Step is registered in Anzo and is available for

viewing in the Model editor, the model is owned and managed by the data layer that contains
the Direct Load Step. That means any manual changes made to the model outside of the step,
such as from the Model editor, will be overwritten any time the graphmart or layer is refreshed or

reloaded. Do not modify generated managed models except by editing (or adding) Direct
Load Step queries. For information on updating managed models, see Editing a Managed Model.

There is only one managed model per layer. If you include multiple Direct Load Steps in the
same layer, they will all update the same ontology. This functionality can be useful if you want to

align the data and generated model across multiple steps. If you have multiple sources that are not

intended to align or update the same model, create separate layers.

If you delete a layer that includes a managed model, the model is also deleted. Use caution
when referencing a managed model outside of a graphmart. For example, if you create a dataset

and reference a managed model when you select the ontology, the reference will break if the data

layer that manages the model is deleted.

Directly Load a Data Source (Direct Load Step) 516

Create an Elasticsearch Index (Elasticsearch Indexing Step)

This topic provides guidance on configuring an Elasticsearch Indexing Step that generates an

Elasticsearch index from data in a graphmart. Follow the steps below to create an Elasticsearch

Indexing Step.

Tip
For an overview on creating an Elasticsearch index and snapshot from a graphmart, see

Creating an Elasticsearch Index from a Graphmart.

1. Go to the graphmart for which you want to add a step and then click the Data Layers tab.

2. On the Data Layers tab, find the layer that you want to add the step to. Click the menu icon ()

for that layer and select Add Step/View. The Add Step/View dialog box is displayed with the

New tab selected.

3. To create a new Elasticsearch Indexing step, select Elasticsearch Indexing Step and then
click OK. If you want to clone an existing step, click the Existing Steps tab, select the step
that you want to clone, and then click OK. Anzo creates or clones the step.

If this is the first Elasticsearch-related step in the layer, the following warning is displayed:

Create an Elasticsearch Index (Elasticsearch Indexing Step) 517

The warning is to inform you that the Elasticsearch index-related configuration settings at the

layer level are automatically adjusted to the default settings for layers that contain

Elasticsearch Indexing or Snapshot Steps. Those settings are on the layer's Elasticsearch

Indexing tab. The image below shows the tab with the default settings:

Create an Elasticsearch Index (Elasticsearch Indexing Step) 518

4. If necessary, click OK to close the warning. The Details tab is displayed:

5. On the Details tab, configure the following options as needed:

l Title: The required name of the step.

l Description: An optional short description of the step.

l Enabled: When creating a new step, the Enabled option is selected by default,

indicating that the step is enabled and will run when the layer is loaded or refreshed. If

you want to disable the step so that it is not processed, clear the Enabled checkbox.

l Source: The source data that this step should act upon. Steps can build upon the data
generated by steps in other layers or can be self-contained, applying changes that relate

only to the data defined in the layer that contains this step. You can select any number of

the following options:

o Self: This option is selected by default and means that the step runs against the
data that is in the parent layer.

o All Previous Layers Within Graphmart: This option means that the step runs
against the data in all of the successful layers that precede the layer this step is in.

Any failed layers are ignored.

Create an Elasticsearch Index (Elasticsearch Indexing Step) 519

o Previous Layer Within Graphmart: This option means that the query runs
against the data that is in the one layer that precedes the layer this step is in.

o Layer Name: The Source drop-down list also includes options for layer names.

You can choose a specific layer to act upon the data in that layer.

l Data models: This optional field specifies the model or models to associate with this
step. The list displays all of the available models. By default, the field is set to Exclude
System Data (). If you want to choose a system model, click the toggle button on the

right side of the field to change it to Include System Data (). When system data is

included, the drop-down list displays the system models in addition to the user-

generated models.

6. When you have finished configuring the Details tab, click the Query tab. This tab contains the
Elasticsearch indexing query to run. The template includes the syntax for writing a SPARQL

SELECT query that uses the Graph Data Interface (GDI) to generate the index on the

Elasticsearch server. Unlike queries for other steps, this step does not run an INSERT query

because the data is not being inserted into AnzoGraph. For general information about writing

GDI queries against Elasticsearch sources, see Querying an Elasticsearch Source.

Note
Do not include Elasticsearch connection or index parameters in the query. Anzo

automatically populates that information from the AnzoGraph configuration when the

step is run.

Create an Elasticsearch Index (Elasticsearch Indexing Step) 520

7. Click Save to save the step configuration.

Once the Details tab is configured and the query is written, the step can be run. For information

about running this step conditionally by setting up an execution condition, see Defining Execution

Conditions.

Take a Snapshot of an Index (Elasticsearch Snapshot Step)

This topic provides guidance on configuring an Elasticsearch Snapshot Step that generates a

snapshot of an Elasticsearch index that was created from a graphmart. Follow the steps below to

create an Elasticsearch Snapshot Step.

Tip
For an overview on creating an Elasticsearch index and snapshot from a graphmart, see

Creating an Elasticsearch Index from a Graphmart.

1. Go to the graphmart for which you want to add a step and then click the Data Layers tab.

2. On the Data Layers tab, find the layer that you want to add the step to. Click the menu icon ()

for that layer and select Add Step/View. The Add Step/View dialog box is displayed with the

New tab selected.

Take a Snapshot of an Index (Elasticsearch Snapshot Step) 521

3. To create a new Elasticsearch Snapshot step, select Elasticsearch Snapshot Step and then
click OK. If you want to clone an existing step, click the Existing Steps tab, select the step
that you want to clone, and then click OK. Anzo creates or clones the step.

If this is the first Elasticsearch-related step in the layer, the following warning is displayed:

The warning is to inform you that the Elasticsearch index-related configuration settings at the

layer level are automatically adjusted to the default settings for layers that contain

Elasticsearch Indexing or Snapshot Steps. Those settings are on the layer's Elasticsearch

Indexing tab. The image below shows the tab with the default settings:

Take a Snapshot of an Index (Elasticsearch Snapshot Step) 522

4. If necessary, click OK to close the warning. The Details tab is displayed:

5. On the Details tab, configure the following options as needed:

l Title: The required name of the step.

l Description: An optional short description of the step.

Take a Snapshot of an Index (Elasticsearch Snapshot Step) 523

l Enabled: When creating a new step, the Enabled option is selected by default,

indicating that the step is enabled and will run when the layer is loaded or refreshed. If

you want to disable the step so that it is not processed, clear the Enabled checkbox.

l Source: The source data that this step should act upon. Steps can build upon the data
generated by steps in other layers or can be self-contained, applying changes that relate

only to the data defined in the layer that contains this step. You can select any number of

the following options:

o Self: This option is selected by default and means that the step runs against the
data that is in the parent layer.

o All Previous Layers Within Graphmart: This option means that the step runs
against the data in all of the successful layers that precede the layer this step is in.

Any failed layers are ignored.

o Previous Layer Within Graphmart: This option means that the query runs
against the data that is in the one layer that precedes the layer this step is in.

o Layer Name: The Source drop-down list also includes options for layer names.

You can choose a specific layer to act upon the data in that layer.

l Target FLDS: This is the target FLDS to save the snapshot to. Typically this is the FLDS

that was created by an Export Step in a previous layer. If an FLDS does not exist, you

can select -Create New- to create an empty dataset. See Adding an Empty Dataset for
an Export Step for instructions.

6. Click Save to save the step configuration.

Once the Details tab is configured, the step can be run. For information about running this step

conditionally by setting up an execution condition, see Defining Execution Conditions.

Export Data to an FLDS (Export Step)

This topic provides guidance on configuring an Export Step to use for exporting the knowledge

graphs in memory to a file-based linked data set (FLDS) on the shared file store. Follow the steps

below to create an Export Step.

Export Data to an FLDS (Export Step) 524

Important
If you add an Export Step to a graphmart that has been activated, you must reload the entire

graphmart after adding the step. Simply refreshing the layer or graphmart after adding the

step does not create the ontology graph that the Export Step requires.

1. Go to the graphmart for which you want to add a step and then click the Data Layers tab.

2. On the Data Layers tab, find the layer that you want to add the step to. Click the menu icon ()

for that layer and select Add Step/View. The Add Step/View dialog box is displayed with the

New tab selected.

3. To create a new Export step, select Export Step and then click OK. If you want to clone an
existing step, click the Existing Steps tab, select the step that you want to clone, and then
click OK. Anzo creates or clones the step and displays the Details tab:

Export Data to an FLDS (Export Step) 525

4. On the Details tab, configure the following options as needed:

l Title: The required name of the step.

l Description: An optional short description of the step.

l Enabled: When creating a new step, the Enabled option is selected by default,

indicating that the step is enabled and will run when the layer is loaded or refreshed. If

you want to disable the step so that it is not processed, clear the Enabled checkbox.

l Source: The source data that this step should act upon. Steps can build upon the data
generated by steps in other layers or can be self-contained, applying changes that relate

only to the data defined in the layer that contains this step. You can select any number of

the following options:

o Self: This option is selected by default and means that the step runs against the
data that is in the parent layer.

o All Previous Layers Within Graphmart: This option means that the step runs
against the data in all of the successful layers that precede the layer this step is in.

Any failed layers are ignored.

o Previous Layer Within Graphmart: This option means that the query runs
against the data that is in the one layer that precedes the layer this step is in.

o Layer Name: The Source drop-down list also includes options for layer names.

You can choose a specific layer to act upon the data in that layer.

Export Data to an FLDS (Export Step) 526

l Data models: This optional field specifies the model or models to associate with this
step. The list displays all of the available models. By default, the field is set to Exclude
System Data (). If you want to choose a system model, click the toggle button on the

right side of the field to change it to Include System Data (). When system data is

included, the drop-down list displays the system models in addition to the user-

generated models.

l Target FLDS: This is the target FLDS for this export. If an FLDS does not exist, you can

select -Create New- to create an empty dataset. See Adding an Empty Dataset for an
Export Step for instructions. If you select an existing target FLDS, you also have the

option to specify whether or not to overwrite the existing dataset.

l Overwrite FLDS: This setting controls whether the existing FLDS is replaced with the

exported files each time the Export Step runs or whether the exported files are added to

the existing FLDS:

o If you want Anzo to replace the current edition of the dataset, select the Overwrite
FLDS checkbox. When Overwrite FLDS is enabled, Anzo archives the existing files

in a new timestamped export subdirectory directory under the Target FLDS
directory. Each time the Export step runs, Anzo archives the current edition, and

creates a new export directory. If you add this dataset to a graphmart, only the

latest version of the exported data will be loaded to AnzoGraph.

o If you want Anzo to add the exported files to the existing FLDS, leave the

Overwrite FLDS checkbox unchecked. When Overwrite FLDS is disabled, Anzo

adds all of the exported components to a cumulative export directory under the
Target FLDS directory. The dataset will contain the original files as well as all

cumulative working editions. If you subsequently add this dataset to a graphmart,

all of the data from all of the subdirectories will be loaded into AnzoGraph.

l Export Binary Store Contents: This option applies to exports of unstructured
graphmarts and controls whether the binary store is exported along with the data.

l Always Move Binary Store: This option also applies to exports of unstructured
graphmarts and controls whether the binary store is moved or copied during the export.

Export Data to an FLDS (Export Step) 527

Since the binary store can be large and have a nested structure, copying the data can

take a very long time. Since moving the binary store is almost instantaneous, however,

enabling Always Move Binary Store can reduce the time it takes to complete the
export.

l Export Elasticsearch Contents: This option is enabled by default and controls whether
Elasticsearch contents, such as associated indexes, are copied to disk in the Target

FLDS. If you do not want Elasticsearch contents to be exported to the FLDS, clear the

checkbox.

Note
When exporting data from an AnzoGraph instance that does not have an

associated Elasticsearch connection, clear the Export Elasticsearch Contents
checkbox.

l Keep Elasticsearch Index Online: This option controls whether the Elasticsearch
index that is associated with the dataset remains stored in Elasticsearch or is removed

from Elasticsearch once it is exported.

Tip
For information about advanced Elasticsearch options that are available for Export

Steps, see Elastic Search Tab below.

l Generate Metrics: This option controls whether a data profile is generated before the
data is exported. Enabling this option increases the time it takes to run the step, but

enabling it ensures that the information on the Dataset Explore is complete if the dataset

is viewed. If you load the exported files in the future, the data profile is also loaded.

l Do Not Create New Edition in Dataset on Export: This option controls whether or not
a new edition is created for the dataset each time the Export Step is run. By default this

option is disabled, which means each export results in a new edition. If you do not want a

Export Data to an FLDS (Export Step) 528

new edition to be created on each export, select the Do Not Create New Edition in
Dataset on Export checkbox.

l Maximum Number of Components in Edition: This option controls the maximum
number of components to retain in an edition. The default value is blank, which means

unlimited. If you specify a number in this field and the limit is reached, Anzo ages off the

oldest components as new ones are created.

5. Click Save to save the step configuration.

Once the Details tab is configured, the step can be run. If you added the step to an active

graphmart, make sure that you deactivate and then reactivate the graphmart. Simply refreshing the

layer or graphmart after adding the step does not create the ontology graph that the Export Step

requires. For information about running this step conditionally by setting up an execution condition,

see Defining Execution Conditions.

Once the graphmart is reactivated, the new dataset becomes available in the Datasets catalog.

Note
Unless you enable Generate Metrics, when you view in the Datasets catalog a dataset that

was created by an Export Step, the counts in the Ontology panel on the Explore tab remain 0
until a Data Profile is generated for the dataset. For information about generating a profile, see

Generating a Dataset Data Profile. For example, the image below shows the Explore tab for a

dataset that was created by an Export Step and has not been profiled.

Export Data to an FLDS (Export Step) 529

Elastic Search Tab

The Elastic Search tab contains optional settings that you can use to set any desired limits on
Elasticsearch indexing processes.

Setting Description

Elasticsearch Index Settings A custom JSON list of any Elasticsearch index settings that you
want to apply to the export.

Elasticsearch Bulk Size The maximum batch size in MB.

Elasticsearch Bulk Actions The maximum number of documents to include in each batch.

Elasticsearch Bulk
Concurrent Requests

The maximum number of bulk requests that can run
concurrently.

Elasticsearch Bulk Max
Threads Per FLDS

The maximum number of threads to use for indexing per file-
backed linked data set (FLDS).

Elasticsearch Bulk Max
FLDS Threads

The maximum number of FLDSes to index concurrently.

Export Data to an FLDS (Export Step) 530

Load a Dataset from the Catalog (Load Dataset Step)

This topic provides guidance on configuring a Load Dataset Step to use for adding a dataset from

the Datasets catalog to a graphmart. Follow the steps below to create a Load Dataset Step.

1. Go to the graphmart for which you want to add a step and then click the Data Layers tab.

2. On the Data Layers tab, find the layer that you want to add the step to. Click the menu icon ()

for that layer and select Add Step/View. The Add Step/View dialog box is displayed with the

New tab selected.

3. Select Load Dataset Step and then click OK. Anzo creates the step and displays the Details
tab:

Load a Dataset from the Catalog (Load Dataset Step) 531

4. On the Details tab, configure the following options as needed:

l Title: The required name of the step.

l Description: An optional short description of the step.

l Enabled: When creating a new step, the Enabled option is selected by default,

indicating that the step is enabled and will run when the layer is loaded or refreshed. If

you want to disable the step so that it is not processed, slide the Enabled slider to the
left.

l Linked Dataset: This field specifies the dataset to load. The list displays all of the
datasets in the Dataset catalog. By default, the field is set to Exclude System Data ().

If you want to choose a system dataset, click the toggle button on the right side of the
field to change it to Include System Data (). When you select a dataset, the current

working edition (Managed Edition) of the dataset is selected as the data to load. If you

want to change the edition, you can click Modify Edition and follow the steps in

Modifying an Edition.

l Watch FLDS Directory: This option controls whether the FLDS directory is monitored

for changes. If Watch FLDS Directory is enabled and changes to the files in the FLDS

directory are detected , Anzo will mark this step (and layer) as needing a refresh.

l Ignore Missing File or Directory: This option controls whether to ignore missing files
or subdirectories in the FLDS directory and proceed with the load or fail the step if files or

directories are missing.

Load a Dataset from the Catalog (Load Dataset Step) 532

l Skip Elastic Search Snapshot Restoration if Index Already Exists: This option
applies to graphmarts with Elasticsearch indexes and controls whether Anzo first checks

to see if an index with the alias for the dataset already exists in Elasticsearch. If this

setting is enabled and the index does exist, Anzo will not reload the index snaphsot into

Elasticsearch.

5. Typically when users add a dataset to a graphmart, they want to load the entire dataset.

However, if you are familiar with the data and want to exclude certain predicates from the

dataset or write an INSERT query that filters the data, you can configure filtering options on

the Filter tab. For information, see Filter Tab below.

6. Click Save to save the step configuration.

Once the Details tab is configured, the step can be run. For information about running this step

conditionally by setting up an execution condition, see Defining Execution Conditions.

Filter Tab

The Filter tab includes options for filtering out some of the data in the dataset. If you want to load all
of the statements in the dataset, do not configure Filter options. If you want to exclude some

statements, configure the Filter options.

Multiple Select

This option enables you to exclude certain triples from the load by selecting the predicates to

filter out. These are known as Masked Predicates. To exclude predicates, select the Multiple
Select radio button, then click the Masked Predicate drop-down list and select a predicate to
add it to the Masked Predicate field. Click the field again to select additional predicates. You can

remove a property from the masked list by clicking the X next to the predicate name.

Load a Dataset from the Catalog (Load Dataset Step) 533

Query

If you want to hand-pick the data to load, you can use this option to write a SPARQL query that

inserts specific values or filters out certain values. To write a query, select the Query radio
button, and then type an INSERT query in the text box. For example, you can use the following

format to filter out properties from the files:

INSERT {

GRAPH ${targetGraph}{

?s ?p ?o.

}

}

${usingSources}

WHERE {

?s ?p ?o .

FILTER EXISTS { ?s a ?type . }

FILTER(?type = <URI>)

}

Note
Including the ${targetGraph} and ${usingSources} parameters are required. Anzo
automatically populates the query with the appropriate graph URIs when the step is run.

Important
In load filter queries, URIs are not supported in the object position. To specify a URI as an

object, include the standard ?s ?p ?o triple pattern in the WHERE clause and then apply

FILTER statements with URIs as needed. URIs are supported in the subject or predicate

position.

For example, the following query filters the data in a sample dataset that includes information

about people and the events they buy tickets for. The WHERE clause filters the data to load only

the triples that are related to person1 (personid=1):

INSERT { GRAPH ${targetGraph} {

?s ?p ?o

}

Load a Dataset from the Catalog (Load Dataset Step) 534

}

${usingSources}

WHERE {

?s ?p ?o ;

<http://cambridgesemantics.com/ont/autogen/c89d/Tickets#tickit_users_personid> ?id

.

FILTER (?id=1)

}

Pre-Compile a Query (Pre-Compile Query Step)

The first time a user runs an analytic query against AnzoGraph, AnzoGraph performs a code

compilation process to generate the code for running that query. It then executes the query using

that compiled code, and the same code is reused for subsequent runs of the query. If you determine

that a particular query has a long code compilation time, you can add that query to a Pre-Compile

Query Step. That way the query is run during the graphmart load and the compiled code is available

before an end-user runs that query. Follow the steps below to create a Pre-Compile Query Step.

1. Go to the graphmart for which you want to add a step and then click the Data Layers tab.

2. On the Data Layers tab, find the layer that you want to add the step to. Click the menu icon ()

for that layer and select Add Step/View. The Add Step/View dialog box is displayed with the

New tab selected.

Pre-Compile a Query (Pre-Compile Query Step) 535

3. To create a new Pre-Compile Query Step, select Pre-Compile Query Step and then click
OK. If you want to clone an existing step, click the Existing Steps tab, select the step that you
want to clone, and then click OK. Anzo creates or clones the step and displays the Details tab:

4. On the Details tab, configure the following options as needed:

l Title: The required name of the step.

l Description: An optional short description of the step.

l Enabled: When creating a new step, the Enabled option is selected by default,

indicating that the step is enabled and will run when the layer is loaded or refreshed. If

you want to disable the step so that it is not processed, clear the Enabled checkbox.

l If the precompile query fails, the layer will be marked as failed: This option controls
whether loading the data layer that contains this step is completed or aborted if this step

fails. Select this option if you want Anzo to fail the layer if this step fails.

l If the precompile query fails, the whole graphmart will be marked as failed: This
option controls whether loading the graphmart is completed or aborted if this step fails.

Select this option if you want Anzo to fail the entire graphmart if this step fails.

l Source: The source data that this step should act upon. Steps can build upon the data
generated by steps in other layers or can be self-contained, applying changes that relate

only to the data defined in the layer that contains this step. You can select any number of

the following options:

Pre-Compile a Query (Pre-Compile Query Step) 536

o Self: This option is selected by default and means that the step runs against the
data that is in the parent layer.

o All Previous Layers Within Graphmart: This option means that the step runs
against the data in all of the successful layers that precede the layer this step is in.

Any failed layers are ignored.

o Previous Layer Within Graphmart: This option means that the query runs
against the data that is in the one layer that precedes the layer this step is in.

o Layer Name: The Source drop-down list also includes options for layer names.

You can choose a specific layer to act upon the data in that layer.

l Pre-Run Generate Statistics: This option controls whether to initiate AnzoGraph's
internal statistics gathering queries before running the query to pre-compile. The

statistics gathering helps ensure that the AnzoGraph query planner generates ideal

query execution plans for queries that are run against the graphmart.

5. When you have finished configuring the Details tab, click the Query tab. This tab contains the
query to pre-compile. The tab provides a template for writing a SPARQL SELECT query. You

can edit the template to write the query, or you can paste in query contents that you copied

from a log file, dashboard, the Query Builder, etc.

Note
Make sure that you include the ${fromSources} parameter in the query. Anzo

automatically populates the query with the appropriate source graph URIs according to

the Source configured from the Details tab.

Pre-Compile a Query (Pre-Compile Query Step) 537

Note
If your query connects to a source that requires input of connection and authorization

information, Cambridge Semantics recommends that you do not include the connection

and authorization values directly in the query. Instead, replace those values with

Context Variables from a Query Context. You can access Context Providers for each

data source from the step's Query Context tab. For detailed information about query

contexts and referencing variables in a query, see Using Query Contexts.

6. Click Save to save the step configuration.

Once the Details tab is configured and the query is written, the step can be run. For information

about running this step conditionally by setting up an execution condition, see Defining Execution

Conditions.

Create a Reusable Query Template

There are two types of steps that enable you to create a query template that is reusable across data

layers and graphmarts:

Templated Step

Templated Steps use user-defined key-value pairs. The keys are represented by parameters in the

query. Creating the key-value pairs requires familiarity with the data and properties defined in the

model. When this step is reused, users do not need to rewrite the query; they modify the values for

Create a Reusable Query Template 538

the keys.

Query-Driven Templated Step

Query-Driven Templated Steps are similar to Templated Steps in that they provide a way to create

query templates that use parameters to represent key-value pairs. The queries are reusable across

datasets because the existing parameters can be substituted for alternate key-value pairs. The

difference between the two types of steps is that the key-value pairs for Templated Steps are user-

defined. In Query-Driven Templated Steps, a parameter query is run that automatically generates

the key-value pairs. Then the defined template query is run for each key-value solution from the

parameter query.

This section includes instructions for creating both types of templated steps.

l Create a Templated Step

l Create a Query-Driven Template

Create a Templated Step

Templated Steps use user-defined key-value pairs. The keys are represented by parameters in the

query. When this step is reused, users do not need to rewrite the query; they modify the values for

the keys. Follow the steps below to create a Templated Step.

Tip
This type of template step uses key-value pairs that are user-defined. Creating the key-value

pairs requires familiarity with the data and properties defined in the model. To create a query

template that enables you to run a query and automatically generate the key-value pairs, see

Create a Query-Driven Template.

1. Go to the graphmart for which you want to add a step and then click the Data Layers tab.

2. On the Data Layers tab, find the layer that you want to add the step to. Click the menu icon ()

for that layer and select Add Step/View. The Add Step/View dialog box is displayed with the

New tab selected.

Create a Reusable Query Template 539

3. To create a new Templated step, select Templated Step and then click OK. If you want to
clone an existing step, click the Existing Steps tab, select the step that you want to clone,
and then click OK. Anzo creates or clones the step and displays the Details tab:

4. On the Details tab, configure the following options as needed:

l Title: The required name of the step.

l Description: An optional short description of the step.

Create a Reusable Query Template 540

l Enabled: When creating a new step, the Enabled option is selected by default,

indicating that the step is enabled and will run when the layer is loaded or refreshed. If

you want to disable the step so that it is not processed, clear the Enabled checkbox.

l Source: The source data that this step should act upon. Steps can build upon the data
generated by steps in other layers or can be self-contained, applying changes that relate

only to the data defined in the layer that contains this step. You can select any number of

the following options:

o Self: This option is selected by default and means that the step runs against the
data that is in the parent layer.

o All Previous Layers Within Graphmart: This option means that the step runs
against the data in all of the successful layers that precede the layer this step is in.

Any failed layers are ignored.

o Previous Layer Within Graphmart: This option means that the query runs
against the data that is in the one layer that precedes the layer this step is in.

o Layer Name: The Source drop-down list also includes options for layer names.

You can choose a specific layer to act upon the data in that layer.

l Data models: This required field specifies the model or models to associate with this
step. The list displays all of the available models. By default, the field is set to Exclude
System Data (). If you want to choose a system model, click the toggle button on the

right side of the field to change it to Include System Data (). When system data is

included, the drop-down list displays the system models in addition to the user-

generated models.

l Pre-Run Generate Statistics: This option controls whether to initiate AnzoGraph's
internal statistics gathering queries before running the query to pre-compile. The

statistics gathering helps ensure that the AnzoGraph query planner generates ideal

query execution plans for queries that are run against the graphmart.

5. When you have finished configuring the Details tab, click the Template tab. This tab defines
the template query and the key-value pairs.

Create a Reusable Query Template 541

6. On the left side of the screen create the query template. The default template includes the

syntax for writing SPARQL INSERT and DELETE queries and includes source and target

graph parameters that Anzo replaces at runtime. In the query, include the parameters in the

format ${key_name}. Each parameter will become a key in the Key/Value Table will you click

the Refresh Keys button. For example, the following INSERT query includes several
parameters that represent properties and functions:

INSERT {

GRAPH ${targetGraph}{

?lsubj ${linkProperty} ?rsubj

}

}

${usingSources}

WHERE {

?lsubj ${sourceProperty} ?lobj .

?rsubj ${targetProperty} ?robj .

FILTER (${lFunction}(?lobj) ${operator} ${rFunction}(?robj))

}

Note
If your query connects to a source that requires input of connection and authorization

information, Cambridge Semantics recommends that you do not include the connection

and authorization values directly in the query. Instead, replace those values with

Context Variables from a Query Context. You can access Context Providers for each

Create a Reusable Query Template 542

data source from the step's Query Context tab. For detailed information about query

contexts and referencing variables in a query, see Using Query Contexts.

7. Once the template query has been defined, populate the Key/Value Table with the keys from

the query by clicking the Refresh Keys button. For example, using the example query above,
the Key/Value table is populated with the following keys:

8. In each row, specify the desired Value for the key. For example, in the image below, the
property URI
http://cambridgesemantics.com/ont/autogen/c89d/Tickets#tickit_

events_eventid is specified as the Value for the linkProperty key.

9. Click Save to save the step configuration.

Once the Details tab is configured and the template and key-value pairs are defined, the step can be

run. For information about running this step conditionally by setting up an execution condition, see

Defining Execution Conditions.

Create a Reusable Query Template 543

Create a Query-Driven Template

Query-Driven Templated Steps are similar to Templated Steps in that they provide a way to create

query templates that use parameters to represent key-value pairs. The queries are reusable across

datasets because the existing parameters can be substituted for alternate key-value pairs. The

difference between the two types of steps is that the key-value pairs for Templated Steps are user-

defined. In Query-Driven Templated Steps, a parameter query is run that automatically generates

the key-value pairs. Then the defined template query is run for each key-value solution from the

parameter query. Follow the steps below to create a Query-Driven Templated Step.

1. Go to the graphmart for which you want to add a step and then click the Data Layers tab.

2. On the Data Layers tab, find the layer that you want to add the step to. Click the menu icon ()

for that layer and select Add Step/View. The Add Step/View dialog box is displayed with the

New tab selected.

3. To create a new Query-Driven Templated step, select Query Driven Templated Step and
then click OK. If you want to clone an existing step, click the Existing Steps tab, select the
step that you want to clone, and then click OK. Anzo creates or clones the step and displays
the Details tab:

Create a Reusable Query Template 544

4. On the Details tab, configure the following options as needed:

l Title: The required name of the step.

l Description: An optional short description of the step.

l Enabled: When creating a new step, the Enabled option is selected by default,

indicating that the step is enabled and will run when the layer is loaded or refreshed. If

you want to disable the step so that it is not processed, clear the Enabled checkbox.

l Source: The source data that this step should act upon. Steps can build upon the data
generated by steps in other layers or can be self-contained, applying changes that relate

only to the data defined in the layer that contains this step. You can select any number of

the following options:

o Self: This option is selected by default and means that the step runs against the
data that is in the parent layer.

o All Previous Layers Within Graphmart: This option means that the step runs
against the data in all of the successful layers that precede the layer this step is in.

Any failed layers are ignored.

o Previous Layer Within Graphmart: This option means that the query runs
against the data that is in the one layer that precedes the layer this step is in.

o Layer Name: The Source drop-down list also includes options for layer names.

You can choose a specific layer to act upon the data in that layer.

Create a Reusable Query Template 545

l Data models: This required field specifies the model or models to associate with this
step. The list displays all of the available models. By default, the field is set to Exclude
System Data (). If you want to choose a system model, click the toggle button on the

right side of the field to change it to Include System Data (). When system data is

included, the drop-down list displays the system models in addition to the user-

generated models.

l Pre-Run Generate Statistics: This option controls whether to initiate AnzoGraph's
internal statistics gathering queries before running the query to pre-compile. The

statistics gathering helps ensure that the AnzoGraph query planner generates ideal

query execution plans for queries that are run against the graphmart.

5. When you have finished configuring the Details tab, click the Parameters Query tab. This tab
defines the query to use for determining the key-value pairs for the Source that was selected

on the Details tab. The tab provides a template for writing a SPARQL SELECT DISTINCT

query. Edit the template as needed.

Note
Make sure that you include the ${fromSources} parameter in the query. Anzo

automatically populates the query with the appropriate source graph URIs according to

the Source configured on the Details tab.

Create a Reusable Query Template 546

Note
If your query connects to a source that requires input of connection and authorization

information, Cambridge Semantics recommends that you do not include the connection

and authorization values directly in the query. Instead, replace those values with

Context Variables from a Query Context. You can access Context Providers for each

data source from the step's Query Context tab. For detailed information about query

contexts and referencing variables in a query, see Using Query Contexts.

6. When you have finished configuring the Parameters Query tab, click the Template tab. This
tab contains the query to run for each of the key-value pairs identified by the Parameters

Query. The template includes the syntax for writing SPARQL DELETE and INSERT queries

and includes source and target graph parameters as well as the placeholder parameters from

the Parameters Query.

Note
By default, Anzo uses RDF encoding for parameters, meaning a parameter specified as

${param} is translated as ${rdf.param}. If you do not want to use RDF encoding,

you can specify plain text by adding text. before the parameter name, for example,

${text.param}.

7. Click Save to save the step configuration.

Create a Reusable Query Template 547

Anzo replaces the parameters at runtime. The query is executed n times, where n is the number of

rows returned by the Parameters Query.

Once the Details tab is configured, the parameters query is in place, and the template is completed,

the step can be run. Anzo replaces the parameters at runtime, and the query is executed n times,

where n is the number of rows returned by the parameters query. For information about running this

step conditionally by setting up an execution condition, see Defining Execution Conditions.

Run a Transformation Query (Query Step)

This topic provides guidance on configuring a Query Step that you can use for creating, cleaning,

conforming, or transforming the data in a layer. Follow the steps below to create a Query Step.

1. Go to the graphmart for which you want to add a step and then click the Data Layers tab.

2. On the Data Layers tab, find the layer that you want to add the step to. Click the menu icon ()

for that layer and select Add Step/View. The Add Step/View dialog box is displayed with the

New tab selected.

3. To create a new Query step, select Query Step and then click OK. If you want to clone an
existing step, click the Existing Steps tab, select the step that you want to clone, and then
click OK. Anzo creates or clones the step and displays the Details tab:

Run a Transformation Query (Query Step) 548

4. On the Details tab, configure the following options as needed:

l Title: The required name of the step.

l Description: An optional short description of the step.

l Enabled: When creating a new step, the Enabled option is selected by default,

indicating that the step is enabled and will run when the layer is loaded or refreshed. If

you want to disable the step so that it is not processed, clear the Enabled checkbox.

l Source: The source data that this step should act upon. Steps can build upon the data
generated by steps in other layers or can be self-contained, applying changes that relate

only to the data defined in the layer that contains this step. You can select any number of

the following options:

o Self: This option is selected by default and means that the step runs against the
data that is in the parent layer.

o All Previous Layers Within Graphmart: This option means that the step runs
against the data in all of the successful layers that precede the layer this step is in.

Any failed layers are ignored.

o Previous Layer Within Graphmart: This option means that the query runs
against the data that is in the one layer that precedes the layer this step is in.

o Layer Name: The Source drop-down list also includes options for layer names.

You can choose a specific layer to act upon the data in that layer.

Run a Transformation Query (Query Step) 549

l Data models: This required field specifies the model or models to associate with this
step. The list displays all of the available models. By default, the field is set to Exclude
System Data (). If you want to choose a system model, click the toggle button on the

right side of the field to change it to Include System Data (). When system data is

included, the drop-down list displays the system models in addition to the user-

generated models.

l Pre-Run Generate Statistics: This option controls whether to initiate AnzoGraph's
internal statistics gathering queries before running the query to pre-compile. The

statistics gathering helps ensure that the AnzoGraph query planner generates ideal

query execution plans for queries that are run against the graphmart.

5. When you have finished configuring the Details tab, click the Query tab. This tab defines the
query that this step should run. The template includes the syntax for writing SPARQL INSERT

and DELETE queries and includes the target and source graph parameters

(${targetGraph} and ${usingSources}). Anzo replaces the parameters with the

appropriate URIs when the step runs. Edit the template as needed. You can click the Preview
in Query Builder button to open the query in the Query Builder, where you can perform
practice runs to see results without having to refresh the graphmart or layer.

Note
If your query connects to a source that requires input of connection and authorization

information, Cambridge Semantics recommends that you do not include the connection

and authorization values directly in the query. Instead, replace those values with

Context Variables from a Query Context. You can access Context Providers for each

data source from the step's Query Context tab. For detailed information about query

contexts and referencing variables in a query, see Using Query Contexts.

Run a Transformation Query (Query Step) 550

6. Click Save to save the step configuration.

Once the Details tab is configured and the query is defined, the step can be run. For information

about running this step conditionally by setting up an execution condition, see Defining Execution

Conditions.

Infer New Data (RDFS+ Inference Step)

This topic provides guidance on configuring an RDFS+ Inference Step that uses RDFS+ and OWL

rules to create new relationships based on the vocabularies in the existing data. Follow the steps

below to create an RDFS+ Inference Step.

1. Go to the graphmart for which you want to add a step and then click the Data Layers tab.

2. On the Data Layers tab, find the layer that you want to add the step to. Click the menu icon ()

for that layer and select Add Step/View. The Add Step/View dialog box is displayed with the

New tab selected.

Infer New Data (RDFS+ Inference Step) 551

3. To create a new RDFS+ Inference step, select RDFS+ Inference Step and then click OK. If
you want to clone an existing step, click the Existing Steps tab, select the step that you want
to clone, and then click OK. Anzo creates or clones the step and displays the Details tab:

4. On the Details tab, configure the following options as needed:

l Title: The required name of the step.

l Description: An optional short description of the step.

Infer New Data (RDFS+ Inference Step) 552

l Enabled: When creating a new step, the Enabled option is selected by default,

indicating that the step is enabled and will run when the layer is loaded or refreshed. If

you want to disable the step so that it is not processed, clear the Enabled checkbox.

l Inference Rules to Run: By default the step runs all of the RDFS-plus inference rules
and a subset of the OWL 2 RL rules (see Inference Rule Reference below for specifics).

If you want to customize the step to include or exclude certain rules, specify any

combination of the following options in the Inference Rules To Run field. Specify
multiple options in a comma-separated list:

o all: Run all rules.

o rdfsplus: Run only the RDFS-plus rules.

o rule_names: List specific rules to run only those rules. See Inference Rule

Reference.

o -rule_name: Specify a hyphen (-) in front of a rule name to exclude that rule. For

example, -scm-svf2 excludes the scm-svf2 rule.

For example, the following value runs all of the inference rules except prp-fp and prp-ifp:

all,-prp-fp,-prp-ifp

Note
Certain inference rules are coupled. Specifying either of the rules in the pair

automatically runs the coupled rule. The list below describes the paired rules:

l scm-dom1 and scm-rng1

l scm-dom2 and scm-rng2

l prp-inv1 and prp-inv2

In addition, running scm-eqc1and cax-sco also runs cax-eqc1 and cax-eqc2. And

running scm-eqp1 and prp-spo1 also runs prp-eqp1 and prp-eqp2.

Infer New Data (RDFS+ Inference Step) 553

l Source: The source data that this step should act upon. Steps can build upon the data
generated by steps in other layers or can be self-contained, applying changes that relate

only to the data defined in the layer that contains this step. You can select any number of

the following options:

o Self: This option is selected by default and means that the step runs against the
data that is in the parent layer.

o All Previous Layers Within Graphmart: This option means that the step runs
against the data in all of the successful layers that precede the layer this step is in.

Any failed layers are ignored.

o Previous Layer Within Graphmart: This option means that the query runs
against the data that is in the one layer that precedes the layer this step is in.

o Layer Name: The Source drop-down list also includes options for layer names.

You can choose a specific layer to act upon the data in that layer.

l Data models: This required field specifies the model or models to associate with this
step. The list displays all of the available models. By default, the field is set to Exclude
System Data (). If you want to choose a system model, click the toggle button on the

right side of the field to change it to Include System Data (). When system data is

included, the drop-down list displays the system models in addition to the user-

generated models.

l Pre-Run Generate Statistics: This option controls whether to initiate AnzoGraph's
internal statistics gathering queries before running this step. The statistics gathering

helps ensure that the AnzoGraph query planner generates ideal query execution plans

for queries that are run against the graphmart.

5. Click Save to save the step configuration.

Once the Details tab is configured, the step can be run. For information about running this step

conditionally by setting up an execution condition, see Defining Execution Conditions.

Infer New Data (RDFS+ Inference Step) 554

Inference Rule Reference

This section provides reference information for the RDFS-plus rules and the subset of OWL 2 RL

rules that inference steps run.

l RDFS+ Rules

l OWL 2 RL Rules

RDFS+ Rules

The tables below define the RDFS-plus inference rules.

l Semantics of Class Axioms

l Semantics of Axioms about Properties

l Semantics of Schema Vocabulary

Semantics of Class Axioms

Note
Because cax-eqc1 and cax-eqc2 (described in the table below) are implied rules that are
coupled with scm-eqc1 and cax-sco, including cax-eqc1 or cax-eqc2 in the Inference Rules
to Run field will result in an invalid inference rule name error. To run the cax-eqc1

and cax-eqc2 rules, specify scm-eqc1 and cax-sco (scm-eqc1,cax-sco).

Rule Description IF THEN

cax-
eqc1

Two classes are synonymous. T(?c1,
owl:equivalentClass,
?c2)
T(?x, rdf:type, ?c1)

T(?x,
rdf:type, ?c2)

cax-
eqc2

Two classes are synonymous. T(?c1,
owl:equivalentClass,
?c2)
T(?x, rdf:type, ?c2)

T(?x,
rdf:type, ?c1)

Infer New Data (RDFS+ Inference Step) 555

Rule Description IF THEN

cax-sco Members of a subclass are also members
of the superclass.

T(?c1, rdfs:subClassOf,
?c2)
T(?x, rdf:type, ?c1)

T(?x,
rdf:type, ?c2)

Semantics of Axioms about Properties

Note
Because prp-eqp1 and prp-eqp2 (described in the table below) are implied rules that are
coupled with scm-eqp1 and prp-spo1, including prp-eqp1 or prp-eqp2 in the Inference Rules
to Run field will result in an invalid inference rule name error. To run the prp-eqp1

and prp-eqp2 rules, specify scm-eqp1 and prp-spo1 (scm-eqp1,prp-spo1).

Rule Description IF THEN

prp-dom Infer the subject's type from
the predicate's domain.

T(?p, rdfs:domain, ?c)
T(?x, ?p, ?y)

T(?x, rdf:type,
?c)

prp-
eqp1

Two properties are
synonymous.

T(?p1, owl:equivalentProperty,
?p2)
T(?x, ?p1, ?y)

T(?x, ?p2, ?y)

prp-
eqp2

Two properties are
synonymous.

T(?p1, owl:equivalentProperty,
?p2)
T(?x, ?p2, ?y)

T(?x, ?p1, ?y)

prp-fp If predicate p is a functional
property, then a subject can
be related to only one specific
object by p.

T(?p, rdf:type,
owl:FunctionalProperty)
T(?x, ?p, ?y1)
T(?x, ?p, ?y2)

T(?y1,
owl:sameAs,
?y2)

prp-ifp If predicate p is an inverse T(?p, rdf:type, T(?x1,

Infer New Data (RDFS+ Inference Step) 556

Rule Description IF THEN

functional property, then a
specific object can be related
to only one subject by p.

owl:InverseFunctionalProperty)
T(?x1, ?p, ?y)
T(?x2, ?p, ?y)

owl:sameAs,
?x2)

prp-inv1 Two properties are the
inverse of each other.

T(?p1, owl:inverseOf, ?p2)
T(?x, ?p1, ?y)

T(?y, ?p2, ?x)

prp-inv2 Two properties are the
inverse of each other.

T(?p1, owl:inverseOf, ?p2)
T(?x, ?p2, ?y)

T(?y, ?p1, ?x)

prp-rng Infer the object's type from
the predicate's range.

T(?p, rdfs:range, ?c)
T(?x, ?p, ?y)

T(?y, rdf:type,
?c)

prp-
spo1

Relationships that are
described by a subproperty
also hold for the
superproperty.

T(?p1, rdfs:subPropertyOf, ?p2)
T(?x, ?p1, ?y)

T(?x, ?p2, ?y)

prp-
symp

The inverse is true for a
property.

T(?p, rdf:type,
owl:SymmetricProperty)
T(?x, ?p, ?y)

T(?y, ?p, ?x)

prp-trp Chains of relationships
collapse into a single
relationship.

T(?p, rdf:type,
owl:TransitiveProperty)
T(?x, ?p, ?y)
T(?y, ?p, ?z)

T(?x, ?p, ?z)

Semantics of Schema Vocabulary

Rule Description IF THEN

scm-cls Every class is its own T(?c, rdf:type, owl:Class) T(?c, rdfs:subClassOf, ?c)

Infer New Data (RDFS+ Inference Step) 557

Rule Description IF THEN

subclass and equivalent
class, and it is a subclass
of owl:Thing.

T(?c, owl:equivalentClass,
?c)
T(?c, rdfs:subClassOf,
owl:Thing)
T(owl:Nothing,
rdfs:subClassOf, ?c)

scm-
dom1

A property with domain c
also has domain c's
superclasses.

T(?p, rdfs:domain, ?c1)
T(?c1, rdfs:subClassOf,
?c2)

T(?p, rdfs:domain, ?c2)

scm-
dom2

A subproperty inherits the
domains of the
superproperties.

T(?p2, rdfs:domain, ?c)
T(?p1, rdfs:subPropertyOf,
?p2)

T(?p1, rdfs:domain, ?c)

scm-
eqc1

Equivalent classes are
subclasses of each other.

T(?c1,
owl:equivalentClass, ?c2)

T(?c1, rdfs:subClassOf,
?c2)
T(?c2, rdfs:subClassOf,
?c1)

scm-
eqc2

If two classes are
subclasses, they are also
equivalent classes.

T(?c1, rdfs:subClassOf,
?c2)
T(?c2, rdfs:subClassOf,
?c1)

T(?c1,
owl:equivalentClass, ?c2)

scm-
eqp1

Equivalent properties are
subproperties of each
other.

T(?p1,
owl:equivalentProperty,
?p2)

T(?p1, rdfs:subPropertyOf,
?p2)
T(?p2, rdfs:subPropertyOf,
?p1)

scm-
eqp2

If two properties are
subproperties, they are

T(?p1, rdfs:subPropertyOf,
?p2)

T(?p1,
owl:equivalentProperty,

Infer New Data (RDFS+ Inference Step) 558

Rule Description IF THEN

also equivalent properties. T(?p2, rdfs:subPropertyOf,
?p1)

?p2)

scm-
rng1

A property with range c
also has range c's
superclasses.

T(?p, rdfs:range, ?c1)
T(?c1, rdfs:subClassOf,
?c2)

T(?p, rdfs:range, ?c2)

scm-
rng2

A subproperty inherits the
ranges of its
superproperties.

T(?p2, rdfs:range, ?c)
T(?p1, rdfs:subPropertyOf,
?p2)

T(?p1, rdfs:range, ?c)

scm-sco owl:subClassOf
relationships are transitive

T(?c1, rdfs:subClassOf,
?c2)
T(?c2, rdfs:subClassOf,
?c3)

T(?c1, rdfs:subClassOf,
?c3)

scm-spo owl:subPropertyOf
relationships are
transitive.

T(?p1, rdfs:subPropertyOf,
?p2)
T(?p2, rdfs:subPropertyOf,
?p3)

T(?p1, rdfs:subPropertyOf,
?p3)

Note
The scm-dp and scm-op schema vocabulary rules are not run. Those rules add significant

compute overhead but do not result in meaningful inference results.

OWL 2 RL Rules

The tables below define the subset of OWL 2 RL inference rules that inference steps run.

l Semantics of Equality

l Semantics of Schema Vocabulary

l Semantics of Classes

Infer New Data (RDFS+ Inference Step) 559

Semantics of Equality

Rule Description IF THEN

eq-rep-
o

Describes the replacement property of the
owl:sameAs axiom.

T(?o,
owl:sameAs, ?o')
T(?s, ?p, ?o)

T(?s, ?p, ?o')

eq-rep-
p

Describes the replacement property of the
owl:sameAs axiom.

T(?p,
owl:sameAs, ?p')
T(?s, ?p, ?o)

T(?s, ?p', ?o)

eq-rep-
s

Describes the replacement property of the
owl:sameAs axiom.

T(?s,
owl:sameAs, ?s')
T(?s, ?p, ?o)

T(?s', ?p, ?o)

eq-sym Describes the symmetric property of the
owl:sameAs axiom.

T(?x,
owl:sameAs, ?y)

T(?y,
owl:sameAs, ?x)

eq-
trans

Describes the transitive property of the
owl:sameAs axiom.

T(?x,
owl:sameAs, ?y)
T(?y,
owl:sameAs, ?z)

T(?x,
owl:sameAs, ?z)

Semantics of Schema Vocabulary

Rule Description IF THEN

scm-
svf1

A property restriction c1 is a
subclass of c2 if they are both
someValuesFrom restrictions on
the same property and c1's target
class is a subclass of c2's target
class.

T(?c1,
owl:someValuesFrom,
?y1)
T(?c1, owl:onProperty,
?p)
T(?c2,

T(?c1,
rdfs:subClassOf,
?c2)

Infer New Data (RDFS+ Inference Step) 560

Rule Description IF THEN

owl:someValuesFrom,
?y2)
T(?c2, owl:onProperty,
?p)
T(?y1, rdfs:subClassOf,
?y2)

scm-
svf2

A property restriction c1 is a
subclass of c2 if they are both
someValuesFrom restrictions on
the same class where c1's target
property is a subproperty of c2's
target property.

T(?c1,
owl:someValuesFrom,
?y)
T(?c1, owl:onProperty,
?p1)
T(?c2,
owl:someValuesFrom,
?y)
T(?c2, owl:onProperty,
?p2)
T(?p1,
rdfs:subPropertyOf, ?p2)

T(?c1,
rdfs:subClassOf,
?c2)

scm-int T(?c, owl:intersectionOf,
?x)
LIST[?x, ?c1, ..., ?cn]

T(?c,
rdfs:subClassOf,
?c1)
T(?c,
rdfs:subClassOf,
?c2)
...
T(?c,
rdfs:subClassOf,
?cn)

Infer New Data (RDFS+ Inference Step) 561

Semantics of Classes

Rule Description IF THEN

cls-svf1 At least one object of a property is a
member of the specified class.

T(?x,
owl:someValuesFrom,
?y)
T(?x, owl:onProperty, ?p)
T(?u, ?p, ?v)
T(?v, rdf:type, ?y)

T(?u,
rdf:type,
?x)

cls-int1 An instance belongs to every one of the
specified classes.

T(?c, owl:intersectionOf,
?x)
LIST[?x, ?c1, ..., ?cn]
T(?y, rdf:type, ?c1)
T(?y, rdf:type, ?c2)
...
T(?y, rdf:type, ?cn)

T(?y,
rdf:type,
?c)

Validate the Data (Validation Step)

This topic provides guidance on configuring a Validation Step to use for validating the data in a layer

and optionally setting up execution conditions. Follow the steps below to create a Validation Step.

1. Go to the graphmart for which you want to add a step and then click the Data Layers tab.

2. On the Data Layers tab, find the layer that you want to add the step to. Click the menu icon ()

for that layer and select Add Step/View. The Add Step/View dialog box is displayed with the

New tab selected.

Validate the Data (Validation Step) 562

3. To create a new Validation step, select Validation Step and then click OK. If you want to
clone an existing step, click the Existing Steps tab, select the step that you want to clone,
and then click OK. Anzo creates or clones the step and displays the Details tab:

4. On the Details tab, configure the following options as needed:

l Title: The required name of the step.

l Description: An optional short description of the step.

Validate the Data (Validation Step) 563

l Enabled: When creating a new step, the Enabled option is selected by default,

indicating that the step is enabled and will run when the layer is loaded or refreshed. If

you want to disable the step so that it is not processed, clear the Enabled checkbox.

l Validation Source Datasource: This optional field enables you to select a data source
(such as a system data source) to perform the validation against if you do not want the

query to run against the graphmart that the step is in. When Validation Source

Datasource is unset, the validation is performed against the graphmart.

l Source: The source data that this step should act upon. Steps can build upon the data
generated by steps in other layers or can be self-contained, applying changes that relate

only to the data defined in the layer that contains this step. You can select any number of

the following options:

o Self: This option is selected by default and means that the step runs against the
data that is in the parent layer.

o All Previous Layers Within Graphmart: This option means that the step runs
against the data in all of the successful layers that precede the layer this step is in.

Any failed layers are ignored.

o Previous Layer Within Graphmart: This option means that the query runs
against the data that is in the one layer that precedes the layer this step is in.

o Layer Name: The Source drop-down list also includes options for layer names.

You can choose a specific layer to act upon the data in that layer.

l Pre-Run Generate Statistics: This option controls whether to initiate AnzoGraph's
internal statistics gathering queries before running the query to pre-compile. The

statistics gathering helps ensure that the AnzoGraph query planner generates ideal

query execution plans for queries that are run against the graphmart.

5. When you have finished configuring the Details tab, click the Options tab. This tab includes
the settings that specify the type of check to perform on the data as well as instructions for

what to do if the validation fails.

Validate the Data (Validation Step) 564

6. On the Options tab, determine which type of check to perform and select the appropriate radio

button. There are two check types:

l Validation: A Validation check validates the data according to the defined query (on the

Query tab) and can be configured to take action depending on whether the validation

passes or fails.

l Condition: A Condition check takes the results of the query and associates it with the

specified variable. That variable can then be used for setting up an execution condition

at the layer or step level.

7. If you selected the Validation check type, you have the option to configure what to do if the

validation query fails:

l If the validation query fails, the layer will be marked as failed: Select this option if
you want Anzo to abort the load of the layer if this step fails.

l If the validation query fails, the whole graphmart will be marked as failed: Select
this option if you want Anzo to abort the load of the entire graphmart if this step fails.

8. If you selected the Condition check type, you are required to specify the variable name that

you want to use to store the result from the query. This variable becomes available as a

choice when configuring an execution condition.

9. When you have finished configuring the Options tab, click the Query tab and compose the
validation query that the step should run. The tab includes the syntax for writing a SPARQL

Validate the Data (Validation Step) 565

ASK query, which is useful for determining whether a certain pattern exists in the data. ASK

queries return "true" or "false" to indicate whether a solution exists. The template includes a

source graph parameter (${fromSources}). Using the configured Source options from the

Details tab, Anzo automatically populates the query with the appropriate source graph URIs

when the query runs.

Note
If your query connects to a source that requires input of connection and authorization

information, Cambridge Semantics recommends that you do not include the connection

and authorization values directly in the query. Instead, replace those values with

Context Variables from a Query Context. You can access Context Providers for each

data source from the step's Query Context tab. For detailed information about query

contexts and referencing variables in a query, see Using Query Contexts.

10. Click Save to save the step configuration.

Once the Details tab is configured and the validation options and query are defined, the step can be

run. For information about setting up an execution condition that uses this step, see Defining

Execution Conditions.

Validate the Data (Validation Step) 566

Construct a View of the Data (View Step)

This topic provides guidance on configuring a View Step to create a custom view of the data that

does not change the graphmart or necessarily materialize any new data. View steps contain

SPARQL CONSTRUCT queries to create a view definition in AnzoGraph. Follow the steps below to

create a View.

1. Go to the graphmart for which you want to add a step and then click the Data Layers tab.

2. On the Data Layers tab, find the layer that you want to add the step to. Click the menu icon ()

for that layer and select Add Step/View. The Add Step/View dialog box is displayed with the

New tab selected.

3. To create a new View step, select View and then click OK. If you want to clone an existing
view, click the Existing Views tab, select the view that you want to clone, and then click OK.
Anzo creates or clones the view and displays the Details tab:

Construct a View of the Data (View Step) 567

4. On the Details tab, configure the following options as needed:

l Title: The required name of the step.

l Description: An optional short description of the step.

l Materialize the view when activated, otherwise at runtime: This option controls
whether a copy of the data the view creates is saved in the graphmart (materialized) or

whether this is a virtual view where the data is recreated each time the view runs. If you

are creating a view against an extremely large data source or a source that changes

often, typically the view should not be materialized. If you want to store a copy of the

data that the view creates, select the Materialize the view when activated... check
box. When this option is disabled Anzo creates a virtual view where only the view

definition is stored in memory and not a copy of the data.

l Enabled: When creating a new step, the Enabled option is selected by default,

indicating that the step is enabled and will run when the layer is loaded or refreshed. If

you want to disable the step so that it is not processed, clear the Enabled checkbox.

l Source: The source data that this step should act upon. Steps can build upon the data
generated by steps in other layers or can be self-contained, applying changes that relate

only to the data defined in the layer that contains this step. You can select any number of

the following options:

Construct a View of the Data (View Step) 568

o Self: This option is selected by default and means that the step runs against the
data that is in the parent layer.

o All Previous Views Within Layer: This options means that the step runs against
the data that is generated by all of the previous views in the same layer.

o Previous View Within Layer: This options means that the step runs against the
data that is generated by the previous view in the same layer.

o All Previous Layers Within Graphmart: This option means that the step runs
against the data that is generated by all of the successful layers that precede the

layer this step is in. Any failed layers are ignored.

o Previous Layer Within Graphmart: This option means that the query runs
against only the data that is generated by the one layer that precedes the layer this

step is in.

l Data models: This required field specifies the model or models that you want to create
this view against. The list displays all of the available models. By default, the field is set
to Exclude System Data (). If you want to choose a system model, click the toggle

button on the right side of the field to change it to Include System Data (). When

system data is included, the drop-down list displays the system models in addition to the

user-generated models.

5. When you have finished configuring the Details tab, click the Query tab. This tab contains the
query to use to create the view.

Construct a View of the Data (View Step) 569

6. Edit the provided template to compose the CONSTRUCT query the step should run. For

information about CONSTRUCT queries, see CONSTRUCT in the W3C SPARQL 1.1 Query

Language specification.

Note
Do not include a GRAPH keyword in the CONSTRUCT clause. Anzo uses the view's

URI as the graph URI for the constructed triples. In addition, Anzo uses the configured

Source options from the Details tab to automatically replace the ${fromSources}

parameter with the appropriate FROM clauses when the query runs.

You can click the Open in Query Builder button to open the query in the Query Builder,
where you can perform practice runs to see results without having to refresh the graphmart or

layer.

Note
If your query connects to a source that requires input of connection and authorization

information, Cambridge Semantics recommends that you do not include the connection

and authorization values directly in the query. Instead, replace those values with

Context Variables from a Query Context. You can access Context Providers for each

data source from the step's Query Context tab. For detailed information about query

contexts and referencing variables in a query, see Using Query Contexts.

Tip
If your view query employs the Graph Data Interface, be sure to use the following

DataToolkitView service call in the query:

SERVICE <http://cambridgesemantics.com/services/DataToolkitView>

(${targetGraph})

For more information, see GDI Query Syntax.

7. Click Save to save the step configuration.

Construct a View of the Data (View Step) 570

https://www.w3.org/TR/2013/REC-sparql11-query-20130321/#construct

Once the Details tab is configured and the query is written, the step can be run. For information

about running this step conditionally by setting up an execution condition, see Defining Execution

Conditions. For details about the advanced Hi-Res Analytics settings that control how the view

affects dashboards, see Hi-Res Analytics Tab below.

Hi-Res Analytics Tab

The Hi-Res Analytics tab contains advanced settings that control how the layer is exposed to and

affects Hi-Res Analytic dashboards.

Note
Changing these settings can have unexpected consequences, and Cambridge Semantics

recommends that you do not modify them unless you understand the repercussions.

Display data outputted by the view in Hi-Res Analytics dashboards

This setting controls whether the data accessed by the view is available to query and display in

dashboards:

l When the setting is enabled (the default value), the view data is available to dashboards.

l When the setting is disabled, other data layers in the graphmart can use the view's data, but
the data is not available to use Hi-Res Analytics dashboards.

Construct a View of the Data (View Step) 571

Display View in Data Layers Facet in Hi-res Analytics

This setting controls whether the view name is displayed in the Data Layers panel on

dashboards. The image below shows an example Data Layers panel:

l When the setting is enabled (the default value), the view is listed in the Data Layers panel.

l When the setting is disabled, the view's data is always used in dashboards for this graphmart
but users do not see the view listed in the Data Layers panel.

User can both view and hide the data outputted by the view

This setting controls whether users have the option to show and hide the view in the Data Layers

panel on dashboards:

l When the setting is enabled (the default value), the view is listed in the Data Layers panel and

users have the option to show and hide the layer.

l When the setting is disabled, whether the view shows up in the Data Layers panel depends

on the By default, the data outputted by the view is visible setting. If the view is visible in

the Data Layers panel ("By default, the data outputted by the view is visible" is enabled), users

cannot toggle it on and off.

By default, the data outputted by the view is visible

This setting controls whether the data generated by the view is visible in dashboards:

l When the setting is enabled (the default value), the view is listed in the Data Layers panel in

dashboards and is selected by default.

l When the setting is disabled, the view shows up in the Data Layers panel but is not selected.

To include the view's data in a dashboard, the user must select the view.

Construct a View of the Data (View Step) 572

Is Dynamic

Typically this option is used only for Graph Data Interface (GDI) connections where a remote

data source is accessed and that source data changes dynamically. If the source is dynamic and

you want Anzo to automatically refresh the view of the data at certain internals, select the Is
Dynamic checkbox. Then set the Dynamic Refresh Interval (described below).

Dynamic Refresh Interval

If the Is Dynamic option is enabled, this setting configures the interval at which Anzo queries the
data source to retrieve any updated view data. Specify the number of milliseconds to wait

between refreshes of the data.

Hide from Other Layers/Views

This setting controls whether the other layers in the graphmart can act upon the data in this view.

l When the setting is disabled (the default value), this view is available as a choice in the

Source drop-down list when a step is configured.

l When the setting is enabled, this view is not listed as a choice in the Source list.

Construct a View of the Data (View Step) 573

Creating Data on Demand Endpoints

With the Anzo Data on Demand service you can generate Open Data Protocol (OData)-based feeds

that can be used to access Graphmarts programmatically via a RESTful API or from third-party

business intelligence applications such as TIBCO Spotfire, Tableau, and Microsoft Power BI. The

OData protocol enables web clients to use simple HTTP messages to access resources that are

identified using URLs. OData shares some similarities with JDBC and ODBC. Like ODBC, OData is

not limited to relational databases. The Anzo Data on Demand service follows the OData Version

4.0 specification, which defines the standard URL conventions, query options, and metadata

schema.

Anzo supports two types of Data on Demand endpoints. The first type is called an Auto-Generated
endpoint. Auto-Generated endpoints are the quickest type to create. They simply make available

as-is all of the data in the selected Data Layers. Any joins, filters, and other operations must be

performed by the consumer of the data outside of Anzo and AnzoGraph.

The second type of endpoint is called a Custom endpoint (sometimes called a Table endpoint).
Since queries that join data often perform very poorly when run in BI applications with a JDBC

driver, Custom endpoints let you assemble custom queries that join classes and apply filters and

formulas. The endpoint becomes a view in AnzoGraph and AnzoGraph executes the custom

queries in memory. Results can then be viewed from the endpoint without having to run the complex

analytic queries over JDBC.

The topics in this section provide instructions for creating both types of endpoints.

l Creating an Auto-Generated Endpoint

l Creating a Custom Endpoint

Creating an Auto-Generated Endpoint

Follow the instructions below to create an Auto-Generated Data on Demand endpoint. Auto-

Generated endpoints can quickly be created to make available all of the data in the selected Data

Creating Data on Demand Endpoints 574

Layers. The data cannot be customized to exclude certain classes, join data across classes, or

apply functions and formulas to properties. For instructions on creating an endpoint that can be

customized, see Creating a Custom Endpoint.

1. In the Anzo application, expand the Blend menu and click Graphmarts. Anzo displays a list
of the existing graphmarts. For example:

2. On the Graphmarts screen, click the name of the graphmart for which you want to create an

endpoint.

3. Click the Data on Demand tab. Anzo displays the Data on Demand screen, which lists any
existing endpoints. For example, the image below shows a graphmart that does not have any

endpoints configured:

Creating an Auto-Generated Endpoint 575

4. Click the Create New Endpoint button on the left side of the screen. Anzo displays the
Create REST API Query Endpoint screen.

5. Configure the endpoint options on the screen as needed. The list below describes each

setting:

l Endpoint Name: Specify a name for the endpoint in this field. The endpoint name must
be unique.

l Endpoint Description: You can add an optional description for the endpoint in this field.

l Endpoint Creation: This field specifies the type of endpoint to create. By default, the
type is set to Auto-Generated. Leave the Auto-Generated radio button selected.

l Denormalize Results: By default (when Denormalize Results is not selected), OData
returns multi-valued properties as arrays. Certain BI tools, however, do not support

arrays or multi-valued properties. If your data includes multi-valued properties and you

plan to view the endpoint using a BI tool that does not support them, you can select the

Denormalize Results setting to denormalize all multi-valued properties that are
exposed in the endpoint. For JSON, XML, and CSV output formats, denormalization

expands the properties into new rows so that they can be viewed in BI tools.

Creating an Auto-Generated Endpoint 576

Tip
The following image shows an example of CSV output of multi-valued properties

when Denormalize Results is disabled:

And the example below shows the output of multi-valued properties when

Denormalize Results is enabled:

Note
Keep in mind that denormalizing the results means that more rows are created and

transferred. Depending on the number of multi-valued properties and how the data

is set up, you may see slower performance when creating and querying

denormalized endpoints.

Creating an Auto-Generated Endpoint 577

6. Click Save to create the endpoint and view the configuration details. For example:

7. You can make changes to any of the following additional configuration options that become

available after the endpoint is created:

l Enabled: By default the endpoint is set to Enabled, indicating that the endpoint is active.
If you want to disable the endpoint, slide the Enabled slider to the left.

Note
If a request is sent to a disabled endpoint, Anzo displays a 503: Service

Unavailable error with a message indicating that the endpoint is disabled. For

example, "Unable to process request. The endpoint '<name>' is DISABLED."

l Included Data Layers: By default the Included Data Layers option is set to All,
indicating that all of the layers in the graphmart are available from the endpoint. The

included layers are listed below the radio buttons.

If you do not want to include all layers, click the Selected radio button. An Edit
Selections link becomes available under the list of layers. Click Edit Selections to
open the Select Data Layers dialog box. For example:

Creating an Auto-Generated Endpoint 578

Clear the checkbox for any layer that you want to exclude from the endpoint, and then

click Save Selections to save the change and return to the configuration screen.

l Controls whether or not to look up name using endPointNamePredicate: This
setting controls which predicate value from the related model is used for the class and

property display names in the endpoint. By default, the setting is enabled and the

Predicate used to retrieve value for name from class or property is blank. That
means Anzo uses the rdfs:label (http://www.w3.org/2000/01/rdf-schema#label) value
for each class and property name.

o If you want the endpoint to use a different value for class and property names, you

can edit Predicate used to retrieve value for name from class or property to
specify the URI for another predicate from the model. For example, specifying

http://purl.org/dc/elements/1.1/description would use each entity's

Description value.

o If you disable the Controls whether or not to look up name using
endPointNamePredicate setting, each entity's local name is used.

l Cache Enabled: When the endpoint is accessed, Anzo translates the OData query to a

SPARQL query and sends it to AnzoGraph for execution. The Cache Enabled setting

controls whether the results of that AnzoGraph query are cached in Anzo so that

subsequent endpoint requests can run against the cache in Anzo. When Cache
Enabled is disabled (the default setting), Anzo does not store the cache, and endpoint
requests are sent to AnzoGraph. When Cache Enabled is selected, Anzo stores the

Creating an Auto-Generated Endpoint 579

cached results and AnzoGraph only gets queried if the cached results are invalidated

and need to be refreshed.

Once you are satisfied with the configuration, this Data on Demand endpoint is ready for access via

OData/ODBC or JDBC. At the bottom of the screen, retrieve the ODBC or JDBC service URL to use

to access the endpoint. For example:

To test whether the endpoint is active, you can copy the ODBC service URL and paste it into a web

browser. If the endpoint is active, the browser shows an XML feed of the schema. For example:

Note
The endpoint is accessible only when it is Enabled and the associated graphmart is Active.

Creating an Auto-Generated Endpoint 580

For information about accessing endpoints programmatically, see Accessing an Endpoint

Programmatically. For information about accessing endpoints with third-party analytics tools, see

Accessing an Endpoint from an Application. For information about the supported OData operators,

output format, and query examples, see OData Reference.

Creating a Custom Endpoint

Follow the instructions below to create a Custom Data on Demand endpoint (sometimes called a

Table endpoint). Creating a custom endpoint is similar to creating a dashboard Table lens in that

you build a table with the columns that you want to see. You can traverse the relationships and join

classes, add filters, and apply functions to properties. The tables are translated to SPARQL queries

that create views in AnzoGraph, allowing you to interact with the graph for complex analytics but

generate results in the tabular format that BI tools expect.

1. In the Anzo application, expand the Blend menu and click Graphmarts. Anzo displays a list
of the existing graphmarts. For example:

2. On the Graphmarts screen, click the name of the graphmart for which you want to create an

endpoint.

3. Click the Data on Demand tab. Anzo displays the Data on Demand screen, which lists any
existing endpoints. For example, the image below shows a graphmart without any endpoints:

Creating a Custom Endpoint 581

4. Click the Create New Endpoint button on the left side of the screen. Anzo displays the
Create REST API Query Endpoint screen:

5. Configure the endpoint options on the screen as needed. The list below describes each

setting:

l Endpoint Name: Specify a name for the endpoint in this field. The endpoint name must
be unique.

l Endpoint Description: You can add an optional description for the endpoint in this field.

l Endpoint Creation: This field specifies the type of endpoint to create. By default, the
type is set to Auto-Generated. Select the Custom radio button.

Creating a Custom Endpoint 582

l Denormalize Results: By default (when Denormalize Results is not selected), OData
returns multi-valued properties as arrays. Certain BI tools, however, do not support

arrays or multi-valued properties. If your data includes multi-valued properties and you

plan to view the endpoint using a BI tool that does not support them, you can select the

Denormalize Results setting to denormalize all multi-valued properties that are
exposed in the endpoint. For JSON, XML, and CSV output formats, denormalization

expands the properties into new rows so that they can be viewed in BI tools.

Tip
The following image shows an example of CSV output of multi-valued properties

when Denormalize Results is disabled:

And the example below shows the output of multi-valued properties when

Denormalize Results is enabled:

Note
For Custom endpoints, you also have the option to denormalize data on a per-

column basis. If you do not want to denormalize all multi-valued properties, you

can leave Denormalize Results disabled and then enable denormalization for
specific columns when you build the endpoint views.

Creating a Custom Endpoint 583

Also note that denormalizing all results means that more rows are created and

transferred. Depending on the number of multi-valued properties and how the data

is set up, you may see slower performance when creating and querying

denormalized endpoints.

6. When you have finished configuring the endpoint options, click Save. The endpoint is created
and is empty until you create queries. For example, the image below shows a new endpoint:

By default the endpoint is set to Enable, indicating that the endpoint is active. If you want to
disable the endpoint, slide the Enable slider to the left.

Note
If a request is sent to a disabled endpoint, Anzo displays a 503: Service

Unavailable error with a message indicating that the endpoint is disabled. For

example, "Unable to process request. The endpoint '<name>' is DISABLED."

7. (Optional) You can click the Details tab to make changes to any of the following additional
configuration options that become available after the endpoint is initially created:

Creating a Custom Endpoint 584

l Endpoint Query Priority: This setting controls where in Anzo's query queue the
generated SPARQL queries for this endpoint are placed for processing, i.e., the priority

for executing queries against this endpoint versus other types of queued queries like

data layer and dashboard queries. By default, Endpoint Query Priority is set to

Extraction, which is priority level 3 out of 8. The options are Interactive = 1, Extraction =
3, and Batch Process = 8.

l Cache Enabled: When the endpoint is accessed, Anzo translates the OData query to a

SPARQL query and sends it to AnzoGraph for execution. The Cache Enabled setting

controls whether the results of that AnzoGraph query are cached in Anzo so that

subsequent endpoint requests can run against the cache in Anzo. When Cache Enabled

is selected (the default setting), Anzo stores the cached results and AnzoGraph only

gets queried if the cached results are invalidated and need to be refreshed. When Cache

Enabled is disabled, Anzo does not store the cache, and endpoint requests are sent to

AnzoGraph.

8. To start building a view, click the Queries tab (if necessary), and then click the Add Query
button. The New Query dialog box is displayed.

Creating a Custom Endpoint 585

9. On the Details tab, configure the following options as needed:

l Title: Type a name for the table in the Title field. The name must be unique for the
endpoint.

l Description: You can add an optional description for the view in this field.

l Materialize: If you want to store a copy of the data that this view creates (materialize the

data), select the Materialize check box. When this option is disabled AnzoGraph creates

a virtual view where only the view definition is stored in memory and not a copy of the

data. If a request is made against this view, AnzoGraph temporarily materializes the

data in memory, performs the query operations, and then drops the temporary data.

l Include Data Layers: By default, the Include Data Layers option is set to include All
Layers. If you do not want the query to target the source data in all layers, select the
field and choose alternate layers from the drop-down list.

Creating a Custom Endpoint 586

10. Click the Query tab to start building a table.

11. On the Query screen, get started by selecting a class to use as the starting point. Click the

Select Starting Point drop-down list and select a class. Once you select the class, the Add
Column button is displayed.

12. Click Add Column to create a column in the table. The Add Column dialog box is displayed:

13. On the Add Column screen, configure the following options as needed:

l Formula Value: Click this field to choose the column header. Like building columns in a
dashboard table, you can navigate the relationships to join data from different classes,

and you can apply functions to the values. When you click the field and start to select

paths and properties, sample data is shown on the right side of the screen. For example:

Creating a Custom Endpoint 587

l Column Header Label: This is the label that you want to use for displaying the Formula
Value.

l Denormalize column data: If you enabled Denormalize Results at the endpoint level,
leave this setting disabled. If Denormalize Results is disabled at the endpoint level, you

can enable this setting to denormalize the values for this column only.

Tip
If you do not denormalize the data, you can use the Format tab to specify the
character to use for separating the values in the arrays that are returned for multi-

valued properties. By default, the Value Separator is set to comma (,). The Format

tab becomes available after saving the column.

14. Click Save to add the column to the table.

15. Add new columns to the table by clicking Add Column. You can change the order of columns
by dragging a column up or down, and you can enable or disable columns by sliding the slider
for the column. Click the menu icon () for a column to edit or delete that column.

Creating a Custom Endpoint 588

16. If you would like to group by clause, you can click the Group By tab and select the column or

columns to group.

17. If you would like to filter out some data, you can add one or more filters to the overall query. To

add a filter, click the Filters tab and then click Add Filter. In the Formula Value field, specify
the formula to use to determine which values should be included in the results. Then specify a

name for the column in the Column Header Label. For example, the filter below is configured

to include only the results where the Player ID is less than or equal to 5.

18. Once you are satisfied with the configuration, click Save to create the endpoint.

This endpoint is ready for access via OData/ODBC or JDBC. On the Connection Strings tab for
the endpoint, retrieve the ODBC or JDBC service URL to use to access the endpoint. For example:

Creating a Custom Endpoint 589

To test whether the endpoint is active, you can copy the ODBC service URL and paste it into a web

browser.

Important
After pasting the URL into the browser, add the table name to the end of the string. The
URL for a Custom endpoint is <ODBC_or_JDBC_URL>/<table_name>. For example, if the

ODBC URL is https://10.10.0.11/dataondemand/Flights/Flights-Airlines,

and the table name is Airlines, the connection string is

https://10.10.0.11/dataondemand/Flights/Flights-Airlines/Airlines.

If the endpoint is active, the browser shows an XML feed of the data. For example:

Note
The endpoint is accessible only when it is Enabled and the associated graphmart is Active.

Creating a Custom Endpoint 590

For information about accessing endpoints programmatically, see Accessing an Endpoint

Programmatically. For information about accessing endpoints with third-party analytics tools, see

Accessing an Endpoint from an Application. For information about the supported OData operators,

output format, and query examples, see OData Reference.

Creating a Custom Endpoint 591

Sharing Access to Graphmarts

This topic introduces the concepts to know when working with graphmart and data layer access

control and provides instructions for configuring permissions.

l Sharing Concepts

l Changing Configuration-Level Access

l Changing Data-Level Access

Sharing Concepts

This section describes the concepts that are helpful to know when working with graphmart and data

layer permissions. It also gives of overview of the graphmart sharing settings and the predefined

permission sets and associated privileges.

l Default Access Configuration

l Configuration vs. Data Access Control

l Permission Inheritance

l Configuration Permissions

Default Access Configuration

When a new graphmart is created, the access control configuration of that Graphmart is defined by

the Graphmarts Registry Default Access Policy that is configured by your administrator (see
Managing Default Access Policies in the Administration Guide for information). The graphmart also

inherits permissions from other artifacts in the onboarding workflow. For example, when a

graphmart is created from a data source, the graphmart inherits permissions from the source

schema (which inherits permissions from the data source). Users who have permission to modify

graphmart access can share that graphmart with other users and groups.

Sharing Access to Graphmarts 592

https://docs.cambridgesemantics.com/anzo/v5.4/userdoc/admin-default-access.htm

Configuration vs. Data Access Control

Graphmart and data layer sharing is managed on two levels: Configuration and Data Access.
When managing access at the Configuration level, you are controlling who can view or modify the

configuration of the graphmart, such as who can edit the graphmart settings on the Overview tab,

who can enable, disable, modify, or add layers, and who can view or modify the graphmart

permissions. The Data Access configuration controls who can view the data that is contained within

the graphmart.

Permission Inheritance

When assigning Configuration and Data Access permissions at the graphmart level, you can

configure the graphmart to inherit the permissions from another artifact and/or pass on its

permissions to additional artifacts. For example, you can configure one graphmart to pass its

permissions to other graphmarts. Inheritance transmits all of the artifact's permissions for all users

and groups.

Note
Since data layers are created in graphmarts, they inherit their permissions from the graphmart

by default—with one exception: Layers with Load Dataset Steps inherit their Data Access

permissions from the dataset. Data on Demand endpoints also inherit their permissions from

the parent graphmart by default.

The following inheritance settings are displayed at the top of the Configuration and Data Access

tabs on the graphmart Sharing screen.

Configuration Inheritance

The image below shows a graphmart Configuration tab with the default inheritance settings. The

Inherit permissions from field shows that the graphmart inherits permissions from the schema

instance that the graphmart was created from.

Sharing Concepts 593

Data Access Inheritance

The image below shows the Data Access tab for the same graphmart. The Graphmart Level View
Permissions are set to Inherit from Graphmart by default. And Default Layer View Permissions
(for new Layers) is also set to Inherit from Graphmart.

Below the inheritance settings, the Permissions Overview provides a detailed view of the

permission inheritance for each layer, view, and Data on Demand endpoint in the graphmart.

Configuration Permissions

Graphmart Configuration permissions control who can view or modify the graphmart settings, who

can enable, disable, modify, or add data layers, and who can view or modify the graphmart

permissions. There are three predefined permission sets that can be applied to a user or group. The

permission sets include a combination of six permissions. You also have the option to customize the

set of permissions that are applied to a user or group.

Sharing Concepts 594

The tables below list the predefined permission sets and describe the privileges that are granted for

each permission that is part of the set:

View

The following table describes the permissions in the View set.

Permission Allows a user to:

View l See the graphmart in the Anzo application.

l Copy the graphmart URI from the Overview tab.

l Copy data layer URIs from the data layers tab.

l See the existing Data on Demand endpoints on the Data on Demand tab.

l View and clone the dataset editions that are included in the graphmart.

l Reload and refresh the graphmart.

l Create and import graphmart versions.

Meta View This permission relates only to the graphmart Sharing tab. A user with this
permission can see the Sharing tab, but they cannot modify, add, or remove
permissions.

Modify

In addition to the View and Meta View permissions described above, the Modify set includes the
Add/Edit and Delete permissions described below.

Permission Allows a user to:

Add/Edit l Rename the graphmart and edit the

description.

l Create Data on Demand endpoints.

l Add datasets and data sources to the

Sharing Concepts 595

Permission Allows a user to:

graphmart.

l Enable, disable, add, or edit layers and

steps.

l Activate and deactivate the graphmart.

Delete l Remove datasets from the graphmart.

l Delete data layers and steps from the

graphmart.

l Cannot delete the graphmart.

Admin

In addition to the View, Meta View, Add/Edit, and Delete permissions described above, the Admin
set includes the Meta Add/Edit and Meta Delete permissions described below.

Permission Allows a user to:

Meta Add/Edit This permission relates only to the graphmart Sharing tab. A user with this
permission can modify the sharing settings by adding permissions to a user or
group.

Meta Delete l Modify the sharing settings by removing permissions from a user or

group.

l Delete the graphmart.

Changing Configuration-Level Access

Follow the steps below if you want to modify the configuration-level access for a graphmart.

Sharing Concepts 596

1. In the Anzo application, expand the Blend menu and click Graphmarts. Anzo displays a list
of the existing graphmarts. For example:

2. Click the name of the graphmart for which you want to configure permissions. Then click the

Sharing tab. The Sharing screen is displayed and the Configuration tab is selected. For
example:

3. If you want to change how the Configuration permissions are inherited, use the Inherit
permissions from field at the top of the screen. To apply all of the permissions from another

Sharing Concepts 597

artifact to this one, select the artifact to inherit from in the Inherit permissions from field.

Tip
For more information about permission inheritance at the graphmart level, see

Permission Inheritance.

4. To modify Configuration access to this graphmart with a particular user or group, type a value

in the Search users, roles or groups field to find and display the user or group. The resulting
list shows the current permission level that is set for each user or group in the search results.

For example, the image below shows the current permissions for the IT group (None):

5. Select the user or group for which you want to configure permissions. The permissions

settings are displayed on the right side of the screen. For example:

6. To assign a predefined set of permissions, click the View, Modify, or Admin radio button to
assign that level of access to the selected user or group. Refer to Configuration Permissions

for details about the permission sets. For example, the image below gives Admin permissions
to users in the IT group:

Sharing Concepts 598

If you want to customize the permissions, click the Custom radio button and then select or

deselect the permissions checkboxes. To clear permissions for a user or group, click the
trashcan icon () next to the name.

Changing Data-Level Access

Follow the steps below if you want to modify permissions at the Data Access level for a Graphmart.

1. In the Anzo application, expand the Blend menu and click Graphmarts. Anzo displays a list
of the existing graphmarts. For example:

2. Click the name of the graphmart for which you want to configure permissions. Then click the

Sharing tab. The Sharing screen is displayed and the Configuration tab is selected. Click
the Data Access tab. For example:

Sharing Concepts 599

3. If you want to change how the Data Access permissions are inherited, use the fields at the top

of the screen:

l Graphmart-Level View Permissions controls who can view the data within the entire

graphmart.

l Default Layer View Permissions (for new Layers) controls who can view the data

within the data layers.

Tip
For more information about permission inheritance at the graphmart level, see

Permission Inheritance.

4. To change the permissions for an individual layer, Data on Demand endpoint, or another
graphmart component that is listed in the Permissions Overview, click the Edit icon () in the

Actions column in the in the row for that component.

Changes to graphmart and layer permissions take effect immediately. Users do not need to log out

and log back in, and affected graphmarts do not need to be reloaded or refreshed.

Sharing Concepts 600

Graphmart FAQ

This topic provides answers to frequently asked questions about graphmarts.

l What is the difference between graphmart reload vs. refresh?

l How do I find the URI for a graphmart?

l How do I find the URI for a layer?

l How do I see the models in a graphmart?

What is the difference between graphmart reload vs. refresh?

When you make modifications to data layers in a graphmart, Anzo displays Reload and Refresh
buttons on the top of the screen. For example:

The Refresh option becomes available when changes have been made to one or more data layers.

Clicking Refresh resets (deletes from AnzoGraph) and reloads only the data layers that have

changed. Clicking Reload resets and reloads the entire graphmart to AnzoGraph, including the data
layers that have not changed.

How do I find the URI for a graphmart?

Anzo displays graphmart details on the Overview screen for the graphmart. To view and copy a

graphmart URI, go to the Overview tab for the graphmart. The URI is under General information on

the right side of the screen. You can click the clipboard icon () to copy the URI.

Graphmart FAQ 601

You can also copy a URL-encoded version of the graphmart URI from the address bar in the

browser when viewing the graphmart. For example:

How do I find the URI for a layer?

You can retrieve a data layer URI on the Data Layers screen for a graphmart. To view and copy a

layer URI, go to the Data Layers tab for the graphmart. Anzo displays the layers. Each layer is a

graph. For example:

Click the menu icon () for the layer whose URI you want to copy and click Copy URI:

Graphmart FAQ 602

How do I see the models in a graphmart?

Anzo displays the list of included models on the Explore screen for a graphmart. To view the list of

models:

1. Go to the Explore tab for the graphmart for which you want to view models.

2. In the top right corner of the graph view in the center of the screen, there are three icons:

3. To view the associated models, click the contents icon () on the right.

4. For example, the image below shows a graphmart with one model:

You can click the arrow icon () to close the model panel.

Graphmart FAQ 603

Profiling Datasets and Graphmarts

To help you explore your data and assess its quality, Anzo provides the option to generate a data

profile for datasets and graphmarts. Creating a profile runs several metrics against the data and

reports statistics at the class, property, and instance levels. Data profile metrics measure data

quality, perform data discovery, and can help you decide on the types of analytics to run. The topics

in this section provide instructions for generating data profiles and describe each of the metrics that

Anzo runs.

In this section:
Generating a Dataset Data Profile 605

Generating a Graphmart Data Profile 610

Data Profiling Metrics 614

Profiling Datasets and Graphmarts 604

Generating a Dataset Data Profile

Similar to generating a profile for a graphmart, you can generate a data profile for a dataset in the

Datasets catalog. Generating a dataset profile helps users perform data discovery, assess the

quality of the onboarded data, and decide whether to use the dataset in a graphmart. The reports

can also assist users in determining the types of data layer steps to create and writing the queries to

include in the steps.

Important
To generate a dataset data profile, AnzoGraph must be online. If you have dynamic

AnzoGraph deployments enabled, AnzoGraph will be provisioned automatically when the

profile is generated.

1. In the Anzo application, expand the Blend menu and click Datasets. Anzo displays the
Datasets screen, which lists the catalog of datasets. For example:

2. On the Datasets screen, click the name of the dataset that you want to generate a profile for.

Anzo displays the Explore tab for the dataset. For example, the image below shows a dataset

for which a data profile has not been generated and the class and property counts are 0:

Generating a Dataset Data Profile 605

3. Click the Profile Data button on the left side of the screen. The Data Profile dialog box is
displayed::

4. On the Data Profile screen, choose the Profiling Method to use. The Primary method focuses
on data quality type analysis. The Advanced method includes the Primary data quality
analytics plus several advanced metrics for deeper data discovery and analysis. For details

about the Primary and Advanced metrics, see Data Profiling Metrics.

Generating a Dataset Data Profile 606

Note
To run the Advanced metrics, the optional AnzoGraph C++ extensions and

dependencies must be installed. If you use dynamic, K8s-based deployments of

AnzoGraph, the extensions are included. If you installed a static AnzoGraph instance

with the installer, the C++ extensions are optional and are only installed if yes was
specified for the Do you want to install C++ UDXs packaged with

AnzoGraph DB? prompt. For information about the C++ dependencies, see Install the

Optional C++ Extension Dependencies in the Deployment Guide.

5. Click Run Profiling to start generating the profile.

Note
If the dataset is used in a graphmart that is active, Anzo displays the Select Graphmart

dialog box (shown below), which prompts you to choose whether the online dataset can

be used for running the profiling queries or whether to provision another temporary

graphmart for the dataset.

To use the dataset in the graphmart that is online, click the Select Graphmart drop-
down list and select the graphmart name. If you want Anzo to provision a temporary

graphmart instead, select Don't reuse the Graphmart.

The profiling process may take several minutes, especially for large volumes of data. You can

check the status of the process in the Activity Log. The Activity Log also presents the option to

stop the profiling process by clicking Cancel under the progress bar for the task. For example:

Generating a Dataset Data Profile 607

https://docs.cambridgesemantics.com/anzo/v5.4/userdoc/anzograph-post-install.htm#extension-dependencies
https://docs.cambridgesemantics.com/anzo/v5.4/userdoc/anzograph-post-install.htm#extension-dependencies

6. Once the profiling is complete, the Profile Metrics panel is expanded on the Explore tab. To

populate the panel, click a class or property in the ontology or a class in the graph view in the

middle of the screen. For example:

You can click the Expand icon () on the right side of the screen to collapse the graph view

and expand the metrics view.

Generating a Dataset Data Profile 608

Select any class or property to view its metrics. For details about each of the metrics that are run,

see Data Profiling Metrics.

Generating a Dataset Data Profile 609

Generating a Graphmart Data Profile

Similar to generating a data profile for a dataset, you can profile a graphmart, which may include

multiple datasets. When metrics are generated for graphmarts, Anzo profiles the data that results

from all of the enabled layers and reports metrics for the classes and properties in the model as well

as statistics about the values for the properties. Generating a graphmart profile helps users perform

data discovery, assess the quality of the data, and decide on the types of analytics to perform.

Important
To generate a graphmart data profile, AnzoGraph must be online. If you have dynamic

AnzoGraph deployments enabled, AnzoGraph will be provisioned automatically when the

profile is generated.

1. In the Anzo application, expand the Blend menu and click Graphmarts. Anzo displays a list
of the existing graphmarts. For example:

2. On the Graphmarts screen, click the name of the graphmart for which you want to generate

metrics. Anzo displays the Overview for that graphmart. For example:

Generating a Graphmart Data Profile 610

3. Click the Explore tab.

4. If necessary, activate the graphmart, and then click the Profile Data button on the left side of
the screen. The Data Profile dialog box is displayed:

Generating a Graphmart Data Profile 611

5. On the Data Profile screen, choose the Profiling Method to use. The Primary method focuses
on data quality type analysis. The Advanced method includes the Primary data quality
analytics plus several advanced metrics for deeper data discovery and analysis. For details

about the Primary and Advanced metrics, see Data Profiling Metrics.

Note
To run the Advanced metrics, the optional AnzoGraph C++ extensions and

dependencies must be installed. If you use dynamic, K8s-based deployments of

AnzoGraph, the extensions are included. If you installed a static AnzoGraph instance

with the installer, the C++ extensions are optional and are only installed if yes was
specified for the Do you want to install C++ UDXs packaged with

AnzoGraph DB? prompt. For information about the C++ dependencies, see Install the

Optional C++ Extension Dependencies in the Deployment Guide.

6. Click Run Profiling to start generating the profile. The process may take several minutes,
especially for large volumes of data. You can check the status of the process in the Activity

Log. The Activity Log also presents the option to stop the profiling process by clicking Cancel
under the progress bar for the task. For example:

Generating a Graphmart Data Profile 612

https://docs.cambridgesemantics.com/anzo/v5.4/userdoc/anzograph-post-install.htm#extension-dependencies
https://docs.cambridgesemantics.com/anzo/v5.4/userdoc/anzograph-post-install.htm#extension-dependencies

7. Once the profiling is complete, the Profile Metrics panel is expanded on the Explore tab. To

populate the panel, click a class or property in the Ontology or a class in the graph view in the

middle of the screen. For example:

You can click the Expand icon () on the right side of the screen to collapse the graph view

and expand the metrics view.

Select any class or property to view its metrics. For details about each of the metrics that are run,

see Data Profiling Metrics.

Generating a Graphmart Data Profile 613

Data Profiling Metrics

When a data profile is generated for a dataset or graphmart, Anzo runs several metrics that can help

users measure data quality and perform data discovery at the class, property, and instance level.

The metrics are grouped into two categories: a Primary category that focuses on data quality type
analysis, and an Advanced category that includes the Primary data quality analytics plus several
advanced metrics for deeper data discovery and analysis.

Note
To run the Advanced metrics, the optional AnzoGraph C++ extensions and dependencies

must be installed.

The lists below give a summary of the Primary and Advanced metrics. For more information and

sample images of the visualizations that are generated, click a metric name.

Primary

l Row Count: Reports the total row (instance) count per class.

l Absent Property: For each property, reports the total number of instances that do not have a

value.

l Empty Property: For each string property, reports the total number of empty strings.

l Sample Values: Returns sample values for each property.

l Average: For each numeric property, computes the average of all values.

l Sum: For each numeric property, computes the sum of all values.

l Average String Length: For each string property, computes the average length of the strings.

l Value Present: For each property, computes the percentage of instances that have at least

one value.

l Unique Pattern Count: For each property, counts the total number of unique value patterns.

l Unique Values Count: For each property, counts the total number of unique values.

Data Profiling Metrics 614

l Median: For each numeric property, computes the median of all values.

l Standard Deviation: For each numeric property, computes the standard deviation of all
values.

l Mode: For each numeric property, computes the mode of all of the values.

l Presence: For each property in a class, reports the percentage of instances that have values

vs. do not have values.

l Top Value Counts: For each property, computes the top N most occurring values.

l Bottom Value Counts: For each property, computes the N least occurring values.

l Top Pattern Counts: For each property, computes the top N most common value patterns.

l Bottom Pattern Counts: For each property, computes the N least common value patterns.

l Range: For numeric properties, reports the total range of values.

l Value Types: For each property, returns the data types for the instances.

l DateTime Distribution By Year/Month/Day: For dateTime properties, computes a histogram
that shows the distribution of values by year, month, and day.

Advanced

l Pearson Skewness: For each numeric property, computes the Pearson coefficient of
skewness.

l Geometric Mean: For each numeric property, computes the geometric mean of all values.

l Variance: For each numeric property, computes the variance of all values.

l Discrete Entropy: For each property, computes the discrete entropy of all values.

l Discrete Probability: For each property, computes the discrete probability of all values.

l String Length Range: For each string property, reports the range of string lengths.

l Unique Values: For each property, computes the percentage of unique values.

Data Profiling Metrics 615

l Lower Case Strings: For each string property, computes the percentage of values with all
lower case characters.

l Upper Case Strings: For each string property, computes the percentage of values with all
upper case characters.

l Trivial Values: For each string property, computes the percentage of instances that have one
of the following values: NA, N/A, NONE, or NULL.

Row Count

This metric computes the total row count per class. The row count is in parenthesis at the top of

the screen next to the class name, as shown in the image below.

Absent Property

For each property, this metric reports on the total number of instances that do not have a value

for that property.

Empty Property

For string properties, this metric reports the total number of empty strings.

Data Profiling Metrics 616

Sample Values

This metric returns sample values for each property.

Average

For each numeric property, this metric computes the average of all values.

Sum

For each numeric property, this metric computes the sum of all values.

Data Profiling Metrics 617

Average String Length

For each string property, this metric computes the average length of the values.

Value Present

For each property, this metric computes the percentage of instances that have at least one value.

Unique Pattern Count

For each property, this metric counts the total number of unique value patterns.

Unique Values Count

For each property, this metric counts the total number of unique values.

Data Profiling Metrics 618

Median

For each numeric property, this metric computes the median of all values.

Standard Deviation

For each numeric property, this metric computes the standard deviation of all values.

Mode

For each numeric property, this metric computes the mode of all of the values.

Data Profiling Metrics 619

Presence

The metric is available when viewing a class. For each property in the class, this metric reports

on the percentage of instances that have values and the percentage of instances that do not

have values.

Top Value Counts

For each property, this metric computes the top N most occurring values.

Bottom Value Counts

For each property, this metric computes the N least occurring values.

Data Profiling Metrics 620

Top Pattern Counts

For each property, this metric computes the top N most common value patterns.

Bottom Pattern Counts

For each property, this metric computes the N least common value patterns.

Range

For numeric properties, this metric computes the range of all values.

Data Profiling Metrics 621

Value Types

For each property, this metric returns the data types for the instances.

DateTime Distribution By Year/Month/Day

For each dateTime property, this metric computes a histogram that shows the distribution of

values by year, month, and day.

Data Profiling Metrics 622

Pearson Skewness

For each numeric property, this metric computes the Pearson coefficient of skewness to show the

distribution of values. A value of 0 indicates no skew, a positive number indicates positive skew,

and a negative number indicates negative skew.

Geometric Mean

For each numeric property, this metric computes the geometric mean of all of the values.

Variance

For each numeric property, this metric computes the variance of all values.

Data Profiling Metrics 623

Discrete Entropy

For each property, this metric computes the discrete entropy of all values.

Discrete Probability

For each property, this metric computes the discrete probability of all values.

String Length Range

For each string property, this metric reports the range of string value lengths.

Unique Values

For each property, this metric computes the percentage of unique values.

Data Profiling Metrics 624

Lower Case Strings

For each string property, this metric computes the percentage of values that have all lower case

characters.

Upper Case Strings

For each string property, this metric computes the percentage of values that have all upper case

characters.

Trivial Values

For each string property, this metric computes the percentage of instances that have one of the

following values: NA, N/A, NONE, or NULL.

Data Profiling Metrics 625

For additional metrics based on the type of data quality checks needed, contact Cambridge

Semantics.

Data Profiling Metrics 626

Access & Analyze

Once data has been onboarded, users have several options for accessing and analyzing the data.

Anzo includes the Hi-Res Analytics application where users can create dashboards for exploring

and visualizing the data without needing to have specialized query knowledge. The Query Builder

enables users to find specific statements or run SPARQL queries. Users can also access data from

the SPARQL endpoint or by using the Data on Demand service to generate data feeds for third-

party business intelligence tools. The topics in this section provide information about the ways to

access data in Anzo as well as information about sharing, versioning, and migrating artifacts.

In this section:
Access Data with Hi-Res Analytics Dashboards 628

Access Data with the Query Builder 906

Access Data on Demand Endpoints 921

Access the SPARQL Endpoint 953

Access the HTTP Client Interface 965

Share Access to Artifacts 973

Version and Migrate Artifacts 980

SPARQL Best Practices and Query Templates 996

Function and Formula Reference 1010

Access & Analyze 627

Access Data with Hi-Res Analytics Dashboards

The Anzo Hi-Res Analytics application enables users to answer both ad-hoc and pre-determined

questions using custom dashboards. Automated query generation eliminates the need to have

specialized query knowledge, and users can traverse complex, multi-dimensional data by building

exploratory charts, filters, tables, and network views.

The topics in this section provide guidance on getting started with Hi-Res Analytics dashboards and

include instructions for creating and modifying dashboards and dashboard components.

In this section:
Introduction to Hi-Res Analytics 629

Getting Started: Explore and Visualize Your Data 637

Working with Dashboards 648

Working with Lenses 697

Working with Filters 827

Calculating Values in Lenses and Filters 881

Combining Data from Multiple Classes 887

Searching for Text in Unstructured Documents 892

Sharing Access to Dashboards and Lenses 899

Access Data with Hi-Res Analytics Dashboards 628

Introduction to Hi-Res Analytics

Hi-Res Analytics dashboards enable you to create visual representations of your data using the

latest in powerful web technologies. This introduction defines the fundamental concepts of working

with dashboards and provides an overview of the Hi-Res Analytics user interface.

Tip
To fully leverage the advanced capabilities of Hi-Res Analytics, it helps to have skills working

with Excel functions and formulas, SPARQL, and JavaScript and HTML. You can create

dashboards without these skills but may not be able to take advantage of all functions.

l Concepts and Vocabulary

l Application Overview

Concepts and Vocabulary

Term Description

Dashboard Dashboards are containers for the elements that enable you to visualize,
analyze, and share your data. Data is viewed through lenses, such as tables and
charts, that format the data for display. You can also apply filters to the data to
refine the results.

There are two types of dashboards that you can create: a Graphmart
Dashboard that offers several choices of lens and filter types, and a Network
Navigator Dashboard, which is an interactive graph visualization tool for
exploring the relationships in a graph.

Data Layer Since graphmarts typically have multiple data layers, users can include or
exclude the data from certain layers when creating or viewing dashboards.

Lens Lenses are the structures that display your data. You must have at least one lens
in a dashboard. You can reuse existing lenses or create new ones. For more
information, see Creating a Lens.

Introduction to Hi-Res Analytics 629

Term Description

Filter Filters narrow and further define the data to display. Dashboard-level filters apply
globally to all lenses in a dashboard. Lens-level filters apply only to a specific lens
and are not displayed on the lens. They are shown only in the lens designer. For
more information, see Working with Filters.

Property A property is a predicate that contains the instance data to display. The data type
of a property determines the functional aspects within a dashboard. For example,
certain filters act only on dates or numbers.

Path Paths are relationships. They are transitional elements that allow you to connect
data across classes.

Functions
and formulas

Functions and formulas can be applied to properties to modify the data that is
presented. Available functions depend on the property’s data type. For more
information, see Calculating Values in Lenses and Filters.

Application Overview

This section gives an overview of the user interface. The images below show an administrator view.

Some options are not available to users with lower permission levels.

Introduction to Hi-Res Analytics 630

Main Toolbar

The toolbar at the top of the screen provides the following options:

l Dashboard: This menu includes options to save or reset the dashboard and create a new
dashboard or open an existing one. This menu also provides access to the permission

settings, properties, and the option to delete the dashboard.

l Lenses: This menu includes options to create a new lens or open an existing one.

l Filters: This menu includes options to create a new filter, clear selected filters, and show all

active filters.

l Refresh: This menu includes an Automatic option that controls whether the dashboard is
automatically updated when the underlying graphmart data changes. In addition, the menu

includes a Show Update Controls option that, when enabled, adds pause icons to lenses
and filters so that users can pause the refresh of individual components and then manually

update them when desired.

l Designer: This menu opens the dashboard designer, which includes settings that control
dashboard layout and design as well as the update method to use for the overall dashboard.

Introduction to Hi-Res Analytics 631

l Help: This menu includes options to open the Progress window as well as the Query Manager

and the documentation.

l User: This menu presents the option to log out of the application.

Dashboard Tabs

The dashboard tabs under the main toolbar display the open dashboards and enable you to

navigate between dashboards. When you change a dashboard, an asterisk appears on the

dashboard tab. Save the dashboard to preserve the changes.

Filters Panel

The left panel (shown below) contains the dashboard filters. Each of the panels are described

below.

Introduction to Hi-Res Analytics 632

Manage Lenses

Clicking Manage Lenses opens the Manage Lenses dialog box, which enables you to show and

hide the items in the panel. For example:

Introduction to Hi-Res Analytics 633

Clearing an ON checkbox hides that item in the panel. You can select a checkbox to show an item or

click Restore Defaults to show all items.

Tip
When the dashboard layout is a Vertical List Container, there is also a Manage Lenses
button available for showing and hiding lenses. For example:

Graphmart

The Graphmart panel displays the selected graphmart for the dashboard:

Introduction to Hi-Res Analytics 634

Data Types

The Data Types panel displays the selected data type from the graphmart.

Data Layers

The Data Layers panel displays the layers in the graphmart.

Filters

By default, filters that you create appear in the left column of the dashboard.

Object Toolbar and Tabs

The object toolbar and tabs enable you to manage the lenses and filters in the selected dashboard.

The tabs display the open lenses, and the toolbar enables you work with the lens configuration.

Introduction to Hi-Res Analytics 635

Introduction to Hi-Res Analytics 636

Getting Started: Explore and Visualize Your Data

When you start to build a new dashboard, you might not know what data exists in the knowledge

graph, which values in graph you ultimately want to display, and the most pertinent way to visualize

the results. This topic introduces the available lenses and filters and provides guidance on getting

started by using the Hi-Res Analytics tools to perform data discovery. By experimenting with simple

objects, you can explore the data, determine which questions you want to answer, and start to

visualize the end result.

To get started:

1. Create a New Dashboard

2. Explore the Data

3. Create Visualizations of the Data

Create a New Dashboard

1. In the Anzo application, expand the Blend menu and click Graphmarts. Anzo displays a list
of the existing graphmarts. For example:

2. On the Graphmarts screen, click the name of the graphmart for which you want to create a

dashboard. The Overview screen is displayed. For example:

Getting Started: Explore and Visualize Your Data 637

3. Click the Create Dashboard button. The Hi-Res Analytics application opens and displays the
Create Dashboard dialog box. Leave Graphmart Dashboard selected and click Next.

4. Next, type a name for the dashboard in the Title field and enter an optional Description.

5. Click Finish to create the dashboard. The new dashboard appears as a new tab and contains

a sub-tab titledWhat can I do next?. This tab acts as a wizard to guide you through the initial
dashboard creation. For example:

Create a New Dashboard 638

6. In the main toolbar, click the Dashboard button and select Save. Proceed to Explore the Data
below for guidance on next steps.

Explore the Data

Once you create a new dashboard, you can experiment with Hi-Res Analytics tools to get to know

the data and decide the best way to display it.

Decide What Type (Class) of Data You Want to See

1. First, review the types of data or classes that exist in the data. On the What can I do next? tab,

click Specify the types of data you would like to see. The Select Data Types dialog box
displays the available data types. The value in parentheses shows the total number of

instances of that type exist in the data set:

Explore the Data 639

2. Select one data type. The property that you choose determines the fields that become

available to filter on.

Tip
Though you must choose one base data type for a dashboard, you can leverage the

relationships in the graph to access and integrate data from additional classes. See

Combining Data from Multiple Classes for more information.

Click OK to close the Select Data Types dialog box. The data type is added to the Data Types

panel on the left side of the screen. Proceed to Create Filters to See the Values for Properties

below for next steps.

Tip
You might want to create multiple dashboards so that you can click between dashboards and

view multiple classes of data at the same time.

Create Filters to See the Values for Properties

To dive deeper into the data and quickly determine what values exist for the class of properties you

selected, you can start adding filters to the dashboard. Filters reveal the values associated with

fields and help you learn the data set specifics such as whether data exists for certain properties

Explore the Data 640

and whether the data includes many duplicate or unique values. Learning more about the details

enables you to start making decisions about what properties to group on, what properties have

relationships, and what results you want to visualize on the dashboard.

1. To create a filter, click Add facets to filter the data on the What can I do next tab. The

Create Filter dialog box opens.

2. In the Create Filter dialog box, click the Fields field and select the property or property path to
filter on.

3. Then click the Filter field to select the filter type. The list of available choices depends on the
data type of the property you selected in Fields. The table below describes each filter type.

Filter Types

Filter Description

Cloud Cloud filters display values in term clouds where each term is written in a font size
that represents the number of results for that value. Unlike list filters, which enable
you to select and filter on multiple values at once, cloud filters allow you to filter on
one value at a time. The Cloud filter is available for all data types.

List List filters display values in a list and allow you to filter on multiple values at the
same time. List filters are available for all data types.

Single
Select List

Single Select List filters are similar to List filters but only allow you to filter one
value from the list at a time. This type of filter is available for properties of all data
types but is not available for paths.

Explore the Data 641

Filter Description

Limit Limit filters are used to limit the results on the dashboard to a specified number of
either the largest or smallest values. The Limit filter is available for any data type.
For strings, results are ordered alphabetically. "Largest" orders by the last letters in
the alphabet and "Smallest" orders by the first letters in the alphabet.

Date Range Date Range filters are used to limit the results on a dashboard to data that falls in
(or outside of) certain date and time groupings. Date Range filters are available for
properties with date, dateTime, and time data types.

Numeric
Range

Numeric Range filters are used to limit the results on a dashboard to data that falls
in (or outside of) certain numeric groupings. Numeric Range filters are available for
properties with integer and double data types.

Range
Slider

Range Slider filters display a slider control that enables you to filter dashboard
results by setting one range that you can adjust as needed. This type of filter is
available for properties with integer, double, date, time, and dateTime data types. It
is not available for paths.

Relative
Time

Relative Time filters are used to filter for records that fall into a specified increment
of time relative to the current time. This type of filter is available for date, time, and
dateTime data types.

Search Search filters are used to search for values of a property that contain a partial
match, exact match, or do not equal the text that you specify. The search is case-
insensitive. This type of filter is available for all data types. It is not available for use
with paths.

Presence Presence filters group results based on whether the value exists or does not exist.
This type of filter is useful for testing whether there are records that are missing a
particular value. Presence filters are available for paths and properties of all data
types.

Explore the Data 642

Filter Description

Quartile Quartile filters group and rank the values for a property into four equal ranges. This
filter is available for properties with integer, double, date, time, and dateTime data
types. It is not available for paths.

Hierarchy If hierarchies exist in your knowledge graph, you can create a Hierarchy filter to
explore the parent and child relationships and filter the dashboard based on the
relationships. Unlike the majority of dashboard filters, where you select a property
to filter on, Hierarchy filters operate on relationships and are only available as a
filter type when you select a path to filter on.

Types Types filters are used to filter data according to the types of data (classes) that are
connected by a specified path. This type of filter is available only for paths and not
properties.

For information about configuring each type of filter, see Working with Filters.

Create Visualizations of the Data

Once you have a good understanding of the values and relationships that exist in the data , you can

experiment with the Hi-Res Analytics lenses and decide on the most appropriate way to display the

data. Creating a Table lens is a quick way to view the data that you filtered. This section provides

instructions for creating a table lens and describes each of the lenses available in Hi-Res Analytics.

1. To create a Table lens, click Select or create visualizations of your data in the What can I

do next tab. Anzo displays the Lens Selection dialog box.

Create Visualizations of the Data 643

2. In the dialog box, click Create a new lens. Anzo displays the Create Lens dialog box.

3. Select the Table lens and click Next.

Create Visualizations of the Data 644

4. Type a Title for the lens, and then click Finish. Anzo opens the Table Designer:

5. In the Designer, click the Auto-generate columns icon () to add all available columns to

the table. Then click Save.

The new lens displays as a new sub-tab on the dashboard and displays the data according to the

data type and filter or filters that you created. Now that you can view a summary of the data in a

table, it can help you determine how to further narrow or expand the results by adding, changing, or

removing filters. In addition, you can experiment by adding other lenses to the dashboard to find the

ideal way to display the data to answer the questions that you have. The table below describes each

type of lens. For more information about each lens, see Creating a Lens.

Lens Description

AnzoKO
Web Page

AnzoKOWeb Page lenses include the Knockout JavaScript framework and enable
you to display data on a web page that you create using HTML, CSS, and
JavaScript.

Chart Anzo offers several types of chart lenses. These lenses are useful for displaying
large amounts of complex data and have the widest format range of any lens type.
The ability to add an axis enables you to compare data, such as for comparing
monthly sales data for multiple stores.

Drill Down Drill down lenses combine other lenses into a hierarchical interface. Clicking an

Create Visualizations of the Data 645

http://knockoutjs.com/

Lens Description

object in one lens opens the next lens in the hierarchy and can present the data in
a different view.

Form Form lenses enable you to create an editable or read-only form on the dashboard.
Creating forms can be useful for displaying many details about each record instead
of using a table where the large number of columns makes the data hard to read.

Note
By default, only the sysadmin user has access to create Form lenses. In

addition, Form lenses are valid in only in Linked Dataset dashboards. For

more information, see Creating a Form Lens.

List List lenses display results in a list layout, similar to the Microsoft Windows®
Explorer interface. The lens enables you to add icons for each data value, and
results are grouped onto pages according to the given page size value.

Query Query lenses enable you to retrieve data using a custom SPARQL query and
display the results by writing basic HTML and CSS. You can use a Query lens to
access data from external sources. Query lenses do not bind directly to the linked
data set, data type, or filters defined on the dashboard.

Resource
Tree
Navigator

Resource Tree Navigator lenses display results in a hierarchical tree view. You
can click parent data points to open the successive child data points. This lens is
useful for presenting small amounts of data; each discrete group appears on a
separate page in the dashboard. You can also click certain objects to view the
object's data properties in the left panel.

Note
By default, the only user who has permission to create a Resource Tree

Navigator lens is the sysadmin user.

Create Visualizations of the Data 646

Lens Description

Table Table lenses present results in a basic table grid consisting of rows and columns.
Table lenses are useful for presenting data aggregates or summaries.

Web Page Web Page lenses enable you to display results on a web page that you create
using HTML, CSS, and JavaScript.

Create Visualizations of the Data 647

Working with Dashboards

The topics in this section provide instructions on creating and configuring dashboards.

l Creating a Graphmart Dashboard

l Creating a Network Navigator Dashboard

l Configuring a Dashboard to Update in Batch Reporting vs. Interactive Mode

l Capturing User-Defined Values in Dashboards

Creating a Graphmart Dashboard

Follow the instructions below to create a new dashboard for a graphmart. For instructions on

creating a Network Navigator dashboard, see Creating a Network Navigator Dashboard.

1. In the Anzo application, expand the Blend menu and click Graphmarts. Anzo displays a list
of the existing graphmarts. For example:

2. On the Graphmarts screen, click the name of the graphmart for which you want to create a

dashboard. The Overview screen is displayed. For example:

Working with Dashboards 648

3. Click the Create Dashboard button. The Hi-Res Analytics application opens and displays the
Create Dashboard dialog box. Leave Graphmart Dashboard selected and click Next.

4. Next, type a name for the dashboard in the Title field and enter an optional Description.

5. Click Finish to create the dashboard. The new dashboard appears as a new tab and contains

a sub-tab titledWhat can I do next?. This tab acts as a wizard to guide you through the initial
dashboard creation. For example:

Creating a Graphmart Dashboard 649

6. On the What can I do next? tab, click Specify the types of data you would like to see. The
Select Data Types dialog box displays the available data types. The value in parentheses

shows the total number of instances of that type exist in the graphmart:

7. In the Select Data Types dialog box, select the data type or class of data that you want to

display on the dashboard. Anzo uses the type, along with any filters, to populate the

visualizations (lenses) that you add to the dashboard.

Creating a Graphmart Dashboard 650

Tip
Though you must choose one base data type for a dashboard, you can leverage the

relationships in the graph to access and integrate data from additional classes. See

Combining Data from Multiple Classes for more information.

8. Click OK to close the Select Data Types dialog box. The data type is added to the Data Types

panel on the left side of the dashboard.

9. In the main toolbar, click the Dashboard button and select Save to save your progress.

Now that the dashboard basics are defined, see Creating a Lens and Working with Filters for

instructions on adding lenses and filters to the dashboard.

Creating a Network Navigator Dashboard

The Network Navigator Dashboard is an interactive graph visualization tool that enables you to find

relationships in the knowledge graph and explore the paths to build out a Network View. This topic

helps you get started building a Network Navigator Dashboard by covering the basic steps and

functionality that is presented by default. Additional topics describe the functionality in further detail

and cover more advanced dashboard configuration options. For instructions on creating a

Graphmart dashboard, see Creating a Graphmart Dashboard.

Note
By default, only the sysadmin user has permission to create a Network Navigator Dashboard.

However, the sysadmin user can share created dashboards with other users and groups (see

Sharing Access to Dashboards and Lenses).

1. In the Anzo application, expand the Blend menu and click Graphmarts. Anzo displays a list
of the existing graphmarts. For example:

Creating a Network Navigator Dashboard 651

2. On the Graphmarts screen, click the name of the graphmart for which you want to create a

dashboard. The Overview screen is displayed. For example:

3. Click the Create Dashboard button. The Hi-Res Analytics application opens and displays the
Create Dashboard dialog box. Select Network Navigator Dashboard and click Next.
Remember that only the sysadmin user has the option to create this type of dashboard. If you
do not see the option and think you should, check with your system administrator.

Creating a Network Navigator Dashboard 652

4. Next, type a name for the dashboard in the Title field and enter an optional Description. For
example:

5. Click Finish to create the dashboard. The dashboard appears as a new tab in the application.

For example:

Creating a Network Navigator Dashboard 653

6. The first step in rendering the Network View is to choose a node (or group of nodes) as the

starting point. A node is an object in the data. In order to be able to traverse the network, start

with an object for a property that has one or more relationships with other properties. To select

a value, click the Find Data button at the top of the dashboard. The Find Data dialog box is
displayed and lists all of the values for each of the properties in the data model. Select one or

more objects in the list.

Creating a Network Navigator Dashboard 654

To narrow down the list of values by class or type of data, you can click Filter to open the
Filter panel on the left side of the screen. The Filter panel lists the classes and subclasses

from the model. For example, the image below shows the classes for a knowledge graph that

contains supply chain data for an automobile manufacturer:

You can expand or collapse the classes to display or hide subclasses. And you can start

typing text in the Find Types field to search for specific classes. Select the checkbox next to
any of the classes from which you want to display data. The list in the main part of the screen

is refreshed to display only the values for the properties in the selected classes.

7. Once you have selected the starting node in the Find Data dialog box, click OK to add the

node to the Network View. For example, in the image below the value Vale mines was
selected as the starting point, and the Vale mines node is added to the View:

Creating a Network Navigator Dashboard 655

Tip
You can configure the dashboard to Auto-Expand by a certain number of degrees or
hops so that adding a node to a View automatically adds the specified number of related

nodes and paths. For information, see Auto-Expanding a Network View.

8. To start building out the network, select a node to view its connections and properties on the

left side of the screen. For example, selecting the Vale mines node shows its incoming and
outgoing connections as well as properties like the label.

The image shows that Vale mines has an incoming connection (or backward path) from

Mining Company via hasMine and an outgoing connection (or forward path) to Country

via locatedIn.

9. There are two options for exploring the connections:

See a list of connected nodes without adding them to the View

To see a list of nodes that are connected by a path without adding the nodes and path to

the View, you can click the path name link.

Creating a Network Navigator Dashboard 656

Details are shown in the lower panel, but the nodes are hidden from the network View by

default. For example, clicking the locatedIn path from the image above, shows that Vale

mines is located in Canada.

If you decide you want a node and path to be added to the View, you can click the hidden

node to make it visible. For example, clicking Canada adds the path and node to the View:

Add a path and node directly to the View

To add a path and node directly to the network View, you can select the checkbox next to

the path.

Creating a Network Navigator Dashboard 657

For example, selecting the hasMine checkbox adds the path and the MiningCompany
value (Vale) to the View:

Tip
Any time you want to clear the View and start again, you can click Clear at the top of the
screen. To toggle between showing and hiding a path or node, you can click the path or

node in the panel on the left side of the screen to select or deselect the item.

You can save the View by clicking Save View and specifying a Title and optional

Description in the dialog box. When you save the dashboard, the View that is visible at

the time it is saved is presented when the dashboard is reopened.

10. To continue to explore and expand the Network View, you can select another node and repeat

the previous step to identify additional paths to follow. Or you also have the option to select

two nodes and do a search for paths between them. To find paths, find and add to the view, if

necessary, the two nodes whose relationships you want to explore. Then hold the Ctrl button
and select the two nodes.

Creating a Network Navigator Dashboard 658

For example, in the image below, two nodes, an OEM called VW Group, and a raw material,

Nickel, were added to the View, and both nodes are selected:

11. On the right side of the screen under Find Paths, adjust the Degrees of Separation value as
needed (the default is 4) and then click Go. Anzo runs an All Paths graph algorithm to find all

of the paths that exist between the two nodes—where the maximum number of hops is the

value in the Degrees of Separation field. If a "No paths found" message is returned, that
means there is no path between the two nodes that is N or fewer hops away, where N is the

value in Degrees of Separation. You can change the value and try again.

In the example for VW Group and Nickel, finding paths with the default value of 4 returned "No

paths found." However, increasing Degrees of Separation to 5 renders several nodes and

relationships.

Creating a Network Navigator Dashboard 659

Tip
You can remove a single node or a hide a group of nodes by right-clicking a node and

selecting an option from the pop-up menu (shown below). Remove Selected Node
deletes the node and its incoming and outgoing connections. Hide Selected Tree hides
the selected node and all of its connected nodes and paths.

12. You can continue to explore the network using the methods described above. In addition, you

can adjust the layout of the View using the options under Layout on the right side of the
screen:

Creating a Network Navigator Dashboard 660

Tightness

The Tightness setting controls how close or far apart the nodes are. Valid values are 1 – 9.
The lower the Tightness value, the looser the nodes are. Increasing Tightness brings the

nodes closer together. Type a number in the field and then press Enter to apply it. In the
simple example below, the default Tightness value of 3 shows nodes that are far apart.

Increasing Tightness to 9 attracts the nodes closer together:

Creating a Network Navigator Dashboard 661

Standard vs. Hierarchical Layout
The layout buttons (shown below) enable you to switch between a Standard () layout

(the default setting) and a Hierarchical () layout.

To change to a Hierarchical layout from a Standard layout, select the node in the View that
is the root node and then click the Hierarchy () button. For example, in the image below,

VW Group was selected as the root node. Changing to the Hierarchical layout changes the
View to a hierarchy:

Re-Layout

The Re-Layout setting controls whether the entire View is refreshed and rearranged when

a node is added. When Re-Layout is enabled, the View is rearranged when a node is

added. If Re-Layout is disabled, new nodes are added to the View and existing nodes

remain in place.

Show or Hide Edge and Node Labels
The Eye () icons next to Edge Labels and Node Labels enable you to toggle between

showing or hiding the edge and node labels in the View.

Creating a Network Navigator Dashboard 662

You can save the View any time by clicking Save View. You are prompted to specify a Title and
optional Description. To avoid creating multiple Views with the same name, make sure that you
specify a unique Title. When you save the dashboard, the View that is visible at the time it is saved

is presented when the dashboard is reopened. Other Views can be opened by clicking Open View
and selecting a View. Only one View is displayed at time per dashboard. You also have the option to

export a PNG version of the Network View by clicking Download Image.

Adding Icons to a Network Navigator Dashboard

In Network Navigator Dashboards, you can use custom icons to represent different types (classes)

of data in the knowledge graph. The steps below guide you through identifying the types in the

Network View, if necessary, so that you can choose icons, uploading the icons the library, and

applying the icons to specific classes.

l Identifying Types and Preparing Icons

l Uploading and Applying Icons to a Dashboard

Note
To be able to upload and apply icons, a Network Navigator Dashboard must exist and have a

Network View that displays at least one node. For instructions on creating a dashboard, see

Creating a Network Navigator Dashboard.

Identifying Types and Preparing Icons

When configuring a dashboard to display icons, the icons are applied at the class (type) level. That

way each property of the same type is represented by the same icon. If you are unfamiliar with the

data that is displayed in a View, there are a couple of ways you can identify the classes:

l You can select a node in the View and see the type below the node label on the left side of the

screen. For example, the image below shows that the AxionPowerInternational node is in
the Tier-1 class.

Creating a Network Navigator Dashboard 663

l You can click Find Data and open the Filter panel. Expand the contents to see the classes
and subclasses. For example:

Once you know the types of the nodes in the View, you can determine the appropriate icon to use for

each type. Download the icons to your computer, if necessary. When uploading icons to the library,

you will browse your computer to select them. The application supports standard image formats like

PNG, JPEG, and SVG.

The examples from the list above show a portion of a View and a list of the classes and subclasses

for an automobile supply chain knowledge graph. The entire View (shown below) shows companies

that are potential suppliers of Cobalt to the VW Group. In the example, adding icons would hep

users distinguish between the first tier companies, mining companies, refineries, mines, etc.

Creating a Network Navigator Dashboard 664

Uploading and Applying Icons to a Dashboard

Follow the instructions below to upload images to the icon library and then apply them to the classes

in your Network View.

Note
When you apply icons to the classes (types) in a dashboard, those icons will apply to all

Network Views that include those types.

1. Open in the Hi-Res Analytics application the Network Navigator Dashboard that you want to

add icons to.

2. In the main toolbar, click the Designer button. The Properties by Type tab is displayed in the
Designer. For example:

Creating a Network Navigator Dashboard 665

3. Expand the view of the model to display each of the types (classes). If the model contains

subclasses, you can view them by clicking the View Sub Types link next to the parent class
(shown below).

When viewing the subtypes, you can click Back to return to the parent level. For example:

Creating a Network Navigator Dashboard 666

4. Under the class that you want to apply an icon to, expand Node Styling. Then expand
Default Node Style. For example, the image below shows the default node style

configuration for the Mine type.

5. Under Node Options, click the Type drop-down list and select Icon. An Icon field with a
Browse button is displayed below Type:

Creating a Network Navigator Dashboard 667

6. Click Browse to open the Icon Browser. The Browser lists the icons that have been uploaded
to the application and gives you the option to upload new icons. For example, the image below

shows that two icons have been uploaded previously and are in the library.

7. To apply an existing icon, select the icon and click Use Selected. To add new icons, click

Upload New. The Icon Uploader dialog box is displayed:

Creating a Network Navigator Dashboard 668

8. In the Icon Uploader dialog box, complete the following fields as needed:

l Title: Required field that specifies the name of the icon.

l Instances: Required field that specifies the icon to upload. Only one icon can be
selected at a time. Click Browse to navigate to the icon on your computer and select it.
When an icon is selected, the width and height fields are populated to show the size of

the selected image. You can adjust the size but it is not required. The images are

automatically downsized when displayed in the View.

l Collection: Optional field that specifies the collection to add the icon to. If you want to be
able to filter icons by collection, you can select an existing collection from the drop-down

list or click New and type a new name to add to the list.

l Keywords: Optional field that specifies any keywords to tag the icon with. Keywords
also enable users to filter icons.

l Type: Required field that specifies the type of image you are adding to the library. Icon
is the default value and should not be changed.

The image below shows an example of the properties set for an icon that will be used to

represent the nodes for mines.

9. When you have finished configuring the icon properties, click Upload to upload the icon. The
dialog box shows a preview of the new icon. Click OK to close the dialog box and add the icon

to the Icon Browser.

Creating a Network Navigator Dashboard 669

Tip
It is helpful to repeat Steps 7 – 9 until you have uploaded all of the icons that you want to

use for the dashboard. That way you can more efficiently apply the icons to the types in

the Designer.

10. When you have finished uploading icons to the Icon Browser, the next step is to apply them to

the classes. First, select the icon that you want to apply to the class you selected in Step 4.

For example, in the image below, themine icon is selected for the Mine class.

11. Click Use Selected to apply the icon and return to the Designer where you can preview the

icon and configure additional node options.

Creating a Network Navigator Dashboard 670

12. If you want to change the shape, size, and background or border color for the icon, you can

adjust the following properties:

l Shape: Enables you to set the icon shape to Circle or Square.

l Background Color: Controls the color of the background if the icon is transparent or is
smaller than the chosen shape. You can click the colored square to use the color picker

or type the hex value for the desired color in the text box.

l Border Color: Controls the color of the border around the icon. You can click the
colored square to use the color picker or type the hex value for the desired color in the

text box.

l Auto-Trim Images: This setting trims the image to fit in the chosen shape if it is larger
than the shape.

l Scale Factor: Enables you to scale the icon size up or down.

13. When you have finished configuring the icon for the selected class, navigate to the other

classes and repeat the steps above to apply and configure additional icons. When you have

finished applying icons, click Save to apply the changes and close the Designer. The new
icons will be applied to the nodes in each Network View for the dashboard. For example, the

image below shows the revised View of the sample automobile supply chain knowledge

graph.

Creating a Network Navigator Dashboard 671

Auto-Expanding a Network View

When you add nodes to a Network View, the Network Navigator Dashboard is configured by default

to add only the selected nodes and paths to the View without automatically expanding the paths to

show related nodes. You have the option to enable the Auto-Expand feature in the Dashboard
Designer, however, so that the network is automatically expanded by the specified number of

degrees any time a new node or path is added to the View. To configure a dashboard to auto-

expand, follow the steps below.

1. Open in the Hi-Res Analytics application the Network Navigator Dashboard that you want to

configure.

2. In the main toolbar, click the Designer button. The Designer opens and the Properties
by Type tab is displayed. Click the Options tab:

Creating a Network Navigator Dashboard 672

3. Click the Expansion tab to view the expansion options. For example, the image below shows

the default configuration.

Creating a Network Navigator Dashboard 673

4. On the Expansion tab, configure the options as needed:

l Number of Degrees to Expand: At the top of the screen, select the default number of
degrees (hops) to auto-expand. The options are 0 – 6. When this option is set to a value

greater than 0 and a node is added to a View in the dashboard, Anzo automatically

populates the View with the nodes and paths that are N or fewer hops from the added

node, where N is the specified value. If the View does not auto-expand when a node is

added, that means there are no paths to or from that node that are N or fewer hops.

l Show All Connections: This option controls whether or not all connections are shown
for all nodes.

l Show or Hide Inverse Edges: When auto-expanding the network multiple levels, this

option controls whether to show or hide the inverse edges, i.e. whether or not to show

both the incoming and outgoing connections to the same nodes. When this option is set

to don't show, only one edge (path) will be shown between nodes. When this option is

set to show, both the incoming and outgoing paths will be displayed.

l Limit the Number of Adjacent Nodes: This option controls the number of adjacent
nodes to show per node.

l Property Inclusion List: If you would like auto-expansion to apply only to particular
properties, you can select the Use Inclusion List checkbox. When Use Inclusion List is

enabled, the dashboard's properties are listed at the bottom of the screen. Select each

of the properties that you want to include.

5. When you have finished configuring the expansion options, click Save to apply the changes
and close the Designer.

Once Auto-Expand is enabled, adding a node or path to a Network View in this dashboard will also

automatically add to the View the related nodes and paths that meet the specified criteria.

Swapping the Graphmart in a Network Navigator Dashboard

Follow the instructions below if you want to change a Network Navigator dashboard to access a

different graphmart.

Creating a Network Navigator Dashboard 674

1. Open in the Hi-Res Analytics application the Network Navigator Dashboard that you want to

configure.

2. In the main toolbar, click the Dashboard menu and select Properties. The Properties dialog
box for the dashboard is displayed. For example:

3. On the General tab, click the Graphmart drop-down list and select the graphmart that you

want to use in place of the current selection.

Creating a Network Navigator Dashboard 675

4. Click Save to save the selection and close the Properties dialog box.

Configuring a Dashboard to Update in Batch Reporting vs. Interactive Mode

Dashboards are configured to run in interactive mode by default. In interactive mode, Anzo updates

dashboards automatically each time a user adds, selects, or modifies a filter or lens. Each change

generates one or more SPARQL queries that are run against the graphmart data in AnzoGraph.

Depending on conditions such as the number of concurrent users, the size of the data, the number

of filters, and/or the complexity of the calculations, running in interactive mode can result in

significant server workloads, as many complex queries are executed simultaneously. If dashboard

performance becomes unsatisfactory, there are two options for changing how and when a

dashboard is updated:

l You can configure a dashboard to run in "Reporting" mode. Dashboards in reporting mode are

not refreshed immediately with every change. Instead, update queries are paused until a user

completes their changes and manually initiates the update process. The update refreshes all

of the lenses and filters on the dashboard.

Configuring a Dashboard to Update in Batch Reporting vs. Interactive Mode 676

l For finer-grained control over which lenses and filters are updated automatically and which

are not, you can enable update controls on each lens and filter. Adding update controls does

not change the update method for the entire dashboard, but certain components can be

paused and then updated individually.

Tip
By default, dashboards are also automatically refreshed when the data in the backing

graphmart changes. The Automatic setting in the Refresh menu controls this behavior. When

Automatic is disabled and the graphmart is updated, the user is informed that the data

changed and they can manually refresh the dashboard to get the updates.

This topic provides instructions for changing the update method at the dashboard level and enabling

update controls so that lenses can be updated individually.

l Changing the Update Method for a Dashboard

l Adding Manual Update Controls to Lenses and Filters

Configuring a Dashboard to Update in Batch Reporting vs. Interactive Mode 677

Changing the Update Method for a Dashboard

1. Open in the Hi-Res Analytics application the dashboard that you want to change.

2. In the main toolbar, click Designer to open the dashboard designer. For example:

3. In the designer, click the Update Method tab. The image below shows the Update Method tab

for a dashboard that is in Interactive mode.

Configuring a Dashboard to Update in Batch Reporting vs. Interactive Mode 678

4. Click the radio button for the update mode that you want the dashboard to use. Then click

Close to close the designer.

5. Save the dashboard to save the configuration change.

When a dashboard is in Reporting mode, an Update button is displayed on the top right corner of the

dashboard. The button is disabled when the dashboard is up to date. The image below shows the

disabled button.

Configuring a Dashboard to Update in Batch Reporting vs. Interactive Mode 679

When a user makes a change to a component, the Update button is enabled (as shown in the image

below) and the dashboard can be refreshed as needed. When the update is initiated, all lenses are

refreshed.

Adding Manual Update Controls to Lenses and Filters

1. Open in the Hi-Res Analytics application the dashboard that you want to change.

2. In the main toolbar, click the Refresh menu and select Show Update Controls. A pause icon

and status icon are added to each filter and lens on the dashboard, as shown in the image

below.

Configuring a Dashboard to Update in Batch Reporting vs. Interactive Mode 680

The pause icon () is used to pause or re-enable automatic updates of the component, and

the status icon indicates whether the component is up-to-date () or out of sync ().

3. Save the dashboard to save the configuration change.

4. In the dashboard, click the pause icon for any filters and lenses that you do not want to be
updated automatically.

When a filter or lens is paused and a user makes an update that affects that component, an update

message is displayed. For example, the image below shows a lens and filter that are out of sync.

Clicking UPDATE in the message refreshes that component.

Configuring a Dashboard to Update in Batch Reporting vs. Interactive Mode 681

Capturing User-Defined Values in Dashboards

You can configure a Table lens in a dashboard to allow users to input values and save those values

to a linked dataset (LDS) in a graphmart. This topic provides instructions for configuring a

graphmart, LDS, and dashboard to enable and save user-defined input. There are several steps

required to configure the environment:

Note
The procedures below must be performed by the sysadmin user or a user with Anzo

Administrator permissions. Once the setup is complete, the components can be shared with

other users and groups.

1. Create a Volume for Storing User Input

2. Configure the Graphmart

3. Add User Input Properties to the Model

4. Create and Configure the Dashboard

5. Share the LDS and Add it to the Graphmart

Capturing User-Defined Values in Dashboards 682

Create a Volume for Storing User Input

When you configure a Table lens to save user-entered values to an LDS, you must choose the

volume in which to save the LDS. Cambridge Semantics strongly recommends that you do not write

to the system journal (<install_path>/Server/data/journal/anzo.jnl by default).

Instead, use a separate volume that is dedicated to storing user-entered values. If necessary,

create a new volume before proceeding. See Creating a New Volume in the Administration Guide

for instructions.

Note
Cambridge Semantics also strongly recommends that you create a separate volume for each

graphmart that will include user-defined values.

Configure the Graphmart

The first step is to deactivate the graphmart that will contain the user-entered values and disable

manual refresh. When manual refresh is disabled, the graphmart is refreshed automatically any

time a user updates the LDS by adding values in the dashboard. Follow the steps below to configure

the graphmart.

1. In the graphmart for which you want to add user-defined text, go to the Overview tab.

2. From the Overview tab, deactivate the graphmart if it is online, and then find the Manual
Refresh Graphmart setting at the bottom of the screen:

Capturing User-Defined Values in Dashboards 683

https://docs.cambridgesemantics.com/anzo/v5.4/userdoc/admin-create-volume.htm

3. If Manual Refresh Graphmart is enabled, slide the slider to the left to disable it.

4. Activate the graphmart and proceed to the next step to update the model.

Add User Input Properties to the Model

The next step is to update the model that was generated when the data was onboarded. Any new

properties that you want to add as columns for text entry in a Table lens need to be added to the

model. Follow the steps below to update the Direct Load Step query to add new properties to the

model.

1. Click the Data Layers tab. Expand the layer that was generated when you created the
graphmart and find the Direct Load Step that inserts the data.

Tip
You might want to start another session of Anzo so that you can view the layer's model

in the Model editor and the graphmart query at the same time.

2. Open the Direct Load Step for editing and click the Query tab. For example, the image below
shows the query that was generated to onboard data about books from a CSV file:

Capturing User-Defined Values in Dashboards 684

3. Make sure the following prefixes are declared in the PREFIX clause at the top of the query. If

any are missing, add them to the query:

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

4. Next, add the following GRAPH clause statements under the SERVICE clause:

GRAPH <model_URI> {

<property_URI> a owl:DatatypeProperty;

rdfs:comment "comment" ;

rdfs:label "property_label" ;

rdfs:domain <class_URI> ;

rdfs:range <dataype> .

[<property2_URI> a owl:DatatypeProperty;

rdfs:comment "comment" ;

rdfs:label "property2_label" ;

rdfs:domain <class_URI> ;

rdfs:range <datatype> .]

Capturing User-Defined Values in Dashboards 685

[...]

}

Value
Data T
ype

Description

mode
l_URI

URI The URI of the model that was generated by the Direct Load Step.
You can copy the URI from the Model editor from the Details tab for
the model. For example,
<http://cambridgesemantics.com/Layer/698.../Mode

l>.

proper
ty_URI

URI The URI to use for the new property. You can look at the URIs for
other properties in the model and follow the same scheme. For
example,
<http://cambridgesemantics.com/Layer/698.../Model

#GoodReads100kBooks.Notes>.

comm
ent

string A comment that describes the property. For example, "Notes
from users".

proper
ty_
label

string The label to give the property. For example, "Notes".

class_
URI

URI The URI of the class that the property should be added to. You can
copy the URI from the Model editor from the Details tab for the
class. For example,
<http://cambridgesemantics.com/Layer/698.../Model

#GoodReads100kBooks>.

datayp
e

URI The datatype of the new property. For example, xsd:string.

Capturing User-Defined Values in Dashboards 686

For example, the following query adds one new property to the model that is generated by the

Direct Load Step query shown above:

PREFIX good_reads_books_files:

<http://cambridgesemantics.com/DataSource/0e5ab8601249264a318b4a4bcfa81700/Goo

d_Reads_Books/>

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

INSERT {

GRAPH ${targetGraph} {

?subject ?predicate ?object .

}

}

WHERE {

SERVICE <http://cambridgesemantics.com/services/DataToolkit> {

GRAPH

<http://cambridgesemantics.com/Layer/698d179498f945a393f8a91ee9f1f611/Model> {

<http://cambridgesemantics.com/Layer/698d179498f945a393f8a91ee9f1f611/Model#Goo

dReads100kBooks.Notes> a owl:DatatypeProperty;

rdfs:comment "Notes from users" ;

rdfs:label "Notes" ;

rdfs:domain

<http://cambridgesemantics.com/Layer/698d179498f945a393f8a91ee9f1f611/Model#Goo

dReads100kBooks> ;

rdfs:range xsd:string .

}

[]

s:segment "false"^^xsd:boolean .

?generator a s:RdfGenerator, s:OntologyGenerator ;

s:as (?subject ?predicate ?object) ;

s:base ${targetGraph} .

good_reads_books_files:GoodReads_100k_books a s:FileSource ;

s:url "/nfs/data/csv/GoodReads_100k_books.csv" ;

s:model "GoodReads_100k_books" .

}

}

Capturing User-Defined Values in Dashboards 687

5. Next, if the class for any of the new properties does not have a primary key defined,
you must create a key for that class. If all of the classes you referenced in the query have
primary keys, you can continue to the next step. If one or more of the classes do not have

primary keys, follow the instructions below:

a. Locate in the query the statement block for each class that needs a key defintion. For

example, in the query above, there is only one class, s:model "GoodReads_100k_

Books". If you have multiple classes, the query has several blocks, such as this

example:

...

emrdbsmall:emr_complaint a s:DbSource ;

s:using mysql_db:MySQL_DB ;

s:table "emrdbsmall.emr_complaint" ;

s:model "emr_complaint" .

emrdbsmall:emr_patient a s:DbSource ;

s:using mysql_db:MySQL_DB ;

s:table "emrdbsmall.emr_patient" ;

s:model "emr_patient" .

emrdbsmall:emr_complaintdescription a s:DbSource ;

s:using mysql_db:MySQL_DB ;

s:table "emrdbsmall.emr_complaintdescription" ;

s:model "emr_complaintdescription" .

...

b. At the end of the block for the class you want to add a key to, change the period (.) after

s:model to a semicolon (;).

c. Next, add the following line below s:model:

s:key ("key_property" [, "key_property2"] [, ...]) .

Where key_property is the label of the property to use as a key for the class. The

property that you choose must have unique values. If there is not a property in the class

with unique values, you can specify a combination of properties that would create a

Capturing User-Defined Values in Dashboards 688

unique value. Make sure that the value of key_property matches the label for that

property in the model. For example, for the query in step 4, the Isbn property can be

used as a unique key for the GoodReads_100k_Books class:

good_reads_books_files:GoodReads_100k_books a s:FileSource ;

s:url "/nfs/data/csv/GoodReads_100k_books.csv" ;

s:model "GoodReads_100k_books" ;

s:key ("Isbn") .

The final, completed query is shown below:

PREFIX good_reads_books_files:

<http://cambridgesemantics.com/DataSource/0e5ab8601249264a318b4a4bcfa81700

/Good_Reads_Books/>

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

INSERT {

GRAPH ${targetGraph} {

?subject ?predicate ?object .

}

}

WHERE {

SERVICE <http://cambridgesemantics.com/services/DataToolkit> {

GRAPH

<http://cambridgesemantics.com/Layer/698d179498f945a393f8a91ee9f1f611/Mode

l> {

<http://cambridgesemantics.com/Layer/698d179498f945a393f8a91ee9f1f611/Mode

l#GoodReads100kBooks.Notes> a owl:DatatypeProperty;

rdfs:comment "Notes from users" ;

rdfs:label "Notes" ;

rdfs:domain

<http://cambridgesemantics.com/Layer/698d179498f945a393f8a91ee9f1f611/Mode

l#GoodReads100kBooks> ;

rdfs:range xsd:string .

}

[]

s:segment "false"^^xsd:boolean .

?generator a s:RdfGenerator, s:OntologyGenerator ;

Capturing User-Defined Values in Dashboards 689

s:as (?subject ?predicate ?object) ;

s:base ${targetGraph} .

good_reads_books_files:GoodReads_100k_books a s:FileSource ;

s:url "/nfs/data/csv/GoodReads_100k_books.csv" ;

s:model "GoodReads_100k_books" ;

s:key ("Isbn") .

}

}

6. Save the step and then refresh or reload the graphmart to update the model with the new

properties.

Create and Configure the Dashboard

Now that the graphmart is updated, the next step is to create and configure the dashboard that will

enable input for the new properties.

1. Create a dashboard for the graphmart that was updated in the previous task.

2. Add a Table lens to the dashboard. In the lens, add any columns that you would like to see,

including columns for the user input properties that you added to the model.

3. In the lens Designer, select a column that will allow input and click the Editor link under
Column Value Expression (shown in the image below).

Capturing User-Defined Values in Dashboards 690

The Column Editor Configuration dialog box is displayed and populated with the name of the

chosen property:

4. In the dialog box, select the Editable checkbox. Then click the Select Linked Dataset field
and select Create a linked dataset. The New Linked Data Set dialog box is displayed:

Capturing User-Defined Values in Dashboards 691

5. Specify a title for the new LDS and add an optional description. Then click the [+] more link to
expose the following additional settings.

6. Complete the required fields:

l Datasource: Click this field and select the volume to save the LDS in. This is the volume

that you created in Create a Volume for Storing User Input.

Capturing User-Defined Values in Dashboards 692

l Storage: This field lists the system-generated URI for the LDS and dataset storage

graph. Cambridge Semantics recommends that you do not change this value.

l Ontology: Replace this value with the URI of the model that contains the writable
properties. For the example shown above, the value is
http://cambridgesemantics.com/Layer/698d179498f945a393f8a91ee9f1

f611/Model.

The image below shows the completed screen:

7. Click OK to save the LDS configuration and create the LDS. The LDS is added to the Datasets

catalog and it is shown on the Column Editor Configuration screen. Additional editor

properties are made available on the screen. For example:

Capturing User-Defined Values in Dashboards 693

8. Under Set editor properties, you have the option to modify the constraints for the editable
property.

9. When you are finished setting any constraints, click Close and then click Save in the
Designer. The lens is now configured to display the editable field. Hovering over a row in the
table shows an edit icon () in the field. For example:

10. Repeat steps 3 – 9 for any additional properties that you added to the model and want to make

editable.

11. To add text in the lens, double-click an editable field to open the text editor, as shown in the

image below.

Capturing User-Defined Values in Dashboards 694

Add text in the provided field, and then click OK to add the text to the dashboard.

The text is displayed in the table:

You can edit the text by double-clicking the field. You can also add another text entry by

opening the text editor and clicking add value. Click OK after making changes or adding

values.

12. Finally, save the dashboard and proceed to the next task.

Capturing User-Defined Values in Dashboards 695

Share the LDS and Add it to the Graphmart

In order for other users to be able to add values to the dashboard, they need to have permission to

modify the LDS. Follow the steps below to share the LDS and then add it to the graphmart.

1. In the Datasets catalog, open the LDS that is associated with the dashboard you configured in

the previous task. Then click the Sharing tab to configure the permissions.

2. On the Sharing tab, share the dataset with the appropriate users and/or groups. For

information about configuring permissions, see Share Access to Artifacts.

3. Next go to the graphmart and click the Datasets tab.

4. On the Datasets tab, click Add Dataset. Then select the dataset that you shared and click
Add to add the dataset to the graphmart. For more information about adding a dataset to a
graphmart, see Adding a Dataset to a Graphmart.

5. Refresh the graphmart to load the dataset to AnzoGraph.

The graphmart, linked dataset, and dashboard are now configured to allow and save user-defined

values.

Capturing User-Defined Values in Dashboards 696

Working with Lenses

The topics in this section provide instructions on creating, exporting, and deleting lenses.

l Creating a Lens

l Cloning a Lens

l Exporting a Lens

l Deleting a Lens

Creating a Lens

Lenses define the data’s visual presentation. Each type of lens represents a unique method for

displaying data. For instance, in a column chart, you can present multiple data series for

comparison. You can also apply custom formats such as fonts and colors to any lens. The topics in

this section provide instructions for creating lenses.

l Creating a Chart Lens

l Creating a Drill Down Lens

l Creating a Form Lens

l Creating a List Lens

l Creating a Table Lens

l Advanced Lenses

Creating a Chart Lens

Anzo Hi-Res Analytics employs the Highcharts API to provide interactive chart lenses. The topics in

this section provide information about creating each type of chart.

l Create an Area Chart

l Create a Bar Chart

l Create a Bubble Chart

l Create a Column Chart

Working with Lenses 697

https://www.highcharts.com/products/highcharts

l Create a Funnel Chart

l Create a Heat Map

l Create a Line Chart

l Create a Polar Chart

l Create a Scatter Chart

Create an Area Chart

Area charts are useful for emphasizing trends in your data. They are similar to line charts but

include options for displaying stacked data series. This topic provides instructions for creating an

area chart with minimal configuration. Descriptions of all of the available configuration options are

included below the steps.

l Complete the Minimum Configuration

l Optional Configuration Settings

Complete the Minimum Configuration

Follow the instructions below to create an area chart. The instructions guide you through completing

the minimum configuration needed to display your data in the chart. Additional, optional

configuration settings are described in Optional Configuration Settings.

1. In the dashboard that you want to add a lens to, click Lenses in the main toolbar and select
New. The Create Lens dialog box is displayed:

Creating a Lens 698

2. On the Create Lens dialog box, select Chart, and then click Next. Anzo displays the General
Information dialog box.

3. Type a Title and optional Description for the lens.

Creating a Lens 699

4. Click Finish. The lens Designer dialog box is displayed:

5. Click Chart Type to open the Chart Types dialog box:

6. On the left side of the screen, select Area. On the right side of the screen, select the icon for
the type of area chart that you want to create. There are five types:

l Area: Connects value points on the chart with straight lines and shades the area below
the lines.

l Step Area: Connects value points on the chart with short horizontal steps and shades
below the lines. This chart emphasizes the extent of value change by expanding the data

points across the X axis.

Creating a Lens 700

l Area Spline: Connects value points on the chart with curved lines and shades the area
below the lines.

l Stacked Area: Connects value points on the chart with straight lines and shades the
area below the lines. Includes the option to configure multiple groups within a series to

distinguish between groups of values inside the total value.

l 100% Stacked Area: Compares each value as a percentage of the total and shades the
area below each series. Includes the option to configure multiple groups within a series

to distinguish between groups of values inside the total value.

Once the type is selected, you are returned to the Chart Configuration screen, and the Chart

Type value is set to the type that you chose.

7. Next, select Chart Data to add the data that will populate the chart.

The Series Configurations section of the screen contains settings to manage each series.
One series is created by default. A series is a set of data to display on the chart, for example a

line on a line or area chart or one set of columns on a column or bar chart. The details for the

selected series appear in Series Details, which contains settings to define the details of the
selected series, such as the data to display as well as formatting and labels. From Series

Configurations, you can clone, rename, disable (remove the series from the chart without
deleting it), or remove a series. You can add a series by clicking the plus icon () or delete all
series by clicking the trashcan icon (). Removing a series cannot be undone.

Creating a Lens 701

8. Under Series Configurations, click Rename under Series 1 and give the series a meaningful
name that describes the data that will populate the chart.

9. Under Series Details, click the Group field and select the property to use for grouping the data
in the series. These are the values for the X axis. You can use functions to derive the values

for the groups. The list below describes the icons and options that are available when

choosing a property:

l The Root Value () is the instance URI for the root resource—the URI for the instances

of the class that was chosen as the data type for the dashboard.

Tip
To view the root values, you can use the STR function to show a string

representation of the URIs.

l Linked classes are represented by incoming () and outgoing () connection icons.

The properties in those classes with a path to another class are denoted with a circle
icon (). Selecting a linked property navigates to that class and displays its properties.

l When a property or path is selected, the breadcrumbs at the top of the dialog box show
you the property path. You can click the clear icon () to clear the path and start again or
you can click the forward () or back () arrows to go forward or backward one or more

levels at a time.

l After you have selected a property, you can apply a function or formula to that property

to calculate the values that are displayed in the filter. To add a function, click the function

button (fx) at the top of the drop-down list. The functions that are available depend on
the data type of the selected property. To choose a more advanced function or type a

formula, click Advanced. The Calculated Value dialog box opens and enables you to
choose additional properties and functions. For more information, see Calculating

Values in Lenses and Filters.

Creating a Lens 702

10. Once you select the Group, the Group Label field is populated with the same value. This
setting configures the property whose values should serve as the group label. You can edit

the value if necessary.

11. Next, click the Value field and select the property to use for the Y axis values. You can include

functions to derive the values.

12. If you want to add a group for the series, you can click Show formulas used for creating
calculated series and add values for the following fields:

l Series Group: Specifies a property to use for grouping data in addition to the Group
value.

l Series Label: Specifies the property whose values should serve as the Series Group
label. It is typically set to the same value as Series Group.

l Series Sort Direction: Specifies the sort direction for the series groups.

13. You can click Save any time to render on the dashboard the data that you have configured so
far. You can add another series and repeat the steps above. You can also configure several

more options for the chart by changing the optional parameters. The additional tabs and

options are described below in Optional Configuration Settings.

Optional Configuration Settings

This section describes each of the tabs and additional settings that are available for customizing an

area chart.

l Chart Data: Plot Tab

l Chart Data: X Axis Tab

l Chart Data: Y Axis Tab

l Chart Data: Filters Tab

l Chart Theme

l Chart Details

Creating a Lens 703

Chart Data: Plot Tab

This tab contains settings that control series formatting, such as data labels, legends, and other

display options.

Field Description

Series Chart
Type

This option opens the Chart Types selection screen where you can select a
different chart type for the selected series. The selection must be compatible with
the types selected for any other series in the chart, however, or the incompatible
series will fail validation and not be displayed on the chart until it is corrected.

Series Chart
Style

This option contains the plot style settings. These settings control the thickness
and color of lines for the series as well as the color and opacity of the fill area
below the lines.

Series Chart
Data Labels

This option contains the data label settings, which control the font, alignment, and
font effects of the labels for the series.

Series Chart This option contains the data marker settings. These settings control the

Creating a Lens 704

Field Description

Markers placement and format of the data points for a series that appear when a user
hovers the pointer over a point in the line. For example, the image below shows a
data marker in an area chart:

Show This setting can be used to limit the data included in the series. The limit can be
defined by the largest or smallest Group Label or Value.

Show in
legend

This setting controls whether to show the name of the series in the legend.

Connect
missing
points

Selecting this option connects the series line across any missing points. For
example, if this option was enabled for the chart below, the two dark blue areas
would be connected.

Threshold Defines the Y axis value to use as a base (starting point) for the shaded area. For
example, a threshold of 0 begins all shading at the value 0. A threshold of 10
begins the shading at 10 and draws the area chart above or below the threshold
as required. The image below shows an area chart with a threshold of 30.

Creating a Lens 705

Field Description

Chart Data: X Axis Tab

This tab defines the formats and labels for the X axis values in the series.

Field Description

Axis The Axis and Title settings are populated with the values from the Group and
Group Label values from the Data tab. If multiple axes exist, you can

Creating a Lens 706

Field Description

selected a different value to use for the X axis.

Title This setting defines the title for the X axis.

Type This setting controls the scale for the X axis, linear or logarithmic.

Display values
as evenly
distributed
categories

This setting controls whether to evenly distribute the X axis values.

Display axis on
the opposite side

This setting can be enabled to move the X axis to the opposite side of the
chart.

Axis Title Details This option contains the X axis title settings, which control the font, alignment,
and font effects of the axis title.

Axis Labels This option contains the X axis label settings, which control the font,
alignment, and font effects of the labels for the axis.

Axis Style This option contains the X axis style settings. These settings control the
minimum and maximum values for the axis and the style and position of the
grid lines and tick marks.

Chart Data: Y Axis Tab

This tab defines the formats and labels for the Y axis values in the series.

Creating a Lens 707

Field Description

Axis The Axis and Title settings are populated with the Value from the Data tab. If
multiple axes exist, you can selected a different value to use for the Y axis.

Title This setting defines the title for the Y axis.

Type This setting controls the scale for the Y axis, linear or logarithmic.

Display axis
on the
opposite side

This setting can be enabled to move the Y axis to the opposite side of the chart.

Axis Title
Details

This option contains the Y axis title settings, which control the font, alignment,
and font effects of the axis title.

Axis Labels This option contains the Y axis label settings, which control the font, alignment,
and font effects of the labels for the axis.

Creating a Lens 708

Field Description

Axis Style This option contains the Y axis style settings. These settings control the
minimum and maximum values for the axis and the style and position of the grid
lines and tick marks.

Chart Data: Filters Tab

This tab defines any filters to apply to the series.

Field Description

Series
Filters

This option can be used to define filters that apply to the entire series.

Group
Filters

This option can be used to define filters that apply only to the Group values for the
series.

Value
Filters

This option can be used to define filters that apply only to the Value values for the
series.

Chart Theme

This setting presents options for configuring the theme or color scheme for the chart.

Creating a Lens 709

Chart Details

This option offers finer-grained customization settings than the Chart Theme. You can further

customize the chart design by adding details such as a chart title and subtitle. You can also modify

chart-level styles and fonts as well as legend and tooltip formats.

Create a Bar Chart

Bar charts are useful for comparing different sets of data or emphasizing drastic changes in a data

set over time. This topic provides instructions for creating a bar chart with minimal configuration.

Descriptions of all of the available configuration options are included below the steps.

l Complete the Minimum Configuration

l Optional Configuration Settings

Creating a Lens 710

Complete the Minimum Configuration

Follow the instructions below to create a bar chart. The instructions guide you through completing

the minimum configuration needed to display your data in the chart. Additional, optional

configuration settings are described in Optional Configuration Settings.

1. In the dashboard that you want to add a lens to, click Lenses in the main toolbar and select
New. The Create Lens dialog box is displayed:

2. On the Create Lens dialog box, select Chart, and then click Next. Anzo displays the General
Information dialog box.

3. Type a Title and optional Description for the lens.

Creating a Lens 711

4. Click Finish. The lens Designer dialog box is displayed:

5. Click Chart Type to open the Chart Types dialog box:

6. On the left side of the screen, select Bar. On the right side of the screen, select the icon for
the type of bar chart that you want to create. There are three types:

l Clustered Bar: Compares values across categories.

l Stacked Bar: Compares the contribution of each value to a total across categories.
Includes the option to configure multiple groups within a series to distinguish between

groups of values inside the total value.

Creating a Lens 712

l 100% Stacked Bar: Compares each value as a percentage of the total. Includes the
option to configure multiple groups within a series to distinguish between groups of

values inside the total value.

Once the type is selected, you are returned to the Chart Configuration screen, and the Chart

Type value is set to the type that you chose.

7. Next, select Chart Data to add the data that will populate the chart.

The Series Configurations section of the screen contains settings to manage each series.
One series is created by default. A series is a set of data to display on the chart, for example a

line on a line or area chart or one set of columns on a column or bar chart. The details for the

selected series appear in Series Details, which contains settings to define the details of the
selected series, such as the data to display as well as formatting and labels. From Series

Configurations, you can clone, rename, disable (remove the series from the chart without
deleting it), or remove a series. You can add a series by clicking the plus icon () or delete all
series by clicking the trashcan icon (). Removing a series cannot be undone.

8. Under Series Configurations, click Rename under Series 1 and give the series a meaningful
name that describes the data that will populate the chart.

9. Under Series Details, click the Group field and select the property to use for grouping the data
in the series. These are the values for the X axis. You can use functions to derive the values

for the groups. The list below describes the icons and options that are available when

Creating a Lens 713

choosing a property:

l The Root Value () is the instance URI for the root resource—the URI for the instances

of the class that was chosen as the data type for the dashboard.

Tip
To view the root values, you can use the STR function to show a string

representation of the URIs.

l Linked classes are represented by incoming () and outgoing () connection icons.

The properties in those classes with a path to another class are denoted with a circle
icon (). Selecting a linked property navigates to that class and displays its properties.

l When a property or path is selected, the breadcrumbs at the top of the dialog box show
you the property path. You can click the clear icon () to clear the path and start again or
you can click the forward () or back () arrows to go forward or backward one or more

levels at a time.

l After you have selected a property, you can apply a function or formula to that property

to calculate the values that are displayed in the filter. To add a function, click the function

button (fx) at the top of the drop-down list. The functions that are available depend on
the data type of the selected property. To choose a more advanced function or type a

formula, click Advanced. The Calculated Value dialog box opens and enables you to
choose additional properties and functions. For more information, see Calculating

Values in Lenses and Filters.

10. Once you select the Group, the Group Label field is populated with the same value. This
setting configures the property whose values should serve as the group label. You can edit

the value if necessary.

11. Next, click the Value field and select the property to use for the Y axis values. You can include

functions to derive the values.

12. If you want to add a group for the series, you can click Show formulas used for creating
calculated series and add values for the following fields:

Creating a Lens 714

l Series Group: Specifies a property to use for grouping data in addition to the Group
value.

l Series Label: Specifies the property whose values should serve as the Series Group
label. It is typically set to the same value as Series Group.

l Series Sort Direction: Specifies the sort direction for the series groups.

13. You can click Save any time to render on the dashboard the data that you have configured so
far. You can add another series and repeat the steps above. You can also configure several

more options for the chart by changing the optional parameters. The additional tabs and

options are described below in Optional Configuration Settings.

Optional Configuration Settings

This section describes each of the tabs and additional settings that are available for customizing a

bar chart.

l Chart Data: Plot Tab

l Chart Data: Y Axis Tab

l Chart Data: X Axis Tab

l Chart Data: Filters Tab

l Chart Theme

l Chart Details

Chart Data: Plot Tab

This tab contains settings that control series formatting, such as data labels, legends, and other

display options.

Creating a Lens 715

Field Description

Series
Chart
Type

This option opens the Chart Types selection screen where you can select a different
chart type for the selected series. The selection must be compatible with the types
selected for any other series in the chart, however, or the incompatible series will fail
validation and not be displayed on the chart until it is corrected.

Series
Chart
Style

This option contains the plot style settings, which control the thickness and color of the
bars for the series.

Series
Chart
Data
Labels

This option contains the data label settings, which control the font, alignment, and font
effects of the labels for the series.

Show This setting can be used to limit the data included in the series. The limit can be
defined by the largest or smallest Group Label or Value.

Show in
legend

This setting controls whether to show the name of the series in the legend.

Creating a Lens 716

Chart Data: Y Axis Tab

This tab defines the formats and labels for the Y axis values in the series.

Field Description

Axis The Axis and Title settings are populated with the Value from the Data tab. If
multiple axes exist, you can selected a different value to use for the Y axis.

Title This setting defines the title for the Y axis.

Type This setting controls the scale for the Y axis, linear or logarithmic.

Display axis
on the
opposite side

This setting can be enabled to move the Y axis to the opposite side of the chart.

Axis Title
Details

This option opens the Y axis title settings, which control the font, alignment, and
font effects of the axis title.

Creating a Lens 717

Field Description

Axis Labels This option opens the Y axis label settings, which control the font, alignment, and
font effects of the labels for the axis.

Axis Style This option contains the Y axis style settings. These settings control the
minimum and maximum values for the axis and the style and position of the grid
lines and tick marks.

Chart Data: X Axis Tab

This tab defines the formats and labels for the X axis values in the series.

Field Description

Axis The Axis and Title settings are populated with the values from the Group and
Group Label values from the Data tab. If multiple axes exist, you can
selected a different value to use for the X axis.

Creating a Lens 718

Field Description

Title This setting defines the title for the X axis.

Type This setting controls the scale for the X axis, linear or logarithmic.

Display values
as evenly
distributed
categories

This setting controls whether to evenly distribute X axis values.

Display axis on
the opposite side

This setting can be enabled to move the X axis to the opposite side of the
chart.

Axis Title Details This option accesses the X axis title settings, which control the font,
alignment, and font effects of the axis title.

Axis Labels This option accesses the X axis label settings, which control the font,
alignment, and font effects of the labels for the axis.

Axis Style This option accesses the X axis style settings. These settings control the
minimum and maximum values for the axis and the style and position of the
grid lines and tick marks.

Chart Data: Filters Tab

This tab defines any filters to apply to the series.

Creating a Lens 719

Field Description

Series
Filters

This option can be used to define filters that apply to the entire series.

Group
Filters

This option can be used to define filters that apply only to the Group values for the
series.

Value
Filters

This option can be used to define filters that apply only to the Value values for the
series.

Chart Theme

This setting presents options for configuring the theme or color scheme for the chart.

Creating a Lens 720

Chart Details

This option offers finer-grained customization settings than the Chart Theme. You can further

customize the chart design by adding details such as a chart title and subtitle. You can also modify

chart-level styles and fonts as well as legend and tooltip formats.

Create a Bubble Chart

A bubble chart is similar to a scatter chart but has a third dimension. In addition to the X and Y axes,

there is a size axis that determines the size of the bubbles in the chart. This topic provides

instructions for creating a bubble chart with minimal configuration. Descriptions of all of the

available configuration options are included below the steps.

l Complete the Minimum Configuration

l Optional Configuration Settings

Complete the Minimum Configuration

Follow the instructions below to create a bubble chart. The instructions guide you through

completing the minimum configuration needed to display your data in the chart. Additional, optional

configuration settings are described in Optional Configuration Settings.

Creating a Lens 721

1. In the dashboard that you want to add a lens to, click Lenses in the main toolbar and select
New. The Create Lens dialog box is displayed:

2. On the Create Lens dialog box, select Chart, and then click Next. Anzo displays the General
Information dialog box.

3. Type a Title and optional Description for the lens.

Creating a Lens 722

4. Click Finish. The lens Designer dialog box is displayed:

5. Click Chart Type to open the Chart Types dialog box:

6. On the left side of the screen, select Bubble, and then select the Bubble icon in the main part
of the screen. Once the type is selected, you are returned to the Chart Configuration screen,

and the Chart Type value is set to the type that you chose.

Creating a Lens 723

7. Next, select Chart Data to add the data that will populate the chart.

The Series Configurations section of the screen contains settings to manage each series.
One series is created by default. A series is a set of data to display on the chart, for example a

line on a line or area chart or one set of columns on a column or bar chart. The details for the

selected series appear in Series Details, which contains settings to define the details of the
selected series, such as the data to display as well as formatting and labels. From Series

Configurations, you can clone, rename, disable (remove the series from the chart without
deleting it), or remove a series. You can add a series by clicking the plus icon () or delete all
series by clicking the trashcan icon (). Removing a series cannot be undone.

8. Under Series Configurations, click Rename under Series 1 and give the series a meaningful
name that describes the data that will populate the chart.

9. Under Series Details, click the Group field and select the property to use for grouping the data
in the series. You can use functions to derive the values for the groups. The list below

describes the icons and options that are available when choosing a property:

l The Root Value () is the instance URI for the root resource—the URI for the instances

of the class that was chosen as the data type for the dashboard.

Creating a Lens 724

Tip
To view the root values, you can use the STR function to show a string

representation of the URIs.

l Linked classes are represented by incoming () and outgoing () connection icons.

The properties in those classes with a path to another class are denoted with a circle
icon (). Selecting a linked property navigates to that class and displays its properties.

l When a property or path is selected, the breadcrumbs at the top of the dialog box show
you the property path. You can click the clear icon () to clear the path and start again or
you can click the forward () or back () arrows to go forward or backward one or more

levels at a time.

l After you have selected a property, you can apply a function or formula to that property

to calculate the values that are displayed in the filter. To add a function, click the function

button (fx) at the top of the drop-down list. The functions that are available depend on
the data type of the selected property. To choose a more advanced function or type a

formula, click Advanced. The Calculated Value dialog box opens and enables you to
choose additional properties and functions. For more information, see Calculating

Values in Lenses and Filters.

10. Next, click the Y field and select the property to use for the Y axis values in the series. You

can include functions to derive the values.

11. Then select the property to use for the X axis values by clicking the X field and choosing a

property. You can also include functions.

12. Next, click the Size field and select the property to use for the size axis, which determines the
sizes of the bubbles for the series.

13. If you want to add a group for the series, you can click Show formulas used for creating
calculated series and add values for the following fields:

l Series Group: Specifies a property to use for grouping data in addition to the Group
value.

Creating a Lens 725

l Series Label: Specifies the property whose values should serve as the Series Group
label. It is typically set to the same value as Series Group.

l Series Sort Direction: Specifies the sort direction for the series groups.

14. You can click Save any time to render on the dashboard the data that you have configured so
far. You can add another series and repeat the steps above. You can also configure several

more options for the chart by changing the optional parameters. The additional tabs and

options are described below in Optional Configuration Settings.

Optional Configuration Settings

This section describes each of the tabs and additional settings that are available for customizing a

bubble chart.

l Chart Data: Plot Tab

l Chart Data: X Axis Tab

l Chart Data: Y Axis Tab

l Chart Data: Filters Tab

l Chart Theme

l Chart Details

Chart Data: Plot Tab

This tab contains settings that control series formatting, such as data labels, legends, and other

display options.

Creating a Lens 726

Field Description

Series
Chart Type

This option opens the Chart Types selection screen where you can select a different
chart type for the selected series. The selection must be compatible with the types
selected for any other series in the chart, however, or the incompatible series will fail
validation and not be displayed on the chart until it is corrected.

Series
Chart
Style

This option contains the plot style settings that control the color of the bubbles.

Series
Chart Data
Labels

This option accesses the data label settings, which control the font, alignment, and
font effects of the labels for the series.

Series
Chart
Markers

This option accesses the data marker settings. These settings control the placement
and format of the data points for a series that appear when a user hovers the pointer
over a bubble. For example, the image below shows a data marker:

Creating a Lens 727

Field Description

Show This setting can be used to limit the data included in the series. The limit can be
defined by the largest or smallest Group Label or Value.

Show in
legend

This setting controls whether to show the name of the series in the legend.

Chart Data: X Axis Tab

This tab defines the formats and labels for the X axis values in the series.

Creating a Lens 728

Field Description

Axis The Axis and Title settings are populated with the X axis value from the Data tab.
If multiple axes exist, you can selected a different value to use for the X axis.

Title This setting defines the title for the X axis.

Sort by This setting controls how to sort the bubbles, by X, Y, or Size axis.

Display axis
on the
opposite side

This setting can be enabled to move the X axis to the opposite side of the chart.

Axis Title
Details

This option contains the X axis title settings, which control the font, alignment,
and font effects of the axis title.

Creating a Lens 729

Field Description

Axis Labels This option contains the X axis label settings, which control the font, alignment,
and font effects of the labels for the axis.

Axis Style This option accesses the X axis style settings. These settings control the
minimum and maximum values for the axis and the style and position of the grid
lines and tick marks.

Chart Data: Y Axis Tab

This tab defines the formats and labels for the Y axis values in the series.

Field Description

Axis The Axis and Title settings are populated with the Y axis value from the Data tab.
If multiple axes exist, you can selected a different value to use for the Y axis.

Title This setting defines the title for the Y axis.

Creating a Lens 730

Field Description

Display axis
on the
opposite side

This setting can be enabled to move the Y axis to the opposite side of the chart.

Axis Title
Details

This option contains the Y axis title settings, which control the font, alignment,
and font effects of the axis title.

Axis Labels This option accesses the Y axis label settings, which control the font, alignment,
and font effects of the labels for the axis.

Axis Style This option contains the Y axis style settings. These settings control the
minimum and maximum values for the axis and the style and position of the grid
lines and tick marks.

Chart Data: Filters Tab

This tab defines any filters to apply to the series.

Field Description

Series
Filters

This option can be used to define filters that apply to the entire series.

Creating a Lens 731

Field Description

Y Filters This option can be used to define filters that apply only to the Y axis values for the
series.

X Filters This option can be used to define filters that apply only to the X axis values for the
series.

Size Filters This option can be used to define filters that apply only to the Size axis values for
the series.

Chart Theme

This setting presents options for configuring the theme or color scheme for the chart.

Chart Details

This option offers finer-grained customization settings than the Chart Theme. You can further

customize the chart design by adding details such as a chart title and subtitle. You can also modify

chart-level styles and fonts as well as legend and tooltip formats.

Creating a Lens 732

Create a Column Chart

Like bar charts, column charts are also useful for comparing different sets of data or emphasizing

drastic changes in a data set over time. This topic provides instructions for creating a column chart

with minimal configuration. Descriptions of all of the available configuration options are included

below the steps.

l Complete the Minimum Configuration

l Optional Configuration Settings

Complete the Minimum Configuration

Follow the instructions below to create a column chart. The instructions guide you through

completing the minimum configuration needed to display your data in the chart. Additional, optional

configuration settings are described in Optional Configuration Settings.

1. In the dashboard that you want to add a lens to, click Lenses in the main toolbar and select
New. The Create Lens dialog box is displayed:

Creating a Lens 733

2. On the Create Lens dialog box, select Chart, and then click Next. Anzo displays the General
Information dialog box.

3. Type a Title and optional Description for the lens.

Creating a Lens 734

4. Click Finish. The lens Designer dialog box is displayed:

5. Click Chart Type to open the Chart Types dialog box:

6. On the left side of the screen, select Column. On the right side of the screen, select the icon
for the type of bar chart that you want to create. There are three types:

l Clustered Column: Compares values across categories.

l Stacked Column: Compares the contribution of each value to a total across categories.
Includes the option to configure multiple groups within a series to distinguish between

groups of values inside the total value.

Creating a Lens 735

l 100% Stacked Column: Compares each value as a percentage of the total. Includes
the option to configure multiple groups within a series to distinguish between groups of

values inside the total value.

Once the type is selected, you are returned to the Chart Configuration screen, and the Chart

Type value is set to the type that you chose.

7. Next, select Chart Data to add the data that will populate the chart.

The Series Configurations section of the screen contains settings to manage each series.
One series is created by default. A series is a set of data to display on the chart, for example a

line on a line or area chart or one set of columns on a column or bar chart. The details for the

selected series appear in Series Details, which contains settings to define the details of the
selected series, such as the data to display as well as formatting and labels. From Series

Configurations, you can clone, rename, disable (remove the series from the chart without
deleting it), or remove a series. You can add a series by clicking the plus icon () or delete all
series by clicking the trashcan icon (). Removing a series cannot be undone.

8. Under Series Configurations, click Rename under Series 1 and give the series a meaningful
name that describes the data that will populate the chart.

9. Under Series Details, click the Group field and select the property to use for grouping the data
in the series. These are the values for the X axis. You can use functions to derive the values

for the groups. The list below describes the icons and options that are available when

Creating a Lens 736

choosing a property:

l The Root Value () is the instance URI for the root resource—the URI for the instances

of the class that was chosen as the data type for the dashboard.

Tip
To view the root values, you can use the STR function to show a string

representation of the URIs.

l Linked classes are represented by incoming () and outgoing () connection icons.

The properties in those classes with a path to another class are denoted with a circle
icon (). Selecting a linked property navigates to that class and displays its properties.

l When a property or path is selected, the breadcrumbs at the top of the dialog box show
you the property path. You can click the clear icon () to clear the path and start again or
you can click the forward () or back () arrows to go forward or backward one or more

levels at a time.

l After you have selected a property, you can apply a function or formula to that property

to calculate the values that are displayed in the filter. To add a function, click the function

button (fx) at the top of the drop-down list. The functions that are available depend on
the data type of the selected property. To choose a more advanced function or type a

formula, click Advanced. The Calculated Value dialog box opens and enables you to
choose additional properties and functions. For more information, see Calculating

Values in Lenses and Filters.

10. Once you select the Group, the Group Label field is populated with the same value. This
setting configures the property whose values should serve as the group label. You can edit

the value if necessary.

11. Next, click the Value field and select the property to use for the Y axis values. You can include

functions to derive the values.

12. If you want to add a group for the series, you can click Show formulas used for creating
calculated series and add values for the following fields:

Creating a Lens 737

l Series Group: Specifies a property to use for grouping data in addition to the Group
value.

l Series Label: Specifies the property whose values should serve as the Series Group
label. It is typically set to the same value as Series Group.

l Series Sort Direction: Specifies the sort direction for the series groups.

13. You can click Save any time to render on the dashboard the data that you have configured so
far. You can add another series and repeat the steps above. You can also configure several

more options for the chart by changing the optional parameters. The additional tabs and

options are described below in Optional Configuration Settings.

Optional Configuration Settings

This section describes each of the tabs and additional settings that are available for customizing a

column chart.

l Chart Data: Plot Tab

l Chart Data: X Axis Tab

l Chart Data: Y Axis Tab

l Chart Data: Filters Tab

l Chart Theme

l Chart Details

Chart Data: Plot Tab

This tab contains settings that control series formatting, such as data labels, legends, and other

display options.

Creating a Lens 738

Field Description

Series
Chart
Type

This option opens the Chart Types selection screen where you can select a different
chart type for the selected series. The selection must be compatible with the types
selected for any other series in the chart, however, or the incompatible series will fail
validation and not be displayed on the chart until it is corrected.

Series
Chart
Style

This option contains the plot style settings that control the thickness and color of the
columns for the series.

Series
Chart
Data
Labels

This option accesses the data label settings, which control the font, alignment, and
font effects of the labels for the series.

Show This setting can be used to limit the data included in the series. The limit can be
defined by the largest or smallest Group Label or Value.

Show in
legend

This setting controls whether to show the name of the series in the legend.

Creating a Lens 739

Chart Data: X Axis Tab

This tab defines the formats and labels for the X axis values in the series.

Field Description

Axis The Axis and Title settings are populated with the values from the Group and
Group Label values from the Data tab. If multiple axes exist, you can selected a
different value to use for the X axis.

Title This setting defines the title for the X axis.

Sort by This setting controls how to sort the data for the X axis, by the Group Label

values or the Value values.

Display axis
on the
opposite

This setting can be enabled to move the X axis to the opposite side of the chart.

Creating a Lens 740

Field Description

side

Axis Title
Details

This option contains the X axis title settings, which control the font, alignment, and
font effects of the axis title.

Axis Labels This option accesses the X axis label settings, which control the font, alignment,
and font effects of the labels for the axis.

Axis Style This option contains the X axis style settings. These settings control the minimum
and maximum values for the axis and the style and position of the grid lines and
tick marks.

Chart Data: Y Axis Tab

This tab defines the formats and labels for the Y axis values in the series.

Creating a Lens 741

Field Description

Axis The Axis and Title settings are populated with the Value from the Data tab. If
multiple axes exist, you can selected a different value to use for the Y axis.

Title This setting defines the title for the Y axis.

Type This setting controls the scale for the Y axis, linear or logarithmic.

Display axis
on the
opposite side

This setting can be enabled to move the Y axis to the opposite side of the chart.

Axis Title
Details

This option contains the Y axis title settings, which control the font, alignment,
and font effects of the axis title.

Axis Labels This option contains the Y axis label settings, which control the font, alignment,
and font effects of the labels for the axis.

Axis Style This option accesses the Y axis style settings. These settings control the
minimum and maximum values for the axis and the style and position of the grid
lines and tick marks.

Chart Data: Filters Tab

This tab defines any filters to apply to the series.

Creating a Lens 742

Field Description

Series
Filters

This option can be used to define filters that apply to the entire series.

Group
Filters

This option can be used to define filters that apply only to the Group values for the
series.

Value
Filters

This option can be used to define filters that apply only to the Value values for the
series.

Chart Theme

This setting presents options for configuring the theme or color scheme for the chart.

Creating a Lens 743

Chart Details

This option offers finer-grained customization settings than the Chart Theme. You can further

customize the chart design by adding details such as a chart title and subtitle. You can also modify

chart-level styles and fonts as well as legend and tooltip formats.

Create a Funnel Chart

A funnel chart is useful for showing progress through stages in which the data values typically

decrease. This topic provides instructions for creating a funnel chart with minimal configuration.

Descriptions of all of the available configuration options are included below the steps.

l Complete the Minimum Configuration

l Optional Configuration Settings

Complete the Minimum Configuration

Follow the instructions below to create a funnel chart. The instructions guide you through

completing the minimum configuration needed to display your data in the chart. Additional, optional

configuration settings are described in Optional Configuration Settings.

Creating a Lens 744

1. In the dashboard that you want to add a lens to, click Lenses in the main toolbar and select
New. The Create Lens dialog box is displayed:

2. On the Create Lens dialog box, select Chart, and then click Next. Anzo displays the General
Information dialog box.

3. Type a Title and optional Description for the lens.

Creating a Lens 745

4. Click Finish. The lens Designer dialog box is displayed:

5. Click Chart Type to open the Chart Types dialog box:

6. On the left side of the screen, select Funnel, and then select the Funnel icon in the main part
of the screen. Once the type is selected, you are returned to the Chart Configuration screen,

and the Chart Type value is set to the type that you chose.

Creating a Lens 746

7. Next, select Chart Data to add the data that will populate the chart.

The Series Configurations section of the screen contains settings to manage each series.
One series is created by default. A series is a set of data to display on the chart, for example a

line on a line or area chart or one set of columns on a column or bar chart. The details for the

selected series appear in Series Details, which contains settings to define the details of the
selected series, such as the data to display as well as formatting and labels. From Series

Configurations, you can clone, rename, disable (remove the series from the chart without
deleting it), or remove a series. You can add a series by clicking the plus icon () or delete all
series by clicking the trashcan icon (). Removing a series cannot be undone.

8. Under Series Configurations, click Rename under Series 1 and give the series a meaningful
name that describes the data that will populate the chart.

9. Under Series Details, click the Group field and select the property to use for grouping the data
in the series. You can use functions to derive the values for the groups. The list below

describes the icons and options that are available when choosing a property:

l The Root Value () is the instance URI for the root resource—the URI for the instances

of the class that was chosen as the data type for the dashboard.

Creating a Lens 747

Tip
To view the root values, you can use the STR function to show a string

representation of the URIs.

l Linked classes are represented by incoming () and outgoing () connection icons.

The properties in those classes with a path to another class are denoted with a circle
icon (). Selecting a linked property navigates to that class and displays its properties.

l When a property or path is selected, the breadcrumbs at the top of the dialog box show
you the property path. You can click the clear icon () to clear the path and start again or
you can click the forward () or back () arrows to go forward or backward one or more

levels at a time.

l After you have selected a property, you can apply a function or formula to that property

to calculate the values that are displayed in the filter. To add a function, click the function

button (fx) at the top of the drop-down list. The functions that are available depend on
the data type of the selected property. To choose a more advanced function or type a

formula, click Advanced. The Calculated Value dialog box opens and enables you to
choose additional properties and functions. For more information, see Calculating

Values in Lenses and Filters.

10. Once you select the Group, the Group Label field is populated with the same value. This
setting configures the property whose values should serve as the group label. You can edit

the value if necessary.

11. Next, click the Value field and select the property to use for the values in the groups. You can
include functions to derive the values.

12. If you want to add a group for the series, you can click Show formulas used for creating
calculated series and add values for the following fields:

l Series Group: Specifies a property to use for grouping data in addition to the Group
value.

Creating a Lens 748

l Series Label: Specifies the property whose values should serve as the Series Group
label. It is typically set to the same value as Series Group.

l Series Sort Direction: Specifies the sort direction for the series groups.

13. You can click Save any time to render on the dashboard the data that you have configured so
far. You can add another series and repeat the steps above. You can also configure several

more options for the chart by changing the optional parameters. The additional tabs and

options are described below in Optional Configuration Settings.

Optional Configuration Settings

This section describes each of the tabs and additional settings that are available for customizing a

funnel chart.

l Chart Data: Plot Tab

l Chart Data: Filters Tab

l Chart Theme

l Chart Details

Chart Data: Plot Tab

This tab contains settings that control series formatting, such as data labels, legends, and other

display options.

Creating a Lens 749

Field Description

Series
Chart
Type

This option opens the Chart Types selection screen where you can select a different
chart type for the selected series. The selection must be compatible with the types
selected for any other series in the chart, however, or the incompatible series will fail
validation and not be displayed on the chart until it is corrected.

Series
Chart
Style

This option contains the plot style settings that control the color of the groups in the
series.

Series
Chart
Data
Labels

This option accesses the data label settings, which control the font, alignment, and
font effects of the labels for the series.

Show This setting can be used to limit the data included in the series. The limit can be
defined by the largest or smallest Group Label or Value.

Show in
legend

This setting controls whether to show the name of the series in the legend.

Creating a Lens 750

Chart Data: Filters Tab

This tab defines any filters to apply to the series.

Field Description

Series
Filters

This option can be used to define filters that apply to the entire series.

Value
Filters

This option can be used to define filters that apply only to the Value values for the
series.

Chart Theme

This setting presents options for configuring the theme or color scheme for the chart.

Creating a Lens 751

Chart Details

This option offers finer-grained customization settings than the Chart Theme. You can further

customize the chart design by adding details such as a chart title and subtitle. You can also modify

chart-level styles and fonts as well as legend and tooltip formats.

Create a Heat Map

A heat map depicts values of interest across two axes. The axis variables are divided into ranges

like a bar chart, and each cell’s color indicates the value in the corresponding cell range. This topic

provides instructions for creating a heat map with minimal configuration. Descriptions of all of the

available configuration options are included below the steps.

l Complete the Minimum Configuration

l Optional Configuration Settings

Complete the Minimum Configuration

Follow the instructions below to create a heat map. The instructions guide you through completing

the minimum configuration needed to display your data in the chart. Additional, optional

configuration settings are described in Optional Configuration Settings.

Creating a Lens 752

1. In the dashboard that you want to add a lens to, click Lenses in the main toolbar and select
New. The Create Lens dialog box is displayed:

2. On the Create Lens dialog box, select Chart, and then click Next. Anzo displays the General
Information dialog box.

3. Type a Title and optional Description for the lens.

Creating a Lens 753

4. Click Finish. The lens Designer dialog box is displayed:

5. Click Chart Type to open the Chart Types dialog box:

6. On the left side of the screen, select Heat Map, and then select the Heat Map icon in the main
part of the screen. Once the type is selected, you are returned to the Chart Configuration

screen, and the Chart Type value is set to the type that you chose.

Creating a Lens 754

7. Next, select Chart Data to add the data that will populate the chart.

The Series Configurations section of the screen contains settings to manage each series.
One series is created by default. A series is a set of data to display on the chart, for example a

line on a line or area chart or one set of columns on a column or bar chart. The details for the

selected series appear in Series Details, which contains settings to define the details of the
selected series, such as the data to display as well as formatting and labels. From Series

Configurations, you can clone, rename, disable (remove the series from the chart without
deleting it), or remove a series. You can add a series by clicking the plus icon () or delete all
series by clicking the trashcan icon (). Removing a series cannot be undone.

8. Under Series Configurations, click Rename under Series 1 and give the series a meaningful
name that describes the data that will populate the chart.

9. Under Series Details, click the Group field and select the property to use for grouping the data
in the series. You can use functions to derive the values for the groups. The list below

describes the icons and options that are available when choosing a property:

l The Root Value () is the instance URI for the root resource—the URI for the instances

of the class that was chosen as the data type for the dashboard.

Creating a Lens 755

Tip
To view the root values, you can use the STR function to show a string

representation of the URIs.

l Linked classes are represented by incoming () and outgoing () connection icons.

The properties in those classes with a path to another class are denoted with a circle
icon (). Selecting a linked property navigates to that class and displays its properties.

l When a property or path is selected, the breadcrumbs at the top of the dialog box show
you the property path. You can click the clear icon () to clear the path and start again or
you can click the forward () or back () arrows to go forward or backward one or more

levels at a time.

l After you have selected a property, you can apply a function or formula to that property

to calculate the values that are displayed in the filter. To add a function, click the function

button (fx) at the top of the drop-down list. The functions that are available depend on
the data type of the selected property. To choose a more advanced function or type a

formula, click Advanced. The Calculated Value dialog box opens and enables you to
choose additional properties and functions. For more information, see Calculating

Values in Lenses and Filters.

10. Next, click the X field and select the property to use for the X axis values in the series. You

can include functions to derive the values.

11. Then select the property to use for the Y axis values by clicking the Y field and choosing a

property. You can also include functions.

12. Next, click the Value field and select the property to use for the value range in the series.

13. If you want to add a group for the series, you can click Show formulas used for creating
calculated series and add values for the following fields:

l Series Group: Specifies a property to use for grouping data in addition to the Group
value.

Creating a Lens 756

l Series Label: Specifies the property whose values should serve as the Series Group
label. It is typically set to the same value as Series Group.

l Series Sort Direction: Specifies the sort direction for the series groups.

14. You can click Save any time to render on the dashboard the data that you have configured so
far. You can add another series and repeat the steps above. You can also configure several

more options for the chart by changing the optional parameters. The additional tabs and

options are described below in Optional Configuration Settings.

Optional Configuration Settings

This section describes each of the tabs and additional settings that are available for customizing a

heat map.

l Chart Data: Plot Tab

l Chart Data: X Axis Tab

l Chart Data: Y Axis Tab

l Chart Data: Color Axis Tab

l Chart Data: Filters Tab

l Chart Theme

l Chart Details

Chart Data: Plot Tab

This tab contains settings that control series formatting, such as data labels, legends, and other

display options.

Creating a Lens 757

Field Description

Series
Chart
Type

This option opens the Chart Types selection screen where you can select a different
chart type for the selected series. The selection must be compatible with the types
selected for any other series in the chart, however, or the incompatible series will fail
validation and not be displayed on the chart until it is corrected.

Series
Chart
Style

This option contains the plot style settings that control the color of the ranges.

Series
Chart
Data
Labels

This option contains the data label settings, which control the font, alignment, and font
effects of the labels for the series.

Show This setting can be used to limit the data included in the series. The limit is defined
based on the largest or smallest X axis, Y axis, or Value values.

Show in
legend

This setting controls whether to show the name of the series in the legend.

Creating a Lens 758

Chart Data: X Axis Tab

This tab defines the formats and labels for the X axis values in the series.

Field Description

Axis The Axis and Title settings are populated with the X axis value from the
Data tab. If multiple axes exist, you can selected a different value to use for
the X axis.

Title This setting defines the title for the X axis.

Display values as
evenly distributed
categories

This setting controls whether to evenly distribute X axis values.

Display axis on the
opposite side

This setting can be enabled to move the X axis to the opposite side of the
chart.

Axis Title Details This option contains the X axis title settings, which control the font,

Creating a Lens 759

Field Description

alignment, and font effects of the axis title.

Axis Labels This option accesses the X axis label settings, which control the font,
alignment, and font effects of the labels for the axis.

Axis Style This option contains the X axis style settings. These settings control the
minimum and maximum values for the axis and the style and position of the
grid lines and tick marks.

Chart Data: Y Axis Tab

This tab defines the formats and labels for the Y axis values in the series.

Field Description

Axis The Axis and Title settings are populated with the Y axis value from the Data tab.
If multiple axes exist, you can selected a different value to use for the Y axis.

Creating a Lens 760

Field Description

Title This setting defines the title for the Y axis.

Type This setting controls the scale for the Y axis, linear or logarithmic.

Display axis
on the
opposite side

This setting can be enabled to move the Y axis to the opposite side of the chart.

Axis Title
Details

This option contains the Y axis title settings, which control the font, alignment,
and font effects of the axis title.

Axis Labels This option accesses the Y axis label settings, which control the font, alignment,
and font effects of the labels for the axis.

Axis Style This option contains the Y axis style settings. These settings control the
minimum and maximum values for the axis and the style and position of the grid
lines and tick marks.

Chart Data: Color Axis Tab

This tab defines the value range block colors and axis labels and styles.

Creating a Lens 761

Field Description

Minimum
color

This option defines the color for the minimum range of values.

Maximum
color

This option defines the color for the maximum range of values.

Axis Labels This option accesses the color axis label settings, which control the font,
alignment, and font effects of the labels for the axis.

Axis Style This option contains the color axis style settings. These settings control the
minimum and maximum values for the axis and the style and position of the grid
lines and tick marks.

Chart Data: Filters Tab

This tab defines any filters to apply to the series.

Field Description

Series
Filters

This option can be used to define filters that apply to the entire series.

Creating a Lens 762

Field Description

X Filters This option can be used to define filters that apply only to the X axis values for the
series.

Y Filters This option can be used to define filters that apply only to the Y axis values for the
series.

Value
Filters

This option can be used to define filters that apply only to the Value values for the
series.

Chart Theme

This setting presents options for configuring the theme or color scheme for the chart.

Chart Details

This option offers finer-grained customization settings than the Chart Theme. You can further

customize the chart design by adding details such as a chart title and subtitle. You can also modify

chart-level styles and fonts as well as legend and tooltip formats.

Creating a Lens 763

Create a Line Chart

Line charts are useful for emphasizing trends in your data. This topic provides instructions for

creating a line chart with minimal configuration. Descriptions of all of the available configuration

options are included below the steps.

l Complete the Minimum Configuration

l Optional Configuration Settings

Complete the Minimum Configuration

Follow the instructions below to create a line chart. The instructions guide you through completing

the minimum configuration needed to display your data in the chart. Additional, optional

configuration settings are described in Optional Configuration Settings.

1. In the dashboard that you want to add a lens to, click Lenses in the main toolbar and select
New. The Create Lens dialog box is displayed:

Creating a Lens 764

2. On the Create Lens dialog box, select Chart, and then click Next. Anzo displays the General
Information dialog box.

3. Type a Title and optional Description for the lens.

Creating a Lens 765

4. Click Finish. The lens Designer dialog box is displayed:

5. Click Chart Type to open the Chart Types dialog box:

6. On the left side of the screen, select Line. On the right side of the screen, select the icon for
the type of line chart that you want to create. There are three types:

l Line: Connects value points on the chart with straight lines.

l Spline: Connects value points on the chart with curved lines.

l Step Line: Connects value points on the chart with horizontal lines.

Once the type is selected, you are returned to the Chart Configuration screen, and the Chart

Type value is set to the type that you chose.

Creating a Lens 766

7. Next, select Chart Data to add the data that will populate the chart.

The Series Configurations section of the screen contains settings to manage each series.
One series is created by default. A series is a set of data to display on the chart, for example a

line on a line or area chart or one set of columns on a column or bar chart. The details for the

selected series appear in Series Details, which contains settings to define the details of the
selected series, such as the data to display as well as formatting and labels. From Series

Configurations, you can clone, rename, disable (remove the series from the chart without
deleting it), or remove a series. You can add a series by clicking the plus icon () or delete all
series by clicking the trashcan icon (). Removing a series cannot be undone.

8. Under Series Configurations, click Rename under Series 1 and give the series a meaningful
name that describes the data that will populate the chart.

9. Under Series Details, click the Group field and select the property to use for grouping the data
in the series. These are the values for the X axis. You can use functions to derive the values

for the groups. The list below describes the icons and options that are available when

choosing a property:

l The Root Value () is the instance URI for the root resource—the URI for the instances

of the class that was chosen as the data type for the dashboard.

Creating a Lens 767

Tip
To view the root values, you can use the STR function to show a string

representation of the URIs.

l Linked classes are represented by incoming () and outgoing () connection icons.

The properties in those classes with a path to another class are denoted with a circle
icon (). Selecting a linked property navigates to that class and displays its properties.

l When a property or path is selected, the breadcrumbs at the top of the dialog box show
you the property path. You can click the clear icon () to clear the path and start again or
you can click the forward () or back () arrows to go forward or backward one or more

levels at a time.

l After you have selected a property, you can apply a function or formula to that property

to calculate the values that are displayed in the filter. To add a function, click the function

button (fx) at the top of the drop-down list. The functions that are available depend on
the data type of the selected property. To choose a more advanced function or type a

formula, click Advanced. The Calculated Value dialog box opens and enables you to
choose additional properties and functions. For more information, see Calculating

Values in Lenses and Filters.

10. Once you select the Group, the Group Label field is populated with the same value. This
setting configures the property whose values should serve as the group label. You can edit

the value if necessary.

11. Next, click the Value field and select the property to use for the Y axis values. You can include

functions to derive the values.

12. If you want to add a group for the series, you can click Show formulas used for creating
calculated series and add values for the following fields:

l Series Group: Specifies a property to use for grouping data in addition to the Group
value.

Creating a Lens 768

l Series Label: Specifies the property whose values should serve as the Series Group
label. It is typically set to the same value as Series Group.

l Series Sort Direction: Specifies the sort direction for the series groups.

13. You can click Save any time to render on the dashboard the data that you have configured so
far. You can add another series and repeat the steps above. You can also configure several

more options for the chart by changing the optional parameters. The additional tabs and

options are described below in Optional Configuration Settings.

Optional Configuration Settings

This section describes each of the tabs and additional settings that are available for customizing a

line chart.

l Chart Data: Plot Tab

l Chart Data: X Axis Tab

l Chart Data: Y Axis Tab

l Chart Data: Filters Tab

l Chart Theme

l Chart Details

Chart Data: Plot Tab

This tab contains settings that control series formatting, such as data labels, legends, and other

display options.

Creating a Lens 769

Field Description

Series
Chart Type

This option opens the Chart Types selection screen where you can select a different
chart type for the selected series. The selection must be compatible with the types
selected for any other series in the chart, however, or the incompatible series will fail
validation and not be displayed on the chart until it is corrected.

Series
Chart Style

This option contains the plot style settings that control the thickness and color of
lines for the series.

Series
Chart Data
Labels

This option contains the data label settings, which control the font, alignment, and
font effects of the labels for the series.

Series
Chart
Markers

This option contains the data marker settings. These settings control the placement
and format of the data points for a series that appear when a user hovers the pointer
over a point in the line. For example, the image below shows a data marker:

Creating a Lens 770

Field Description

Show This setting can be used to limit the data included in the series. The limit can be
defined by the largest or smallest Group Label or Value.

Show in
legend

This setting controls whether to show the name of the series in the legend.

Connect
missing
points

Selecting this option connects the series line across any missing points.

Chart Data: X Axis Tab

This tab defines the formats and labels for the X axis values in the series.

Creating a Lens 771

Field Description

Axis The Axis and Title settings are populated with the Group and Group
Label values from the Data tab. If multiple axes exist, you can selected a
different value to use for the X axis.

Title This setting defines the title for the X axis.

Type This setting controls the scale for the X axis, linear or logarithmic.

Display values as
evenly distributed
categories

This setting controls whether to evenly distribute X axis values.

Display axis on
the opposite side

This setting can be enabled to move the X axis to the opposite side of the
chart.

Axis Title Details This option contains the X axis title settings, which control the font,

Creating a Lens 772

Field Description

alignment, and font effects of the axis title.

Axis Labels This option accesses the X axis label settings, which control the font,
alignment, and font effects of the labels for the axis.

Axis Style This option contains the X axis style settings. These settings control the
minimum and maximum values for the axis and the style and position of the
grid lines and tick marks.

Chart Data: Y Axis Tab

This tab defines the formats and labels for the Y axis values in the series.

Field Description

Axis The Axis and Title settings are populated with the Value from the Data tab. If

Creating a Lens 773

Field Description

multiple axes exist, you can selected a different value to use for the Y axis.

Title This setting defines the title for the Y axis.

Type This setting controls the scale for the Y axis, linear or logarithmic.

Display axis
on the
opposite side

This setting can be enabled to move the Y axis to the opposite side of the chart.

Axis Title
Details

This option contains the Y axis title settings, which control the font, alignment,
and font effects of the axis title.

Axis Labels This option accesses the Y axis label settings, which control the font, alignment,
and font effects of the labels for the axis.

Axis Style This option contains the Y axis style settings. These settings control the
minimum and maximum values for the axis and the style and position of the grid
lines and tick marks.

Chart Data: Filters Tab

This tab defines any filters to apply to the series.

Creating a Lens 774

Field Description

Series
Filters

This option can be used to define filters that apply to the entire series.

Group
Filters

This option can be used to define filters that apply only to the Group values for the
series.

Value
Filters

This option can be used to define filters that apply only to the Value values for the
series.

Chart Theme

This setting presents options for configuring the theme or color scheme for the chart.

Chart Details

This option offers finer-grained customization settings than the Chart Theme. You can further

customize the chart design by adding details such as a chart title and subtitle. You can also modify

chart-level styles and fonts as well as legend and tooltip formats.

Creating a Lens 775

Create a Polar Chart

Polar or spider charts can be useful for showing similarities, differences, and outliers in your data.

These charts plot one or more groups of values over common variables. The variables are axes that

are arranged radially around a central point. This topic provides instructions for creating a polar

chart with minimal configuration. Descriptions of all of the available configuration options are

included below the steps.

l Complete the Minimum Configuration

l Optional Configuration Settings

Complete the Minimum Configuration

Follow the instructions below to create a polar chart. The instructions guide you through completing

the minimum configuration needed to display your data in the chart. Additional, optional

configuration settings are described in Optional Configuration Settings.

1. In the dashboard that you want to add a lens to, click Lenses in the main toolbar and select
New. The Create Lens dialog box is displayed:

Creating a Lens 776

2. On the Create Lens dialog box, select Chart, and then click Next. Anzo displays the General
Information dialog box.

3. Type a Title and optional Description for the lens.

Creating a Lens 777

4. Click Finish. The lens Designer dialog box is displayed:

5. Click Chart Type to open the Chart Types dialog box:

6. On the left side of the screen, select Polar, and then select the Spider icon in the main part of
the screen. Once the type is selected, you are returned to the Chart Configuration screen, and

the Chart Type value is set to the type that you chose.

Creating a Lens 778

7. Next, select Chart Data to add the data that will populate the chart.

The Series Configurations section of the screen contains settings to manage each series.
One series is created by default. A series is a set of data to display on the chart, for example a

line on a line or area chart or one set of columns on a column or bar chart. The details for the

selected series appear in Series Details, which contains settings to define the details of the
selected series, such as the data to display as well as formatting and labels. From Series

Configurations, you can clone, rename, disable (remove the series from the chart without
deleting it), or remove a series. You can add a series by clicking the plus icon () or delete all
series by clicking the trashcan icon (). Removing a series cannot be undone.

8. Under Series Configurations, click Rename under Series 1 and give the series a meaningful
name that describes the data that will populate the chart.

9. Under Series Details, click the Group field and select the property to use for grouping the data
in the series. These are the values for the X axis. You can use functions to derive the values

for the groups. The list below describes the icons and options that are available when

choosing a property:

l The Root Value () is the instance URI for the root resource—the URI for the instances

of the class that was chosen as the data type for the dashboard.

Creating a Lens 779

Tip
To view the root values, you can use the STR function to show a string

representation of the URIs.

l Linked classes are represented by incoming () and outgoing () connection icons.

The properties in those classes with a path to another class are denoted with a circle
icon (). Selecting a linked property navigates to that class and displays its properties.

l When a property or path is selected, the breadcrumbs at the top of the dialog box show
you the property path. You can click the clear icon () to clear the path and start again or
you can click the forward () or back () arrows to go forward or backward one or more

levels at a time.

l After you have selected a property, you can apply a function or formula to that property

to calculate the values that are displayed in the filter. To add a function, click the function

button (fx) at the top of the drop-down list. The functions that are available depend on
the data type of the selected property. To choose a more advanced function or type a

formula, click Advanced. The Calculated Value dialog box opens and enables you to
choose additional properties and functions. For more information, see Calculating

Values in Lenses and Filters.

10. Once you select the Group, the Group Label field is populated with the same value. This
setting configures the property whose values should serve as the group label. You can edit

the value if necessary.

11. Next, click the Value field and select the property to use for the Y axis values. You can include

functions to derive the values.

12. If you want to add a group for the series, you can click Show formulas used for creating
calculated series and add values for the following fields:

l Series Group: Specifies a property to use for grouping data in addition to the Group
value.

Creating a Lens 780

l Series Label: Specifies the property whose values should serve as the Series Group
label. It is typically set to the same value as Series Group.

l Series Sort Direction: Specifies the sort direction for the series groups.

13. You can click Save any time to render on the dashboard the data that you have configured so
far. You can add another series and repeat the steps above. You can also configure several

more options for the chart by changing the optional parameters. The additional tabs and

options are described below in Optional Configuration Settings.

Optional Configuration Settings

This section describes each of the tabs and additional settings that are available for customizing a

polar chart.

l Chart Data: Plot Tab

l Chart Data: X Axis Tab

l Chart Data: Y Axis Tab

l Chart Data: Filters Tab

l Chart Theme

l Chart Details

Chart Data: Plot Tab

This tab contains settings that control series formatting, such as data labels, legends, and other

display options.

Creating a Lens 781

Field Description

Series
Chart
Type

This option opens the Chart Types selection screen where you can select a different
chart type for the selected series. The selection must be compatible with the types
selected for any other series in the chart, however, or the incompatible series will fail
validation and not be displayed on the chart until it is corrected.

Series
Chart
Style

This option contains the plot style setting that controls whether the plot lines have
shadows.

Series
Chart
Data
Labels

This option accesses the data label settings, which control the font, alignment, and
font effects of the labels for the series.

Show This setting can be used to limit the data included in the series. The limit can be
defined by the largest or smallest Group Label or Value.

Show in
legend

This setting controls whether to show the name of the series in the legend.

Creating a Lens 782

Chart Data: X Axis Tab

This tab defines the formats and labels for the X axis values in the series.

Field Description

Axis The Axis and Title settings are populated with the Group and Group
label values from the Data tab. If multiple axes exist, you can selected a
different value to use for the X axis.

Title This setting defines the title for the X axis.

Display values as
evenly distributed
categories

This setting controls whether to evenly distribute X axis values.

Display axis on
the opposite side

This setting can be enabled to move the X axis to the opposite side of the
chart.

Creating a Lens 783

Field Description

Axis Title Details This option contains the X axis title settings, which control the font,
alignment, and font effects of the axis title.

Axis Labels This option contains the X axis label settings, which control the font,
alignment, and font effects of the labels for the axis.

Axis Style This option accesses the X axis style settings. These settings control the
minimum and maximum values for the axis and the style and position of the
grid lines and tick marks.

Chart Data: Y Axis Tab

This tab defines the formats and labels for the Y axis values in the series.

Creating a Lens 784

Field Description

Axis The Axis and Title settings are populated with the Value from the Data tab. If
multiple axes exist, you can selected a different value to use for the Y axis.

Title This setting defines the title for the Y axis.

Type This setting controls the scale for the Y axes, linear or logarithmic.

Display axis
on the
opposite side

This setting can be enabled to move the Y axis to the opposite side of the chart.

Axis Title
Details

This option contains the Y axis title settings, which control the font, alignment,
and font effects of the axis title.

Axis Labels This option contains the Y axis label settings, which control the font, alignment,
and font effects of the labels for the axis.

Axis Style This option accesses the Y axis style settings. These settings control the
minimum and maximum values for the axis and the style and position of the grid
lines and tick marks.

Chart Data: Filters Tab

This tab defines any filters to apply to the series.

Creating a Lens 785

Field Description

Series
Filters

This option can be used to define filters that apply to the entire series.

Group
Filters

This option can be used to define filters that apply only to the Group values for the
series.

Value
Filters

This option can be used to define filters that apply only to the Value values for the
series.

Chart Theme

This setting presents options for configuring the theme or color scheme for the chart.

Creating a Lens 786

Chart Details

This option offers finer-grained customization settings than the Chart Theme. You can further

customize the chart design by adding details such as a chart title and subtitle. You can also modify

chart-level styles and fonts as well as legend and tooltip formats.

Create a Scatter Chart

Scatter charts are also useful for observing relationships between variables, patterns, or outliers in

your data. The position of dots on the horizontal and vertical axes represent values for individual

data points. This topic provides instructions for creating a scatter chart with minimal configuration.

Descriptions of all of the available configuration options are included below the steps.

l Complete the Minimum Configuration

l Optional Configuration Settings

Complete the Minimum Configuration

Follow the instructions below to create a scatter chart. The instructions guide you through

completing the minimum configuration needed to display your data in the chart. Additional, optional

configuration settings are described in Optional Configuration Settings.

Creating a Lens 787

1. In the dashboard that you want to add a lens to, click Lenses in the main toolbar and select
New. The Create Lens dialog box is displayed:

2. On the Create Lens dialog box, select Chart, and then click Next. Anzo displays the General
Information dialog box.

3. Type a Title and optional Description for the lens.

Creating a Lens 788

4. Click Finish. The lens Designer dialog box is displayed:

5. Click Chart Type to open the Chart Types dialog box:

6. On the left side of the screen, select Scatter, and then select the Scatter icon in the main part
of the screen. Once the type is selected, you are returned to the Chart Configuration screen,

and the Chart Type value is set to the type that you chose.

Creating a Lens 789

7. Next, select Chart Data to add the data that will populate the chart.

The Series Configurations section of the screen contains settings to manage each series.
One series is created by default. A series is a set of data to display on the chart, for example a

line on a line or area chart or one set of columns on a column or bar chart. The details for the

selected series appear in Series Details, which contains settings to define the details of the
selected series, such as the data to display as well as formatting and labels. From Series

Configurations, you can clone, rename, disable (remove the series from the chart without
deleting it), or remove a series. You can add a series by clicking the plus icon () or delete all
series by clicking the trashcan icon (). Removing a series cannot be undone.

8. Under Series Configurations, click Rename under Series 1 and give the series a meaningful
name that describes the data that will populate the chart.

9. Under Series Details, click the Group field and select the property to use for grouping the data
in the series. You can use functions to derive the values for the groups. The list below

describes the icons and options that are available when choosing a property:

l The Root Value () is the instance URI for the root resource—the URI for the instances

of the class that was chosen as the data type for the dashboard.

Creating a Lens 790

Tip
To view the root values, you can use the STR function to show a string

representation of the URIs.

l Linked classes are represented by incoming () and outgoing () connection icons.

The properties in those classes with a path to another class are denoted with a circle
icon (). Selecting a linked property navigates to that class and displays its properties.

l When a property or path is selected, the breadcrumbs at the top of the dialog box show
you the property path. You can click the clear icon () to clear the path and start again or
you can click the forward () or back () arrows to go forward or backward one or more

levels at a time.

l After you have selected a property, you can apply a function or formula to that property

to calculate the values that are displayed in the filter. To add a function, click the function

button (fx) at the top of the drop-down list. The functions that are available depend on
the data type of the selected property. To choose a more advanced function or type a

formula, click Advanced. The Calculated Value dialog box opens and enables you to
choose additional properties and functions. For more information, see Calculating

Values in Lenses and Filters.

10. Next, click the X field and select the property to use for the X axis values in the series. You

can include functions to derive the values.

11. Then select the property to use for the Y axis values by clicking the Y field and choosing a

property. You can also include functions.

12. If you want to add a group for the series, you can click Show formulas used for creating
calculated series and add values for the following fields:

l Series Group: Specifies a property to use for grouping data in addition to the Group
value.

l Series Label: Specifies the property whose values should serve as the Series Group

Creating a Lens 791

label. It is typically set to the same value as Series Group.

l Series Sort Direction: Specifies the sort direction for the series groups.

13. You can click Save any time to render on the dashboard the data that you have configured so
far. You can add another series and repeat the steps above. You can also configure several

more options for the chart by changing the optional parameters. The additional tabs and

options are described below in Optional Configuration Settings.

Optional Configuration Settings

This section describes each of the tabs and additional settings that are available for customizing a

scatter chart.

l Chart Data: Plot Tab

l Chart Data: X Axis Tab

l Chart Data: Y Axis Tab

l Chart Data: Filters Tab

l Chart Theme

l Chart Details

Chart Data: Plot Tab

This tab contains settings that control series formatting, such as data labels, legends, and other

display options.

Creating a Lens 792

Field Description

Series
Chart Type

This option opens the Chart Types selection screen where you can select a different
chart type for the selected series. The selection must be compatible with the types
selected for any other series in the chart, however, or the incompatible series will fail
validation and not be displayed on the chart until it is corrected.

Series
Chart
Style

This option contains the plot style settings that control the color of the dots for the
series.

Series
Chart Data
Labels

This option contains the data label settings, which control the font, alignment, and
font effects of the labels for the series.

Series
Chart
Markers

This option accesses the data marker settings. These settings control the placement
and format of the data points for a series that appear when a user hovers the pointer
over a dot in the chart. For example, the image below shows a data marker:

Creating a Lens 793

Field Description

Show This setting can be used to limit the data included in the series. The limit can be
defined by the largest or smallest X or Y axis values.

Show in
legend

This setting controls whether to show the name of the series in the legend.

Trend line This setting controls whether to display a linear or exponential trend line for the
series.

Chart Data: X Axis Tab

This tab defines the formats and labels for the X axis values in the series.

Creating a Lens 794

Field Description

Axis The Axis and Title settings are populated with the X axis value from the
Data tab. If multiple axes exist, you can selected a different value to use for
the X axis.

Title This setting defines the title for the X axis.

Type This setting controls the scale for the X axis, linear or logarithmic.

Display values as
evenly distributed
categories

This setting controls whether to evenly distribute X axis values.

Display axis on the
opposite side

This setting can be enabled to move the X axis to the opposite side of the
chart.

Creating a Lens 795

Field Description

Axis Title Details This option contains the X axis title settings, which control the font,
alignment, and font effects of the axis title.

Axis Labels This option contains the X axis label settings, which control the font,
alignment, and font effects of the labels for the axis.

Axis Style This option accesses the X axis style settings. These settings control the
minimum and maximum values for the axis and the style and position of the
grid lines and tick marks.

Chart Data: Y Axis Tab

This tab defines the formats and labels for the Y axis values in the series.

Creating a Lens 796

Field Description

Axis The Axis and Title settings are populated with the Y axis value from the Data tab.
If multiple axes exist, you can selected a different value to use for the Y axis.

Title This setting defines the title for the Y axis.

Type This setting controls the scale for the Y axis, linear or logarithmic.

Display axis
on the
opposite side

This setting can be enabled to move the Y axis to the opposite side of the chart.

Axis Title
Details

This option contains the Y axis title settings, which control the font, alignment,
and font effects of the axis title.

Axis Labels This option contains the Y axis label settings, which control the font, alignment,
and font effects of the labels for the axis.

Axis Style This option accesses the Y axis style settings. These settings control the
minimum and maximum values for the axis and the style and position of the grid
lines and tick marks.

Chart Data: Filters Tab

This tab defines any filters to apply to the series.

Creating a Lens 797

Field Description

Series
Filters

This option can be used to define filters that apply to the entire series.

X Filters This option can be used to define filters that apply only to the X axis values for the
series.

Y Filters This option can be used to define filters that apply only to the Y axis values for the
series.

Chart Theme

This setting presents options for configuring the theme or color scheme for the chart.

Creating a Lens 798

Chart Details

This option offers finer-grained customization settings than the Chart Theme. You can further

customize the chart design by adding details such as a chart title and subtitle. You can also modify

chart-level styles and fonts as well as legend and tooltip formats.

Creating a Drill Down Lens

Drill down lenses combine other lenses into a hierarchical interface. Clicking on an object in one

lens opens the next lens in successive order. Follow the steps below to create a drill down lens.

1. In the dashboard that you want to add a lens to, click Lenses in the main toolbar and select
New. The Create Lens dialog box is displayed:

Creating a Lens 799

2. On the Create Lens dialog box, select Drill Down, and then click Next. Anzo displays the
General Information dialog box.

3. Type a Title and optional Description for the lens.

Creating a Lens 800

4. Click Finish. The lens Designer dialog box is displayed so that you can configure the lens.

5. Drill down lenses do not require any property selections or format configurations. Click the
plus icon () at the top or bottom of the Designer to add the lenses to include in the drill down

functionality. The lens listed first becomes the first lens in the hierarchy. Clicking a drill down

icon takes you to the next lens. You can drag the lenses in the Designer to change the display

order.

Creating a Lens 801

6. When you finish adding lenses, click Save. Anzo adds the drill down functionality to the
dashboard, and you can configure each lens in the hierarchy using the Designer for that lens.

The image below shows a dashboard with drill down functionality. Clicking the drill down icon () in

the left column displays a chart lens, which shows details about the venue for that event:

Creating a Form Lens

Form lenses enable you to create an editable or read-only form on the dashboard. Creating forms

can be useful for displaying many details about each record instead of using a table where the large

number of columns makes the data hard to read. Follow the steps below to create a Form lens.

Important
By default, only the sysadmin user has access to create Form lenses. In addition, Form lenses

are valid in only in Linked Dataset dashboards. They do not display data for graphmart

dashboards. To create a Linked Dataset dashboard, select the Show advanced dashboards
checkbox when creating a dashboard, and then select Linked Dataset Dashboard.

1. In the dashboard that you want to add a lens to, click Lenses in the main toolbar and select
New. The Create Lens dialog box is displayed:

Creating a Lens 802

2. On the Create Lens dialog box, select Form, and then click Next. Anzo displays the General
Information dialog box.

3. Type a Title and optional Description for the lens.

Creating a Lens 803

4. Click Finish. The lens Designer dialog box is displayed so that you can configure the lens.

5. On the Content tab, drag onto the dashboard each property or relative path that you want to

appear as a field on the form. After adding objects, you can rearrange the form layout and use

the Field Settings tab to further configure each field.

Creating a Lens 804

6. If you want to arrange the fields in a different layout, such as a two-column layout, click

Layout below the list of properties on the Content tab. The Designer displays the available

layout containers.

Creating a Lens 805

7. Drag a container onto the form to create the layout template. You can then drag properties

into the template.

8. Click Save to save the configuration and add the lens to the dashboard.

Creating a List Lens

List lenses display the values for the selected property in a list layout with icons, similar to a

directory explorer view. Follow the steps below to create a List lens.

1. In the dashboard that you want to add a lens to, click Lenses in the main toolbar and select
New. The Create Lens dialog box is displayed:

Creating a Lens 806

2. On the Create Lens dialog box, select List, and then click Next. Anzo displays the General
Information dialog box.

3. Type a Title and optional Description for the lens.

Creating a Lens 807

4. Click Finish. The lens Designer dialog box is displayed so that you can configure the lens.

5. In the Path field under Title, select the property that contains the values you want to display in
the list.

6. If you want to include a subtitle for each value in the list, click the Path field under Subtitle and
select the property to supply the subtitle values. For example, in the image below, Actor Name

is chosen as the Title with Movie Name as the subtitle.

Creating a Lens 808

7. If you have a property that contains an icon to use in place of the default question mark icons,

click the Path field under Icon and select the property.

8. If you want the Title to be formatted as a hyperlink to another lens, you can click Hyperlink
and select the lens to link to.

9. When you have finished configuring the lens, click Save to save the configuration and add the
lens to the dashboard.

Creating a Table Lens

Table lenses display data in a standard column and row grid layout. Follow the steps below to create

a table lens.

Note
The list below describes the default display formats for date and numeric values in tables.

l Date: By default Anzo displays date values in "short" date format. The order of the
month, day, and year depends on the location of your browser. For example, in the

Creating a Lens 809

United States the default date format is MM/DD/YYYY. In Australia, the default date

format is DD/MM/YYYY. Note that this is not dependent on the Anzo server location but

on the location auto-detected by the browser.

l Numeric: Anzo displays the complete value without a limit on precision. Numeric
formats are also dependent on the location of the browser. For example, in the United

States the default format for a large number is 4,294,967,295.00 and in Canada the

default format is 4 294 967 295,000.

1. In the dashboard that you want to add a lens to, click Lenses in the main toolbar and select
New. The Create Lens dialog box is displayed:

2. On the Create Lens dialog box, select Table, and then click Next. Anzo displays the General
Information dialog box.

Creating a Lens 810

3. Type a Title and optional Description for the lens.

4. Click Finish. The lens Designer dialog box is displayed so that you can configure the lens.

5. To add a column to the table, click the Column Value Expression field and select the
property name or calculation to use to populate the values in the column. For information

about calculating values, see Calculating Values in Lenses and Filters.

Creating a Lens 811

Tip
As a shortcut to browse the available columns, you can click the Auto-generate columns
icon () to add all properties (for the data type selected on the dashboard) as columns.

Then you can hover the pointer over columns to remove the ones you do not want to

keep. For example:

6. You have the option to create a filter or configure any of the following optional fields:

l Column Header Label: The column name to display. Overrides the Column Value
Expression property name.

l Column Footer Expression: The property to use to supply the table footer.

l Column Width: The width of the column in pixels.

l Group rows by: The property to group data by.

l Filters Tab: You can click Create filter to add a filter on the column. For more
information, see Working with Filters.

7. Click Save to save the configuration and add the lens to the dashboard.

Creating a Lens 812

Advanced Lenses

The topics in this section provide information about creating advanced dashboard lenses. Creating

these types of lenses require users to advanced SPARQL query language skills or coding skills in

the areas of HTML, CSS, and JavaScript. For information about Network Navigator lenses, see

Creating a Network Navigator Dashboard.

l Creating an AnzoKO Web Page Lens

l Creating a Query Lens

l Creating a Resource Tree Navigator Lens

l Creating a Web Page Lens

Creating an AnzoKO Web Page Lens

The custom AnzoKO Web Page lens includes the Knockout JavaScript framework and enables you

to create visualizations of RDF resources and metadata using knockout.js-like syntax without

needing to write additional JavaScript to declare which parts of the data to render in which sections

of the HTML. Follow the steps below to create an AnzoKO Web Page Lens.

1. In the dashboard that you want to add a lens to, click Lenses in the main toolbar and select
New. The Create Lens dialog box is displayed:

2. On the Create Lens dialog box, select AnzoKO Web Page, and then click Next. Anzo
displays the General Information dialog box.

Creating a Lens 813

http://knockoutjs.com/

3. Type a Title and optional Description for the lens.

4. Click Finish. The lens Designer dialog box is displayed so that you can configure the lens.

5. Configure the lens and then click Save to save the configuration and add the lens to the
dashboard.

Creating a Query Lens

The query lens allows you to retrieve and display data using custom a SPARQL query. You format

the query results using HTML and CSS. This lens can access external SPARQL-compatible data

sources. See SPARQL Best Practices and Query Templates for guidance on writing SPARQL

queries.

Creating a Lens 814

Query Lens Configuration

The Query lens Designer has three tabs:

l Query: This tab displays a SPARQL query template that you can use to write the query. Note
the default code that reflects inherent functionality:

n <%mixins%>: Incorporates a filter function.

n ORDER BY: Incorporates a sort function.

l HTML: This tab includes default HTML and basic JavaScript code with sample values. You
can edit the content to design the results that the query returns. The default HTML code

automatically adds returned query data to a table and organizes it so that new rows are

created for each record. Make sure that the <option> elements correspond to the elements in

your query.

l CSS: This tab enables you to create a cascading style sheet to format the HTML and define
the look and feel of the lens. Cambridge Semantics recommends that you define all CSS

classes as namespaces to avoid global format changes.

Creating a Resource Tree Navigator Lens

The Resource Tree Navigator lens displays data in a tree format with points that you can click to

open successive child data points. Follow the steps below to create a lens.

Creating a Lens 815

Note
By default, the only user who has permission to create a Resource Tree Navigator lens is the

sysadmin user. However, the sysadmin user can share created lenses with other users and
groups (see Sharing Access to Dashboards and Lenses).

1. In the dashboard that you want to add a lens to, click Lenses in the main toolbar and select
New. The Create Lens dialog box is displayed:

2. On the Create Lens dialog box, select Resource Tree Navigator, and then click Next. Anzo
displays the General Information dialog box.

3. Type a Title and optional Description for the lens.

4. Click Finish. The lens Designer dialog box is displayed so that you can configure the lens.
The Designer displays all of the properties for the linked classes. Select each property that

Creating a Lens 816

you want the resource tree to include.

5. Click Save to save the configuration and add the lens to the dashboard. The image below
shows the information that is displayed.

1. Related data: Displays the class data related to the selected data property. Data
changes when another class is selected.

2. Class property: Displays the label property of the target class as the initial (start) point
of the resource tree. Expand the tree to view child properties by clicking the plus icon for

a data point.

Creating a Lens 817

3. Selected linked property: Displays the initial selected property that links to other
classes.

4. Navigation tools: Use the arrows to navigate to other pages. The Showing text box
displays the current page number and total number of pages.

Creating a Web Page Lens

Web Page lenses enable you to display data by creating a web page using HTML, CSS, and

JavaScript. This lens is for advanced users with coding skills in these areas. A powerful feature of

the this lens is the ability to bind data to Anzo graphs so that updates are reflected in real time.

Follow the steps below to create a Web Page lens.

1. In the dashboard that you want to add a lens to, click Lenses in the main toolbar and select
New. The Create Lens dialog box is displayed:

2. On the Create Lens dialog box, selectWeb Page, and then click Next. Anzo displays the
General Information dialog box.

Creating a Lens 818

3. Type a Title and optional Description for the lens.

4. Click Finish. The lens Designer dialog box is displayed so that you can configure the lens.

5. Configure the lens and then click Save to save the configuration and add the lens to the
dashboard. See Web Page Lens Configuration below for information about the configuration.

Web Page Lens Configuration

The Web Page Designer has four tabs:

Creating a Lens 819

l View: Provides a rich text interface for viewing the page (WYSIWYG). Changes made to this

page are reflected in the HTML code.

l HTML: This tab enables HTML coding and data binding. The example HTML image below
shows code that defines text format as well as data binding using the

anzowbind:innerhtml command.

For more information about data binding, see the Data Binding Example section below.

l CSS: This tab enables you to create a cascading style sheet to format the HTML and define
the look and feel of the web page. Cambridge Semantics recommends that you define all CSS

classes as namespaces to avoid global format changes.

l Javascript: This tab enables you to write JavaScript code to implement functions such as if
statements, animations, or event notifications.

Creating a Lens 820

Data Binding Example

When data is bound to a web page lens using HTML code, the web page lens behaves as follows:

l The lens will reflects data changes in real time.

l If the lens is oriented to the left-hand column (using the Orientation drop-down), selecting data

in an active lens prompts the web page lens to display the related data.

In the example below, the active table lens row is selected, prompting the web page lens on the left

(“My excellent lens”) to display the corresponding data.

Cloning a Lens

Cloning a lens makes a copy of the lens that can be changed without affecting the original lens or

other dashboards. Follow the steps below to clone a lens.

Note
You can only clone lenses from dashboards that you have permission to modify. If you open a

dashboard with read-only access, the clone options are not available. To clone a lens from a

read-only dashboard, save a copy of the dashboard so that you become the owner of the

copy. To save a copy, click the Dashboard button in the main toolbar and select Save As.
Then follow the procedure below to clone a lens into the dashboard that you own.

1. Open a dashboard in the Hi-Res Analytics application, then click Lenses in the main toolbar
and select Open. Anzo opens the Lens Selection dialog box, which lists the lenses that are
available to open. For example:

Cloning a Lens 821

2. Click the Clone link for the lens that you want to clone. Anzo displays the Clone lens dialog
box and populates the Title field with the existing lens name and "(clone)." For example:

3. Modify the Title to name the new copy of the lens, and add or change the Description if
necessary. Then click OK.

4. Anzo adds the new copy of the lens to the Lens Selection dialog box and selects it. Click OK
to add the lens to the dashboard.

Exporting a Lens

If you have dashboards with Table, Chart, and/or Query lenses, you can export those lenses from

the Hi-Res Analytics application. Charts can be exported as images in JPEG, PNG, SVG, or PDF

format. Tables can be exported to CSV or JSON files. And Query lenses can be exported to CSV

files. Follow the instructions below to export a lens.

Exporting a Lens 822

1. Open the dashboard that contains the lens that you want to export.

2. If necessary click the tab for the lens to make it active. For example, the image below shows a

chart lens.

3. In the object toolbar for the lens, click the Export button.

For Query lenses, adjust the Export options as needed, and then click Export Results. For
example:

4. If the lens is a chart, select the one of the image types from the drop-down list. Anzo creates

the image as that type and downloads the file to your computer.

Exporting a Lens 823

5. If the lens is a table, the Export Options dialog box is displayed:

6. In the Export Options dialog box, specify the following file options:

l File name: Specify a name for the file. Do not specify the file type extension.

l Format: Click the Format field and select CSV to create a .csv file or JSON to create a

.json file.

l Multi Valued Column Separator: For CSV files, click this column to select the

character to use as a separator in the file. This option does not apply to JSON files.

l Export Headers: Indicates whether to include column headers in the file. Clear the
checkbox to exclude headers from the file. This option does not apply to JSON files.

l Columns to Export: By default, all columns are selected for export. You can clear the
checkboxes next to columns that you do not want to include. In addition, you can reorder

columns by dragging and dropping the rows.

7. Click OK to download the file to your computer.

Exporting a Lens 824

Deleting a Lens

This topic provides information about the permissions that are required for deleting lenses as well

as instructions for deleting a lens.

Note
By default, only the sysadmin user and lens creator have permission to delete a lens. To
delete a lens, a user must have the Manage permission assigned for that lens. The Manage
permission is included in the Admin predefined lens permission set. If lens permissions have
not been changed since the lens was created, the sysadmin user and the lens creator are the

only users who have permission to delete that lens. The Manage permission is also required

to change lens security settings and grant privileges to other users. Users who have read

access to a lens (granted through the View, Modify, or Admin lens permission sets) can view

the lens security settings to identify which non-sysadmin users have permission to delete the

lens. For more information, see Sharing Access to Dashboards and Lenses.

Follow the steps below to delete a lens.

1. Open a dashboard that contains the lens that you want to delete.

2. In the Hi-Res Analytics application, click the Lenses menu in the main toolbar and select
Open. The Lens Selection dialog box is displayed.

3. In the Lens Selection dialog box, find the lens that you want to delete and then click the Delete
link for that lens. For example:

Deleting a Lens 825

4. The application presents a confirmation message. Click Yes to delete the lens. The lens is
removed from the Lens Selection dialog box, and you can repeat this process to delete

additional lenses for which you have the required privileges.

Deleting a Lens 826

Working with Filters

Filters narrow the data presented in a dashboard. You can define filter criteria using Microsoft

Excel-like functions such as AVG, SUM, or UPPER, or groupings such as a date range or

aggregation. Though you can filter data in some lens types, such as tables and charts, when you

add a filter to a dashboard, all lenses on the dashboard update simultaneously based on your filter

selection. Unlike lenses, filters cannot be shared by other users or dashboards and must be created

for each dashboard.

The topics in this section provide instructions for creating and configuring each type of filter.

l Adding a Cloud Filter

l Adding a Date Range Filter

l Adding a Hierarchy Filter

l Adding a Limit Filter

l Adding a List Filter

l Adding a Numeric Range Filter

l Adding a Presence Filter

l Adding a Quartile Filter

l Adding a Range Slider Filter

l Adding a Relative Time Filter

l Adding a Search Filter

l Adding a Single Select List Filter

l Adding a Types Filter

Adding a Cloud Filter

Cloud filters display values in term clouds where each term is written in a font size that represents

the number of results for that value. Unlike list filters, which enable you to select and filter on

multiple values at once, cloud filters allow you to filter on one value at a time. The cloud filter is

Working with Filters 827

available for all data types. Follow the instructions below to create a cloud filter.

1. Open the dashboard that you want to add the filter to.

2. In the Hi-Res Analytics main toolbar, click Filters and select Create a Filter. The Create Filter
dialog box is displayed.

3. Click in the Fields field to open the property drop-down list and determine the property to filter
on. The values for this property will be the terms that are displayed in the cloud. The list of

available properties depends on the selected data type for the dashboard.

For example, the following image shows the list of properties that are available for a

dashboard whose source is a graphmart that contains data about tickets sold for various types

of events. The type for the dashboard is tickit_events:

The list below describes the icons and options that are available when choosing a property:

l The Root Value () is the instance URI for the root resource—the URI for the instances

of the class that was chosen as the data type for the dashboard.

Adding a Cloud Filter 828

Tip
To view the root values, you can use the STR function to show a string

representation of the URIs.

l Linked classes are represented by incoming () and outgoing () connection icons.

The properties in those classes with a path to another class are denoted with a circle
icon (). Selecting a linked property navigates to that class and displays its properties.

l When a property or path is selected, the breadcrumbs at the top of the dialog box show
you the property path. You can click the clear icon () to clear the path and start again or
you can click the forward () or back () arrows to go forward or backward one or more

levels at a time.

l After you have selected a property, you can apply a function or formula to that property

to calculate the values that are displayed in the filter. To add a function, click the function

button (fx) at the top of the drop-down list. The functions that are available depend on
the data type of the selected property. To choose a more advanced function or type a

formula, click Advanced. The Calculated Value dialog box opens and enables you to
choose additional properties and functions. For more information, see Calculating

Values in Lenses and Filters.

4. After you have selected the property to filter on, click Close to close the Fields drop-down list.

5. Next, click the Filter field and select Cloud from the drop-down list. The dialog box is

refreshed to show the Filter Properties and other options that are available for the filter type:

Adding a Cloud Filter 829

6. Configure any of the following properties. All of the fields are optional:

l Title: Defines the title that appears at the top of the filter when it is added to the
dashboard. If Title is blank, the Fields value is used as the title.

l Label Field: If you want to populate the cloud with values from a property other than the

one specified in Fields, you can select an alternate property in this field.

l Exclude: This setting controls whether selecting a term in the filter narrows the results to

show only the records that include that term or whether selecting a term excludes the

records that include that term. When Exclude is disabled, selecting a term narrows the

dashboard results to show only the records that include that term. When Exclude is

enabled, selecting a term filters out all of the records that include that term.

l Show Counts: This setting controls whether the number of results for each term are

displayed when you hover the pointer over a term.

l Respond to Other Filters: This setting controls whether the results of this filter change
based on the selections made in other filters on the dashboard.

7. If you would like to be able to further constrain the data that appears in the filter, you can add

one or more subfilters. To add a subfilter, click Create Filter under Subfilters. The process of
creating a subfilter is the same as the process for the parent filter. However, the subfilter is not

Adding a Cloud Filter 830

displayed on the dashboard. It is visible only when editing the parent filter, and the subfilter's

configuration affects only the parent filter and any sibling subfilters.

8. When you have finished configuring the filter, click OK to add it to the dashboard. The new

filter appears in the left pane of the dashboard and displays the values that are available for

filtering the data.

For example, the filter in the image below shows cities with event venues. The size of the

terms represent the number of events that were held in that city.

Depending on whether the Exclude option is enabled or disabled, clicking a term in the cloud

refreshes the dashboard to show only the data that either contains or excludes the selected

term.

When working with the filter on the dashboard, the following options are available for sorting and

configuration:

l show/hide sort details: Shows or hides the following options for sorting the results in the
filter:

o Sort by: Select Count to order results according to the total number of results for each
value, or select Value to sort string values alphabetically.

o Direction: Select Ascending to order results in alphabetical order. Or select
Descending to order results in reverse order.

l show/hide filters: This option is displayed when a term is selected in the cloud. It shows or

hides the selection.

Adding a Cloud Filter 831

l Menu (): The menu contains the following options:

o Select All Visible: This option does not work for cloud filters.

o Clear: This option becomes available when a term is selected. Clicking Clear removes
the selection.

o Designer: Selecting this option opens the designer so that you can view or change the

filter configuration.

l Close (X): Clicking X deletes the filter from the dashboard. This action cannot be undone.

Adding a Date Range Filter

Date range filters are used to limit the results on a dashboard to data that falls in (or outside of)

certain date and time groupings. Date range filters are available for properties with date, dateTime,

and time data types. Follow the instructions below to create a date range filter.

1. Open the dashboard that you want to add the filter to.

2. In the Hi-Res Analytics main toolbar, click Filters and select Create a Filter. The Create Filter
dialog box is displayed.

3. Click in the Fields field to open the property drop-down list and determine the date, dateTime,
or time type property to filter on. The values for this property will be used to determine the date

ranges for the filter. The list of available properties depends on the selected data type for the

dashboard.

For example, the following image shows the list of properties that are available for a

dashboard whose source is a graphmart that contains data about tickets sold for various types

of events. The type for the dashboard is tickit_events:

Adding a Date Range Filter 832

The list below describes the icons and options that are available when choosing a property:

l The Root Value () is the instance URI for the root resource—the URI for the instances

of the class that was chosen as the data type for the dashboard.

Tip
To view the root values, you can use the STR function to show a string

representation of the URIs.

l Linked classes are represented by incoming () and outgoing () connection icons.

The properties in those classes with a path to another class are denoted with a circle
icon (). Selecting a linked property navigates to that class and displays its properties.

For this example filter, selecting EventDate, navigates to the tickit_dates class
where a date type property can be selected.

l When a property or path is selected, the breadcrumbs at the top of the dialog box show
you the property path. You can click the clear icon () to clear the path and start again or
you can click the forward () or back () arrows to go forward or backward one or more

levels at a time.

l After you have selected a property, you can apply a function or formula to that property

to calculate the values that are displayed in the filter. To add a function, click the function

button (fx) at the top of the drop-down list. The functions that are available depend on

Adding a Date Range Filter 833

the data type of the selected property. To choose a more advanced function or type a

formula, click Advanced. The Calculated Value dialog box opens and enables you to
choose additional properties and functions. For more information, see Calculating

Values in Lenses and Filters.

4. After you have selected the property to filter on, click Close to close the Fields drop-down list.

5. Next, click the Filter field and select Date Range from the drop-down list. The dialog box is

refreshed to show the Filter Properties, Format, and other options that are available for the

filter type:

6. Configure any of the following properties. Interval Unit and Interval are required fields, and
the rest of the fields are optional:

l Title: Defines the title that appears at the top of the filter when it is added to the
dashboard. If Title is blank, the Fields value is used as the title.

l Label Field: If you want to populate the ranges with a label other than the one specified
in Fields, you can select an alternate property in this field.

Adding a Date Range Filter 834

l Interval Unit: Click this field to choose the unit of time for the Interval value. Depending
on the data type of the selected property, a subset of the following values are available

to choose from: Millennium, Century, Decade, Year, Month, Week, Day, Hour, Minute, or

Second.

l Interval: This setting specifies a number that defines the length of time in each grouping.
For example, if the Interval Unit is "Decade," an Interval value of 2 creates groups of two-

decade increments.

l Exclude: This setting controls whether selecting a range in the filter narrows the results
to show only the records that are included in that range or whether selecting a range

excludes the records that fall in that range. When Exclude is disabled, selecting a range

narrows the dashboard results to show only the records that fall in that range. When

Exclude is enabled, selecting a range filters out all of the records that fall in that range.

l Show Bars: This setting controls whether the total values for the selected property
appear as a bar graphic in the background of the filter.

l Always Show Checkboxes: This setting controls whether checkboxes are shown next
to the items in the filter.

l Show Counts: This setting controls whether the number of results for each range are
displayed in parentheses next to the range.

l Respond to Other Filters: This setting controls whether the results of this filter change
based on the selections made in other filters on the dashboard.

7. If you would like to specify the format to for date values that are displayed in the filter, click the

Format Time field and select a format from the drop-down list.

8. If you would like to be able to further constrain the data that appears in the filter, you can add

one or more subfilters. To add a subfilter, click Create Filter under Subfilters. The process of
creating a subfilter is the same as the process for the parent filter. However, the subfilter is not

displayed on the dashboard. It is visible only when editing the parent filter, and the subfilter's

configuration affects only the parent filter and any sibling subfilters.

Adding a Date Range Filter 835

9. When you have finished configuring the filter, click OK to add it to the dashboard. The new

filter appears in the left pane and displays the values that are available for filtering the data.

For example, the filter in the image below shows date ranges for events. The Interval Unit is

Month, and the Interval is 3 months.

Depending on whether the Exclude option is enabled or disabled, clicking a range in the filter

refreshes the dashboard to show only the data that is in the selected range or only the data

that is outside of the range.

When working with the filter on the dashboard, the following options are available for sorting and

configuration:

l show/hide sort details: Shows or hides the following option for sorting the results in the filter:
o Direction: This option controls how you want to order the date ranges in the filter,

depending on the Format specified for the values in the filter. For number values, Count
Ascending orders results from the earliest to latest date and Count Descending orders
results from the latest to earliest date. For character values, Name Ascending orders
results in alphabetical order and Name Descending orders results in reverse
alphabetical order.

l show/hide filters: This option is displayed when a range is selected. It shows or hides the
selection.

Adding a Date Range Filter 836

l Menu (): The menu contains the following options:

o Select All Visible: This option selects all of the ranges that are listed in the filter.

o Clear: This option is available when one or more ranges are selected. Clicking Clear
removes the selection..

o Designer: Selecting this option opens the designer so that you can view or change the

filter configuration.

l Close (X): Clicking X deletes the filter from the dashboard. This action cannot be undone.

Adding a Hierarchy Filter

If hierarchies exist in your knowledge graph, you can create a hierarchy filter to explore the parent

and child relationships and filter the dashboard based on the relationships. Unlike the majority of

dashboard filters, where you select a property to filter on, hierarchy filters operate on relationships

and are only available as a filter type when you select a path to filter on.

In order to produce hierarchies in the data, you typically need a self-referential data model, where

properties have relationships to themselves. The SKOS ontology is a good example of a self-

referential model. As shown in the image below, many of the properties in the Concept class refer to

themselves. These paths define a hierarchy.

Follow the instructions below to create a hierarchy filter.

Adding a Hierarchy Filter 837

1. Open the dashboard that you want to add the filter to.

2. In the Hi-Res Analytics main toolbar, click Filters and select Create a Filter. The Create Filter
dialog box is displayed.

3. Click in the Fields field to open the property drop-down list and determine the path to filter on.
The list of available classes, paths, and properties depends on the selected data type for the

dashboard.

For example, the following image shows the list of properties that are available for a

dashboard whose source is a graphmart that contains data about protein classification. The

type for the dashboard is Classification:

The list below describes the icons and options that are available when choosing a path:

l The Root Value () is the instance URI for the root resource—the URI for the instances

of the class that was chosen as the data type for the dashboard. Typically Root Value is

Adding a Hierarchy Filter 838

the chosen Field for Hierarchy filters.

Tip
To view the root values, you can use the STR function to show a string

representation of the URIs.

l Linked classes are represented by incoming () and outgoing () connection icons.

The properties in those classes with a path to another class are denoted with a circle
icon (). Selecting a linked property navigates to that class and displays its properties.

l When a property or path is selected, the breadcrumbs at the top of the dialog box show
you the property path. You can click the clear icon () to clear the path and start again or
you can click the forward () or back () arrows to go forward or backward one or more

levels at a time.

l After you have selected a path, you can apply a function or formula to calculate the

values that are displayed in the filter. To add a function, click the function button (fx) at
the top of the drop-down list. The functions that become available depend on the data

type of the selected path. To choose a more advanced function or type a formula, click

Advanced. The Calculated Value dialog box opens and enables you to choose
additional properties and functions. For more information, see Calculating Values in

Lenses and Filters.

4. After you have selected the path to filter on, click Close to close the Fields drop-down list.

5. Next, click the Filter field and select Hierarchy from the drop-down list. The dialog box is

refreshed to show the Filter Properties and other options that are available for the filter type:

Adding a Hierarchy Filter 839

6. Configure any of the following properties. Label Field and Children Field are required fields,
and the rest of the fields are optional:

l Title: Defines the title that appears at the top of the filter when it is added to the
dashboard. If Title is blank, the Fields value is used as the title.

l Show Counts: This setting controls whether the number of results for each filter value
are displayed in parentheses next to the value.

l Respond to Other Filters: This setting controls whether the results of this filter change
based on the selections made in other filters on the dashboard.

l Label Field: Species the property that supplies the label for the parent values in the
hierarchy.

l Children Field: Specifies the child value in the relationship.

7. If you would like to be able to further constrain the data that appears in the filter, you can add

one or more subfilters. To add a subfilter, click Create Filter under Subfilters. The process of
creating a subfilter is the same as the process for the parent filter. However, the subfilter is not

displayed on the dashboard. It is visible only when editing the parent filter, and the subfilter's

configuration affects only the parent filter and any sibling subfilters.

Adding a Hierarchy Filter 840

8. When you have finished configuring the filter, click OK to add it to the dashboard. The new

filter appears in the left pane of the dashboard and displays the values that are available for

filtering the displayed data.

For example, the filter in the image below shows a hierarchy of classifications.

Selecting checkboxes in the filter refreshes the dashboard to show only the data that includes

the selected values.

When working with the filter on the dashboard, the following options are available:

l Menu (): The menu contains the following options:

o Clear: This option becomes available when an item is selected. Clicking Clear removes
the selection.

o Designer: Selecting this option opens the designer so that you can view or change the

filter configuration.

l Close (X): Clicking X deletes the filter from the dashboard. This action cannot be undone.

Adding a Limit Filter

Limit filters are used to limit the results on the dashboard to a specified number of either the largest

or smallest values. The limit filter is available for any data type. For strings, results are ordered

alphabetically. "Largest" orders by the last letters in the alphabet and "Smallest" orders by the first

letters in the alphabet. Follow the instructions below to create a limit filter.

1. Open the dashboard that you want to add the filter to.

2. In the Hi-Res Analytics main toolbar, click Filters and select Create a Filter. The Create Filter
dialog box is displayed.

Adding a Limit Filter 841

3. Click in the Fields field to open the property drop-down list and determine the property to filter
on. The list of available properties depends on the selected data type for the dashboard.

For example, the following image shows the list of properties that are available for a

dashboard whose source is a graphmart that contains data about tickets sold for various types

of events. The type for the dashboard is tickit_events:

The list below describes the icons and options that are available when choosing a property:

l The Root Value () is the instance URI for the root resource—the URI for the instances

of the class that was chosen as the data type for the dashboard.

Tip
To view the root values, you can use the STR function to show a string

representation of the URIs.

Adding a Limit Filter 842

l Linked classes are represented by incoming () and outgoing () connection icons.

The properties in those classes with a path to another class are denoted with a circle
icon (). Selecting a linked property navigates to that class and displays its properties.

For this example filter, selecting the Venue path navigates to the tickit_venues class
where an integer type property, Venueseats, is selected.

l When a property or path is selected, the breadcrumbs at the top of the dialog box show
you the property path. You can click the clear icon () to clear the path and start again or
you can click the forward () or back () arrows to go forward or backward one or more

levels at a time.

l After you have selected a property, you can apply a function or formula to that property

to calculate the values that are displayed in the filter. To add a function, click the function

button (fx) at the top of the drop-down list. The functions that are available depend on
the data type of the selected property. To choose a more advanced function or type a

formula, click Advanced. The Calculated Value dialog box opens and enables you to
choose additional properties and functions. For more information, see Calculating

Values in Lenses and Filters.

4. After you have selected the property to filter on, click Close to close the Fields drop-down list.

5. Next, click the Filter field and select Limit from the drop-down list. The dialog box is refreshed

to show the Filter Properties and other options that are available for the filter type:

Adding a Limit Filter 843

6. Configure any of the following properties. All of the fields are optional:

l Title: Defines the title that appears at the top of the filter when it is added to the
dashboard. If Title is blank, the Fields value is used as the title.

l Limit by Resource: This setting controls whether the limit is also applied to the
resource that is the data type of the dashboard. When Limit by Resource is enabled,
the specified limit applies to the resource as well as the property. When Limit by
Resource is disabled, the limit applies only to the specified property. Using the example
above for the property of Venueseats and the resource (data type) tickit_events, when

Limit by Resource is enabled, filtering for the 5 largest values of Venueseats returns the

5 events with the largest venues. When Limit by Resource is disabled, filtering for the 5

largest venues returns all of the events that were held in one of the 5 largest venues.

7. If you would like to be able to further constrain the data that appears in the filter, you can add

one or more subfilters. To add a subfilter, click Create Filter under Subfilters. The process of
creating a subfilter is the same as the process for the parent filter. However, the subfilter is not

displayed on the dashboard. It is visible only when editing the parent filter, and the subfilter's

configuration affects only the parent filter and any sibling subfilters.

8. When you have finished configuring the filter, click OK to add it to the dashboard. The new

filter appears in the left pane of the dashboard and displays the options for configuring the

limit.

9. To configure the limit for filtering data, specify a number in the Include the field. And click the
drop-down list on the right to choose Largest or Smallest.

For example, the filter in the image below excludes all but the 10 venues with the most

number of seats.

Changing the values in the filter refreshes the dashboard according to the new limit.

When working with the filter on the dashboard, the following options are available:

Adding a Limit Filter 844

l Menu (): The menu contains the following options:

o Clear: Clicking Clear removes the value in the Include the field.

o Designer: Selecting this option opens the designer so that you can view or change the

filter configuration.

l Close (X): Clicking X deletes the filter from the dashboard. This action cannot be undone.

Adding a List Filter

List filters display values in a list and allow you to select and filter on multiple values at the same

time. List filters are available for all data types. Follow the instructions below to create a list filter.

1. Open the dashboard that you want to add the filter to.

2. In the Hi-Res Analytics main toolbar, click Filters and select Create a Filter. The Create Filter
dialog box is displayed.

3. Click in the Fields field to open the property drop-down list and determine the property to filter
on. The list of available properties depends on the selected data type for the dashboard.

For example, the following image shows the list of properties that are available for a

dashboard whose source is a graphmart that contains data about tickets sold for various types

of events. The type for the dashboard is tickit_events:

Adding a List Filter 845

The list below describes the icons and options that are available when choosing a property:

l The Root Value () is the instance URI for the root resource—the URI for the instances

of the class that was chosen as the data type for the dashboard.

Tip
To view the root values, you can use the STR function to show a string

representation of the URIs.

l Linked classes are represented by incoming () and outgoing () connection icons.

The properties in those classes with a path to another class are denoted with a circle
icon (). Selecting a linked property navigates to that class and displays its properties.

l When a property or path is selected, the breadcrumbs at the top of the dialog box show
you the property path. You can click the clear icon () to clear the path and start again or
you can click the forward () or back () arrows to go forward or backward one or more

levels at a time.

l After you have selected a property, you can apply a function or formula to that property

to calculate the values that are displayed in the filter. To add a function, click the function

button (fx) at the top of the drop-down list. The functions that are available depend on
the data type of the selected property. To choose a more advanced function or type a

formula, click Advanced. The Calculated Value dialog box opens and enables you to

Adding a List Filter 846

choose additional properties and functions. For more information, see Calculating

Values in Lenses and Filters.

4. After you have selected the property to filter on, click Close to close the Fields drop-down list.

5. Next, click the Filter field and select List from the drop-down list. The dialog box is refreshed

to show the Filter Properties and other options that are available for the filter type:

6. Configure any of the following properties. All of the fields are optional:

l Title: Defines the title that appears at the top of the filter when it is added to the
dashboard. If Title is blank, the Fields value is used as the title.

l Label Field: If you want to populate the list with values from a property other than the

one specified in Fields, you can select an alternate property in this field.

l Exclude: This setting controls whether selecting a value in the List Filter narrows the
results to show only the records that include that value or whether selecting a value

excludes the records that include that value. When Exclude is disabled, selecting a

value in the list narrows the Dashboard results to show only the records that include that

value. When Exclude is enabled, selecting a value filters out all of the records that

include that value.

Adding a List Filter 847

l Show Bars: This setting controls whether the total values for the selected property
appear as a bar graphic in the background of the filter.

l Show Blanks: This setting controls whether to include null values for the selected
property by listing them as Blank in the filter.

l Always Show Checkboxes: This setting controls whether checkboxes are shown next
to the items in the filter.

l Show Counts: This setting controls whether the number of results for each item in the

filter is displayed in parentheses next to the item.

l Respond to Other Filters: This setting controls whether the results of this filter change
based on the selections made in other filters on the dashboard.

7. If you would like to be able to further constrain the data that appears in the filter, you can add

one or more subfilters. To add a subfilter, click Create Filter under Subfilters. The process of
creating a subfilter is the same as the process for the parent filter. However, the subfilter is not

displayed on the dashboard. It is visible only when editing the parent filter, and the subfilter's

configuration affects only the parent filter and any sibling subfilters.

8. When you have finished configuring the filter, click OK to add it to the dashboard. The new

filter appears in the left pane of the dashboard and displays the values that are available for

filtering the displayed data.

For example, the filter in the image below shows a filter that lists the categories of events. One

or more of the categories can be selected to filter the data on the dashboard.

Depending on whether the Exclude option is enabled or disabled, selecting an item in the filter

refreshes the dashboard to show only the data includes the selected value or only the data

that does not include the selected value.

Adding a List Filter 848

When working with the filter on the dashboard, the following options are available for sorting and

configuration:

l Search: Enables you to search for a value in the list. The search is case-insensitive.

l Sort (): Shows the following options for sorting the results in the filter:

o Count Ascending: Orders results from the smallest count to the largest.

o Count Descending: Orders results from the largest count to the smallest.

o Name Ascending: Orders results in alphabetical order.

o Name Descending: Orders results in reverse alphabetical order.

l show/hide filters: This option is displayed when a value is selected. It shows or hides the
selection.

l Menu (): The menu contains the following options:

o Select All Visible: This option selects all of the items that are listed in the filter.

o Clear: This option becomes available when an item is selected. Clicking Clear removes
the selection.

o Designer: Selecting this option opens the designer so that you can view or change the

filter configuration.

l Close (X): Clicking X deletes the filter from the dashboard. This action cannot be undone.

Adding a Numeric Range Filter

Numeric range filters are used to limit the results on a dashboard to data that falls in (or outside of)

certain numeric groupings. Numeric range filters are available for properties with integer and double

data types. Follow the instructions below to create a numeric range filter.

1. Open the dashboard that you want to add the filter to.

2. In the Hi-Res Analytics main toolbar, click Filters and select Create a Filter. The Create Filter
dialog box is displayed.

Adding a Numeric Range Filter 849

3. Click in the Fields field to open the property drop-down list and determine the integer or
double type property to filter on. The values for this property will be used to determine the

numeric ranges for the filter. The list of available properties depends on the selected data type

for the dashboard.

For example, the following image shows the list of properties that are available for a

dashboard whose source is a graphmart that contains data about tickets sold for various types

of events. The type for the dashboard is tickit_listings:

The list below describes the icons and options that are available when choosing a property:

l The Root Value () is the instance URI for the root resource—the URI for the instances

of the class that was chosen as the data type for the dashboard.

Adding a Numeric Range Filter 850

Tip
To view the root values, you can use the STR function to show a string

representation of the URIs.

l Linked classes are represented by incoming () and outgoing () connection icons.

The properties in those classes with a path to another class are denoted with a circle
icon (). Selecting a linked property navigates to that class and displays its properties.

l When a property or path is selected, the breadcrumbs at the top of the dialog box show
you the property path. You can click the clear icon () to clear the path and start again or
you can click the forward () or back () arrows to go forward or backward one or more

levels at a time.

l After you have selected a property, you can apply a function or formula to that property

to calculate the values that are displayed in the filter. To add a function, click the function

button (fx) at the top of the drop-down list. The functions that are available depend on
the data type of the selected property. To choose a more advanced function or type a

formula, click Advanced. The Calculated Value dialog box opens and enables you to
choose additional properties and functions. For more information, see Calculating

Values in Lenses and Filters.

4. After you have selected the property to filter on, click Close to close the Fields drop-down list.

5. Next, click the Filter field and select Numeric Range from the drop-down list. The dialog box

is refreshed to show the Filter Properties, Format, and other options that are available for the

filter type:

Adding a Numeric Range Filter 851

6. Configure any of the following properties. Interval is a required field, and the rest of the fields
are optional:

l Title: Defines the title that appears at the top of the filter when it is added to the
dashboard. If Title is blank, the Fields value is used as the title.

l Interval: This setting specifies a number that defines the size of the groupings.

l Exclude: This setting controls whether selecting a range in the filter narrows the results
to show only the records that are included in that range or whether selecting a range

excludes the records that fall in that range. When Exclude is disabled, selecting a range

narrows the dashboard results to show only the records that fall in that range. When

Exclude is enabled, selecting a range filters out all of the records that fall in that range.

l Show Bars: This setting controls whether the total values for the selected property
appear as a bar graphic in the background of the filter.

l Always Show Checkboxes: This setting controls whether checkboxes are shown next
to the items in the filter.

Adding a Numeric Range Filter 852

l Show Counts: This setting controls whether the number of results for each range are
displayed in parentheses next to the range.

l Respond to Other Filters: This setting controls whether the results of this filter change
based on the selections made in other filters on the dashboard.

7. If you would like to specify the format for the numeric values that are displayed in the filter,

click the Type field and select a format from the drop-down list.

8. If you would like to be able to further constrain the data that appears in the filter, you can add

one or more subfilters. To add a subfilter, click Create Filter under Subfilters. The process of
creating a subfilter is the same as the process for the parent filter. However, the subfilter is not

displayed on the dashboard. It is visible only when editing the parent filter, and the subfilter's

configuration affects only the parent filter and any sibling subfilters.

9. When you have finished configuring the filter, click OK to add it to the dashboard. The new

filter appears in the left pane of the dashboard and displays the values that are available for

filtering the displayed data.

For example, the filter in the image below shows numeric ranges for the total price paid for

tickets to events. The Interval is 500, and format is Money, resulting in ranges for each group

of $500.

Depending on whether the Exclude option is enabled or disabled, clicking a range in the filter

refreshes the dashboard to show only the data that is in the selected range or only the data

that is outside of the range.

When working with the filter on the dashboard, the following options are available for sorting and

configuration:

Adding a Numeric Range Filter 853

l show/hide sort details: Shows or hides the following option for sorting the results in the filter:
o Direction: This option controls how you want to order the ranges in the filter, depending

on the Format specified for the values in the filter. Count Ascending and Name
Ascending order results from the smallest range to the largest and Count Descending
and Name Descending order results from the largest range to the smallest.

l show/hide filters: This option is displayed when a range is selected. It shows or hides the
selection.

l Menu (): The menu contains the following options:

o Select All Visible: This option selects all of the ranges that are listed in the filter.

o Clear: This option becomes available when a range is selected. Clicking Clear removes
the selection.

o Designer: Selecting this option opens the designer so that you can view or change the

filter configuration.

l Close (X): Clicking X deletes the filter from the dashboard. This action cannot be undone.

Adding a Presence Filter

Presence filters group results based on whether the value exists or does not exist. This type of filter

is useful for testing whether there are records that are missing a particular value. Presence filters

are available for paths and properties of all data types. Follow the instructions below to create a

presence filter.

1. Open the dashboard that you want to add the filter to.

2. In the Hi-Res Analytics main toolbar, click Filters and select Create a Filter. The Create Filter
dialog box is displayed.

Adding a Presence Filter 854

3. Click in the Fields field to open the property drop-down list and determine the path or property
to filter on. The list of available properties depends on the selected data type for the

dashboard.

For example, the following image shows the list of properties that are available for a

dashboard whose source is a graphmart that contains data about tickets sold for various types

of events. The type for the dashboard is tickit_events:

The list below describes the icons and options that are available when choosing a property:

l The Root Value () is the instance URI for the root resource—the URI for the instances

of the class that was chosen as the data type for the dashboard.

Tip
To view the root values, you can use the STR function to show a string

representation of the URIs.

Adding a Presence Filter 855

l Linked classes are represented by incoming () and outgoing () connection icons.

The properties in those classes with a path to another class are denoted with a circle
icon (). Selecting a linked property navigates to that class and displays its properties.

l When a property or path is selected, the breadcrumbs at the top of the dialog box show
you the property path. You can click the clear icon () to clear the path and start again or
you can click the forward () or back () arrows to go forward or backward one or more

levels at a time.

l After you have selected a property, you can apply a function or formula to that property

to calculate the values that are displayed in the filter. To add a function, click the function

button (fx) at the top of the drop-down list. The functions that are available depend on
the data type of the selected property. To choose a more advanced function or type a

formula, click Advanced. The Calculated Value dialog box opens and enables you to
choose additional properties and functions. For more information, see Calculating

Values in Lenses and Filters.

4. After you have selected the property to filter on, click Close to close the Fields drop-down list.

5. Next, click the Filter field and select Presence from the drop-down list. The dialog box is

refreshed to show the Filter Properties and other options that are available for the filter type:

Adding a Presence Filter 856

6. Configure any of the following properties. All of the fields are optional:

l Title: Defines the title that appears at the top of the filter when it is added to the
dashboard. If Title is blank, the Fields value is used as the title.

l Show Counts: This setting controls whether the number of results for each item in the

filter is displayed in parentheses next to the item.

l Respond to Other Filters: This setting controls whether the results of this filter change
based on the selections made in other filters on the dashboard.

7. If you would like to be able to further constrain the data that appears in the filter, you can add

one or more subfilters. To add a subfilter, click Create Filter under Subfilters. The process of
creating a subfilter is the same as the process for the parent filter. However, the subfilter is not

displayed on the dashboard. It is visible only when editing the parent filter, and the subfilter's

configuration affects only the parent filter and any sibling subfilters.

8. When you have finished configuring the filter, click OK to add it to the Dashboard. The new

filter appears in the left pane of the dashboard and displays the values that are available for

filtering the displayed data.

For example, the filter in the image below shows a Presence Filter that tests whether there are

records that are missing the Category ID value. Selecting Exists or Does not exist filters the
dashboard data to show only the records that fall into that category.

When working with the filter on the dashboard, the following options are available for sorting and

configuration:

l Menu (): The menu contains the following options:

o Clear: This option becomes available when an item is selected. Clicking Clear removes
the selection.

Adding a Presence Filter 857

o Designer: Selecting this option opens the designer so that you can view or change the

filter configuration.

l Close (X): Clicking X deletes the filter from the dashboard. This action cannot be undone.

Adding a Quartile Filter

Quartile filters group and rank the values for a property into four equal ranges. This filter is available

for properties with integer, double, date, time, and dateTime data types. It is not available for paths.

Follow the instructions below to create a quartile filter.

1. Open the dashboard that you want to add the filter to.

2. In the Hi-Res Analytics main toolbar, click Filters and select Create a Filter. The Create Filter
dialog box is displayed.

3. Click in the Fields field to open the property drop-down list and determine the property to filter
on. The list of available properties depends on the selected data type for the dashboard.

For example, the following image shows the list of properties that are available for a

dashboard whose source is a graphmart that contains data about tickets sold for various types

of events. The type for the dashboard is tickit_events:

Adding a Quartile Filter 858

The list below describes the icons and options that are available when choosing a property:

l The Root Value () is the instance URI for the root resource—the URI for the instances

of the class that was chosen as the data type for the dashboard.

Tip
To view the root values, you can use the STR function to show a string

representation of the URIs.

l Linked classes are represented by incoming () and outgoing () connection icons.

The properties in those classes with a path to another class are denoted with a circle
icon (). Selecting a linked property navigates to that class and displays its properties.

l When a property or path is selected, the breadcrumbs at the top of the dialog box show
you the property path. You can click the clear icon () to clear the path and start again or
you can click the forward () or back () arrows to go forward or backward one or more

levels at a time.

l After you have selected a property, you can apply a function or formula to that property

to calculate the values that are displayed in the filter. To add a function, click the function

button (fx) at the top of the drop-down list. The functions that are available depend on
the data type of the selected property. To choose a more advanced function or type a

formula, click Advanced. The Calculated Value dialog box opens and enables you to

Adding a Quartile Filter 859

choose additional properties and functions. For more information, see Calculating

Values in Lenses and Filters.

4. After you have selected the property to filter on, click Close to close the Fields drop-down list.

5. Next, click the Filter field and select Quartile from the drop-down list. The dialog box is

refreshed to show the Filter Properties that are available for the filter type:

6. The only property that is configurable for Quartile filters is the Title. This field is optional and
defines the title that appears at the top of the filter when it is added to the dashboard. If Title is

blank, the value from the Fields field is used as the title.

7. When you have finished configuring the filter, click OK to add it to the dashboard. The new

filter appears in the left pane of the dashboard and displays the values that are available for

filtering the displayed data.

For example, the filter in the image below shows a filter that groups the price paid for tickets to

events into four equal ranges.

One or more ranges can be selected to filter the dashboard data to show only the records from

the selected ranges.

Adding a Quartile Filter 860

When working with the filter on the dashboard, the following options are available for sorting and

configuration:

l show/hide filters: This option is displayed when a value is selected. It shows or hides the
selection.

l Menu (): The menu contains the following options:

o Select All Visible: This option selects all of the items that are listed in the filter.

o Clear: This option becomes available when an item is selected. Clicking Clear removes
the selection.

o Designer: Selecting this option opens the designer so that you can view or change the

filter configuration.

l Close (X): Clicking X deletes the filter from the dashboard. This action cannot be undone.

Adding a Range Slider Filter

Range slider filters display a slider control that enables you to filter dashboard results by setting one

range that you can adjust as needed. This type of filter is available for properties with integer,

double, date, time, and dateTime data types. It is not available for paths. Follow the instructions

below to create a range slider filter.

1. Open the dashboard that you want to add the filter to.

2. In the Hi-Res Analytics main toolbar, click Filters and select Create a Filter. The Create Filter
dialog box is displayed.

3. Click in the Fields field to open the property drop-down list and determine the property to filter
on. The list of available properties depends on the selected data type for the dashboard.

Adding a Range Slider Filter 861

For example, the following image shows the list of properties that are available for a

dashboard whose source is a graphmart that contains data about tickets sold for various types

of events. The type for the dashboard is tickit_events:

The list below describes the icons and options that are available when choosing a property:

l The Root Value () is the instance URI for the root resource—the URI for the instances

of the class that was chosen as the data type for the dashboard.

Tip
To view the root values, you can use the STR function to show a string

representation of the URIs.

l Linked classes are represented by incoming () and outgoing () connection icons.

The properties in those classes with a path to another class are denoted with a circle
icon (). Selecting a linked property navigates to that class and displays its properties.

l When a property or path is selected, the breadcrumbs at the top of the dialog box show
you the property path. You can click the clear icon () to clear the path and start again or
you can click the forward () or back () arrows to go forward or backward one or more

levels at a time.

l After you have selected a property, you can apply a function or formula to that property

to calculate the values that are displayed in the filter. To add a function, click the function

Adding a Range Slider Filter 862

button (fx) at the top of the drop-down list. The functions that are available depend on
the data type of the selected property. To choose a more advanced function or type a

formula, click Advanced. The Calculated Value dialog box opens and enables you to
choose additional properties and functions. For more information, see Calculating

Values in Lenses and Filters.

4. After you have selected the property to filter on, click Close to close the Fields drop-down list.

5. Next, click the Filter field and select Range Slider from the drop-down list. The dialog box is

refreshed to show the Filter Properties and other options that are available for the filter type:

6. Configure any of the following properties. All of the fields are optional:

l Title: Defines the title that appears at the top of the filter when it is added to the
dashboard. If Title is blank, the Fields value is used as the title.

l Label Field: If you want to populate the list with values from a property other than the

one specified in Fields, you can select an alternate property in this field.

7. If you would like to be able to further constrain the data that appears in the filter, you can add

one or more subfilters. To add a subfilter, click Create Filter under Subfilters. The process of
creating a subfilter is the same as the process for the parent filter. However, the subfilter is not

displayed on the dashboard. It is visible only when editing the parent filter, and the subfilter's

configuration affects only the parent filter and any sibling subfilters.

Adding a Range Slider Filter 863

8. When you have finished configuring the filter, click OK to add it to the dashboard. The new

filter appears in the left pane of the dashboard and displays the values that are available for

filtering the displayed data.

For example, the filter in the image below shows a Range Slider filter that uses a date

property to define the range. The dashboard can be filtered by adjusting the Min and Max

values to decrease or increase the range.

9. To refresh the results on the dashboard you can click and drag the Min or Max end of the

slider or click the plus and minus buttons to adjust the range in small increments.

When working with the filter on the dashboard, the following options are available for sorting and

configuration:

l Menu (): The menu contains the following options:

o Clear: This option is available once the slider has been adjusted. Clicking Clear resets
the range to the default configuration.

o Designer: Selecting this option opens the designer so that you can view or change the

filter configuration.

l Close (X): Clicking X deletes the filter from the dashboard. This action cannot be undone.

Adding a Relative Time Filter

Relative time filters are used to filter for records that fall into a specified increment of time relative to

the current time. This type of filter is available for date, time, and dateTime data types. Follow the

instructions below to create a relative time filter.

Adding a Relative Time Filter 864

1. Open the dashboard that you want to add the filter to.

2. In the Hi-Res Analytics main toolbar, click Filters and select Create a Filter. The Create Filter
dialog box is displayed.

3. Click in the Fields field to open the property drop-down list and determine the date, dateTime,
or time type property to filter on. The list of available properties depends on the selected data

type for the dashboard.

For example, the following image shows the list of properties that are available for a

dashboard whose source is a graphmart that contains data about tickets sold for various types

of events. The type for the dashboard is tickit_events:

The list below describes the icons and options that are available when choosing a property:

l The Root Value () is the instance URI for the root resource—the URI for the instances

of the class that was chosen as the data type for the dashboard.

Adding a Relative Time Filter 865

Tip
To view the root values, you can use the STR function to show a string

representation of the URIs.

l Linked classes are represented by incoming () and outgoing () connection icons.

The properties in those classes with a path to another class are denoted with a circle
icon (). Selecting a linked property navigates to that class and displays its properties.

l When a property or path is selected, the breadcrumbs at the top of the dialog box show
you the property path. You can click the clear icon () to clear the path and start again or
you can click the forward () or back () arrows to go forward or backward one or more

levels at a time.

l After you have selected a property, you can apply a function or formula to that property

to calculate the values that are displayed in the filter. To add a function, click the function

button (fx) at the top of the drop-down list. The functions that are available depend on
the data type of the selected property. To choose a more advanced function or type a

formula, click Advanced. The Calculated Value dialog box opens and enables you to
choose additional properties and functions. For more information, see Calculating

Values in Lenses and Filters.

4. After you have selected the property to filter on, click Close to close the Fields drop-down list.

5. Next, click the Filter field and select Relative Time from the drop-down list. The dialog box is

refreshed to show the Filter Properties and other options that are available for the filter type:

Adding a Relative Time Filter 866

6. Configure any of the following properties. All of the fields are optional:

l Title: Defines the title that appears at the top of the filter when it is added to the
dashboard. If Title is blank, the Fields value is used as the title.

l Label Field: If you want to populate the filter with a label other than the one specified in
Fields, you can select an alternate property in this field.

l Respond to Other Filters: This setting controls whether the results of this filter change
based on the selections made in other filters on the dashboard.

7. If you would like to be able to further constrain the data that appears in the filter, you can add

one or more subfilters. To add a subfilter, click Create Filter under Subfilters. The process of
creating a subfilter is the same as the process for the parent filter. However, the subfilter is not

displayed on the dashboard. It is visible only when editing the parent filter, and the subfilter's

configuration affects only the parent filter and any sibling subfilters.

8. When you have finished configuring the filter, click OK to add it to the dashboard. The new

filter appears in the left pane of the dashboard and displays the values that are available for

filtering the displayed data.

For example, the filter in the image below filters data by the Sale Date for tickets.

Adding a Relative Time Filter 867

9. To configure the requirements for the data to display on the Dashboard, specify the following

options:

l On the left, select Last or Next to configure the relative time direction.

l In the middle, specify a number to represent the amount of time.

l On the right, select the time increment to use.

When working with the filter on the dashboard, the following options are also available:

l Menu (): The menu contains the following options:

o Clear: This option is available when once the filter options are selected. Clicking Clear
resets the filter to the default values.

o Designer: Selecting this option opens the designer so that you can view or change the

filter configuration.

l Close (X): Clicking X deletes the filter from the dashboard. This action cannot be undone.

Adding a Search Filter

Search filters are used to search for values of a property that contain a partial match, exact match,

or do not equal the text that you specify. The search is case-insensitive. This type of filter is

available for all data types. It is not available for use with paths. Follow the instructions below to

create a search filter.

1. Open the dashboard that you want to add the filter to.

2. In the Hi-Res Analytics main toolbar, click Filters and select Create a Filter. The Create Filter
dialog box is displayed.

Adding a Search Filter 868

3. Click in the Fields field to open the property drop-down list and determine the property to filter
on. The list of available properties depends on the selected data type for the dashboard.

For example, the following image shows the list of properties that are available for a

dashboard whose source is a graphmart that contains data about tickets sold for various types

of events. The type for the dashboard is tickit_events:

The list below describes the icons and options that are available when choosing a property:

l The Root Value () is the instance URI for the root resource—the URI for the instances

of the class that was chosen as the data type for the dashboard.

Tip
To view the root values, you can use the STR function to show a string

representation of the URIs.

Adding a Search Filter 869

l Linked classes are represented by incoming () and outgoing () connection icons.

The properties in those classes with a path to another class are denoted with a circle
icon (). Selecting a linked property navigates to that class and displays its properties.

l When a property or path is selected, the breadcrumbs at the top of the dialog box show
you the property path. You can click the clear icon () to clear the path and start again or
you can click the forward () or back () arrows to go forward or backward one or more

levels at a time.

l After you have selected a property, you can apply a function or formula to that property

to calculate the values that are displayed in the filter. To add a function, click the function

button (fx) at the top of the drop-down list. The functions that are available depend on
the data type of the selected property. To choose a more advanced function or type a

formula, click Advanced. The Calculated Value dialog box opens and enables you to
choose additional properties and functions. For more information, see Calculating

Values in Lenses and Filters.

4. After you have selected the property to filter on, click Close to close the Fields drop-down list.

5. Next, click the Filter field and select Search Filter from the drop-down list. The dialog box is

refreshed to show the Filter Properties and other options that are available for the filter type:

Adding a Search Filter 870

6. The only property that is configurable for Search Filters is the Title. This field is optional and
defines the title that appears at the top of the filter when it is added to the dashboard. If Title is

blank, the value from the Fields field is used as the title.

7. If you would like to be able to further constrain the data that appears in the filter, you can add

one or more subfilters. To add a subfilter, click Create Filter under Subfilters. The process of
creating a subfilter is the same as the process for the parent filter. However, the subfilter is not

displayed on the dashboard. It is visible only when editing the parent filter, and the subfilter's

configuration affects only the parent filter and any sibling subfilters.

8. When you have finished configuring the filter, click OK to add it to the dashboard. The new

filter appears in the left pane of the dashboard and displays the values that are available for

filtering the displayed data.

For example, the filter in the image below defines Event Name as the property to search on.

9. To perform a search, configure the following options:

l On the left, select the type of match to perform. Matches includes partial matches and
Equals is an exact match. Note that matches are case-insensitive.

l In the middle, specify the value to search for. The search is case-insensitive.

10. Press Enter or click Filter to perform the search and refresh the data on the dashboard.

When working with the filter on the dashboard, the following options are also available:

l Menu (): The menu contains the following options:

o Clear: This option becomes available when a search term is entered. Clicking Clear
removes the term.

Adding a Search Filter 871

o Designer: Selecting this option opens the designer so that you can view or change the

filter configuration.

l Close (X): Clicking X deletes the filter from the dashboard. This action cannot be undone.

Adding a Single Select List Filter

Single select list filters are similar to list filters but only allow you to filter one value from the list at a

time. This type of filter is available for properties of all data types but is not available for paths.

Follow the instructions below to create a single select list filter.

1. Open the dashboard that you want to add the filter to.

2. In the Hi-Res Analytics main toolbar, click Filters and select Create a Filter. The Create Filter
dialog box is displayed.

3. Click in the Fields field to open the property drop-down list and determine the property to filter
on. The list of available properties depends on the selected data type for the dashboard.

For example, the following image shows the list of properties that are available for a

dashboard whose source is a graphmart that contains data about tickets sold for various types

of events. The type for the dashboard is tickit_events:

Adding a Single Select List Filter 872

The list below describes the icons and options that are available when choosing a property:

l The Root Value () is the instance URI for the root resource—the URI for the instances

of the class that was chosen as the data type for the dashboard.

Tip
To view the root values, you can use the STR function to show a string

representation of the URIs.

l Linked classes are represented by incoming () and outgoing () connection icons.

The properties in those classes with a path to another class are denoted with a circle
icon (). Selecting a linked property navigates to that class and displays its properties.

l When a property or path is selected, the breadcrumbs at the top of the dialog box show
you the property path. You can click the clear icon () to clear the path and start again or
you can click the forward () or back () arrows to go forward or backward one or more

levels at a time.

l After you have selected a property, you can apply a function or formula to that property

to calculate the values that are displayed in the filter. To add a function, click the function

button (fx) at the top of the drop-down list. The functions that are available depend on
the data type of the selected property. To choose a more advanced function or type a

formula, click Advanced. The Calculated Value dialog box opens and enables you to

Adding a Single Select List Filter 873

choose additional properties and functions. For more information, see Calculating

Values in Lenses and Filters.

4. After you have selected the property to filter on, click Close to close the Fields drop-down list.

5. Next, click the Filter field and select Single Select List from the drop-down list. The dialog

box is refreshed to show the Filter Properties and other options that are available for the filter

type:

6. Configure any of the following properties. All of the fields are optional:

l Title: Defines the title that appears at the top of the filter when it is added to the
dashboard. If Title is blank, the Fields value is used as the title.

l Label Field: If you want to populate the list with values from a property other than the

one specified in Fields, you can select an alternate property in this field.

l Exclude: This setting controls whether selecting a value in the filter narrows the results
to show only the records that include that value or whether selecting a value excludes

the records that include that value. When Exclude is disabled, selecting a value in the list

narrows the dashboard results to show only the records that include that value. When

Exclude is enabled, selecting a value filters out all of the records that include that value.

Adding a Single Select List Filter 874

l Show Bars: This setting controls whether the total values for the selected property
appear as a bar graphic in the background of the filter.

l Show Blanks: This setting controls whether to include null values for the selected
property by listing them as Blank in the filter.

l Show Counts: This setting controls whether the number of results for each item in the

filter is displayed in parentheses next to the item.

l Respond to Other Filters: This setting controls whether the results of this filter change
based on the selections made in other filters on the dashboard.

7. If you would like to be able to further constrain the data that appears in the filter, you can add

one or more subfilters. To add a subfilter, click Create Filter under Subfilters. The process of
creating a subfilter is the same as the process for the parent filter. However, the subfilter is not

displayed on the dashboard. It is visible only when editing the parent filter, and the subfilter's

configuration affects only the parent filter and any sibling subfilters.

8. When you have finished configuring the filter, click OK to add it to the dashboard. The new

filter appears in the left pane of the dashboard and displays the values that are available for

filtering the displayed data.

For example, the filter in the image below shows a filter that lists each of the states that have

event venues. One state at a time can be selected to filter the data on the dashboard.

Depending on whether the Exclude option is enabled or disabled, selecting an item in the filter

refreshes the Dashboard to show only the data includes the selected value or only the data

that does not include the selected value.

Adding a Single Select List Filter 875

When working with the filter on the dashboard, the following options are available for sorting and

configuration:

l Menu (): The menu contains the following options:

o Clear: This option is available when an item is selected. Clicking Clear removes the
selection.

o Designer: Selecting this option opens the designer so that you can view or change the

filter configuration.

l Close (X): Clicking X deletes the filter from the dashboard. This action cannot be undone.

Adding a Types Filter

Types filters are used to filter data according to the types of data (classes) that are connected by a

specified path. This type of filter is available only for paths and not properties. Follow the

instructions below to create a types filter.

1. Open the dashboard that you want to add the filter to.

2. In the Hi-Res Analytics main toolbar, click Filters and select Create a Filter. The Create Filter
dialog box is displayed.

3. Click in the Fields field to open the property drop-down list and determine the path to filter on.
The list of available classes, paths, and properties depends on the selected data type for the

dashboard.

For example, the following image shows the list of properties that are available for a

dashboard whose source is a graphmart that contains data about tickets sold for various types

of events. The type for the dashboard is tickit_events:

Adding a Types Filter 876

The list below describes the icons and options that are available when choosing a path:

l The Root Value () is the instance URI for the root resource—the URI for the instances

of the class that was chosen as the data type for the dashboard.

Tip
To view the root values, you can use the STR function to show a string

representation of the URIs.

l Linked classes are represented by incoming () and outgoing () connection icons.

The properties in those classes with a path to another class are denoted with a circle
icon (). Selecting a linked property navigates to that class and displays its properties.

l When a property or path is selected, the breadcrumbs at the top of the dialog box show
you the property path. You can click the clear icon () to clear the path and start again or
you can click the forward () or back () arrows to go forward or backward one or more

levels at a time.

l After you have selected a path, you can apply a function or formula to calculate the

values that are displayed in the filter. To add a function, click the function button (fx) at
the top of the drop-down list. The functions that become available depend on the data

type of the selected path. To choose a more advanced function or type a formula, click

Advanced. The Calculated Value dialog box opens and enables you to choose

Adding a Types Filter 877

additional properties and functions. For more information, see Calculating Values in

Lenses and Filters.

4. After you have selected the path to filter on, click Close to close the Fields drop-down list.

5. Next, click the Filter field and select Types from the drop-down list. The dialog box is

refreshed to show the Filter Properties and other options that are available for the filter type:

6. Configure any of the following properties. All of the fields are optional:

l Title: Defines the title that appears at the top of the filter when it is added to the
dashboard. If Title is blank, the Fields value is used as the title.

l Exclude: This setting controls whether selecting a value in the filter narrows the results
to show only the records that include that value or whether selecting a value excludes

the records that include that value. When Exclude is disabled, selecting a value in the

filter narrows the dashboard results to show only the records that include that value.

When Exclude is enabled, selecting a value filters out all of the records that include that

value.

l Show Bars: This setting controls whether the total values for the selected property
appear as a bar graphic in the background of the filter.

l Show Blanks: This setting controls whether to include null values for the selected
property by listing them as Blank in the filter.

Adding a Types Filter 878

l Always Show Checkboxes: This setting controls whether checkboxes are shown next
to the items in the filter.

l Show Counts: This setting controls whether the number of results for each filter value
are displayed in parentheses next to the value.

l Respond to Other Filters: This setting controls whether the results of this filter change
based on the selections made in other filters on the dashboard.

7. If you would like to be able to further constrain the data that appears in the filter, you can add

one or more subfilters. To add a subfilter, click Create Filter under Subfilters. The process of
creating a subfilter is the same as the process for the parent filter. However, the subfilter is not

displayed on the dashboard. It is visible only when editing the parent filter, and the subfilter's

configuration affects only the parent filter and any sibling subfilters.

8. When you have finished configuring the filter, click OK to add it to the dashboard. The new

filter appears in the left pane of the dashboard and displays the values that are available for

filtering the displayed data.

For example, the filter in the image below shows that there is one type of class of data that is

connected by the chosen path.

Depending on whether the Exclude option is enabled or disabled, selecting an item in the filter

refreshes the dashboard to show only the data includes the selected value or only the data

that does not include the selected value.

When working with the filter on the dashboard, the following options are available for sorting and

configuration:

Adding a Types Filter 879

l Search: Enables you to search for a value in the filter. The search is case-insensitive.

l Sort (): Shows the following options for sorting the results in the filter:

o Count Ascending: Orders results from the smallest count to the largest.

o Count Descending: Orders results from the largest count to the smallest.

o Name Ascending: Orders results in alphabetical order.

o Name Descending: Orders results in reverse alphabetical order.

l show/hide filters: This option is displayed when a value is selected. It shows or hides the
selection.

l Menu (): The menu contains the following options:

o Select All Visible: This option selects all of the items that are listed in the filter.

o Clear: This option is available when one or more items are selected. Clicking Clear
removes the selections.

o Designer: Selecting this option opens the designer so that you can view or change the

filter configuration.

l Close (X): Clicking X deletes the filter from the dashboard. This action cannot be undone.

Adding a Types Filter 880

Calculating Values in Lenses and Filters

Anzo provides many standard and advanced functions that you can use to compute the values that

are displayed on a dashboard. When selecting properties and paths for lenses and filters, you can

add calculations by selecting functions from a list or by writing your own formula. The Hi-Res

Analytics application enables you to save your formulas as computed properties that can be reused

on other dashboards, lenses, and filters. This topic provides instructions for using functions and

formulas to calculate displayed values, saving formulas as computed properties, and reusing

computed properties.

l Computations in Filters and Lenses

l Applying Functions and Formulas to Properties

l Saving Formulas for Reuse

l Reusing Computed Properties

Computations in Filters and Lenses

When you apply formulas to properties in filters, Anzo performs the calculation across all of the

values that exist for the selected property and then groups the results into the list of values that the

calculations return. For multiple value properties, all values for that property are included in the

calculations.

When you apply formulas to properties in lenses, the calculation results depend on the data type of

the dashboard or lens. If the property belongs to a class that allows multiple values, Anzo performs

the calculation on each set of multiple values and returns the results as one record in the lens. If the

class includes single value properties, the calculation is performed separately for each single value.

Applying Functions and Formulas to Properties

Follow the instructions below to use a function or formula to compute the values in a lens or filter.

Calculating Values in Lenses and Filters 881

1. Create a new lens or filter or open the Designer for an existing lens or filter.

2. In the drop-down list for selecting properties or fields, select the property or path for which you

want to compute the values. For example:

3. Click the function button (fx) to display the list of standard functions. The list varies depending
on the data type of the selected property.

4. Click a function to apply it to the property that you chose. For information about each of the

available functions, see Function and Formula Reference.

5. To choose a more advanced function or type a formula, click Advanced. The Calculated
Value dialog box opens and enables you to choose additional properties and functions as well

as type your own calculation.

Calculating Values in Lenses and Filters 882

Tip
To create an advanced formula, it might help to get started by viewing the functions

listed in the Functions column on the right side of the screen. Each function includes the

syntax to use for creating a formula that uses that function.

6. In the Functions column, double-click a function to add it to the Formula field at the top of the

dialog box.

7. Place your cursor in the Formula where you want to insert the property to perform the

calculation on (for example, inside the parentheses) and then double-click the property in the

Fields column. If the syntax for the function includes characters such as commas, type the

characters in the appropriate location in the formula. You can click the Clear link on the
bottom right of the Formula field any time to clear that field and start over.

For example, the formula below calculates the total price paid by multiplying the values in the

price per ticket column with the value in the number of tickets column:

Calculating Values in Lenses and Filters 883

8. When you are finished writing a formula, you have two options:

l If you want to use the formula now without saving it for later use, click Close to close the
Calculated Value dialog box. Then complete the lens or filter configuration.

l If you want save the formula for reuse, click the Save as computed property link and
follow the instructions below in Saving Formulas for Reuse.

Saving Formulas for Reuse

Follow these instructions to save a formula as a computed property that you can use in other lenses

and filters that target the same class of data.

1. When you have finished writing a formula in the Calculated Value dialog box, click the Save
as computed property link below the Formula field. The Save formula as computed property

dialog box opens.

Calculating Values in Lenses and Filters 884

2. In the Title field, type a name for the new computed property.

3. Type a description of the new property in the Description field.

4. If necessary, click in the Ontology field to choose another ontology to save the property in. If
you want to save this property in multiple ontologies, you can click the Save as computed
property link again after saving the property in the current ontology.

5. Click Save. Anzo saves the new property and labels it with an asterisk (*). The property

becomes available in the Fields column in the Calculated Value dialog box. For example, the

image below shows the Computed Total Price property that saves the formula from the

Applying Functions and Formulas to Properties section above.

6. Click Close to close the dialog box.

Calculating Values in Lenses and Filters 885

Reusing Computed Properties

When an ontology contains computed properties, any other dashboards, lenses, and filters that use

that ontology can also use the computed properties as long as they also use the same data type or

class of data that the computed property is saved in. Follow the instructions below to use a

computed property.

1. Open the Designer for the filter or lens where you want to apply the computed property.

2. Click in the Fields or Column Value Expression field to open the property selection drop-
down list. The drop-down list includes any computed properties that are available for use with

the selected data type. Computed properties are labeled with an asterisk (*).

3. To use the property as-is, select the property and then close the drop-down list.

4. If you want to make changes to the formula and save it as a different computed property,

select the property and then click the function button (fx) to open the Calculated Value dialog
box. Follow the instructions in Saving Formulas for Reuse above to edit the formula and then

save a new computed property.

Calculating Values in Lenses and Filters 886

Combining Data from Multiple Classes

Though you must choose one base data type (or class) for each dashboard, selecting a data type

with connections to other classes enables you to configure lenses and filters that combine the data

from those classes. This powerful capability can help surface the semantic relationships in your

data and enable you to leverage those relationships to access and integrate all of the data in the

knowledge graph. When choosing the base data type for a dashboard, it helps to consider all of the

desired filters.

For example, consider the following data model for a movie data set:

By creating a dashboard that specifies Movies as the base data type, the lenses and filters in the
dashboard can navigate the paths to properties in the other classes, Movie Actors, Movie Directors,

Movie Producers, and so on. This topic provides guidance on accessing data from multiple classes

in filters and lenses.

l Combining Classes in a Lens

l Filtering on Multiple Classes

Combining Classes in a Lens

The image below shows a dashboard that accesses the graph for the above model. The specified

data type is Movies, and a table lens displays all of the columns/properties in the Movies class:

Combining Data from Multiple Classes 887

Lenses and filters can be configured to leverage the relationships from the base class to the

connected classes. For example, adding a column that navigates the ActedIn path to access the
Movie Actors class could be used to display values such as the names of the actors who starred in
the movies. To navigate the relationship in the lens Designer, the ActedIn path from the

MovieActors class is selected for the new column:

Once the path is chosen, all of the properties from the Movie Actor class are displayed:

Combining Data from Multiple Classes 888

Selecting ActorName adds the column to the dashboard. The actors from each movie are now

integrated into the lens even though the actor name values are not in the base class.

Filtering on Multiple Classes

In addition to combining classes in lenses, you can also apply filters across classes. Like the

example above, the image below shows a dashboard where the specified data type is Movies, and
a Table lens displays all of the columns/properties in the Movies class:

Combining Data from Multiple Classes 889

A filter can be configured to leverage the relationships from the base class to the connected

classes. For example, adding a filter that navigates the Directed path to access the Movie
Directors class could be used to display, and filter on, the name of the director for each movie. To
navigate the relationship in the Create Filter dialog box, the Directed path from the MovieDirectors
class is selected for the Field to filter on:

Once the path is chosen, the properties from the Movie Directors class are displayed:

Combining Data from Multiple Classes 890

Selecting the Director Name property and choosing List as the type of filter adds a filter to the
dashboard that lists all of the directors in the graph. Users can select particular director names to

filter the lens so that it only shows the movies that include one or more of the selected directors.

Using the same path traversal, filters could also be created to narrow the data to certain actors or

producers by following the relationships to the Movie Actors or Movie Producers classes. For more

information about creating or editing lenses and filters, see Creating a Lens and Working with

Filters.

Combining Data from Multiple Classes 891

Searching for Text in Unstructured Documents

The Hi-Res Analytics application incorporates the Elasticsearch search engine to enable you to

perform full text searches on unstructured documents. This topic provides instructions for creating a

dashboard with text search capability and running a search across unstructured documents.

1. In the Anzo application, expand the Blend menu and click Graphmarts. Anzo displays a list
of the existing graphmarts. For example:

2. On the Graphmarts screen, click the name of the graphmart that contains the unstructured

data. Anzo displays the graphmart overview screen.

3. Click the Create Dashboard button. The Hi-Res Analytics application opens and displays the
Create Dashboard dialog box. Leave Graphmart Dashboard selected and click Next.

4. Type a name for the dashboard in the Title field and enter an optional Description. Then click
OK. Anzo creates the dashboard and populates the Graphmart and Data Layers panels. For
example:

Searching for Text in Unstructured Documents 892

5. In the Data Types panel, click the plus icon (+) to open the Select Data Types dialog box. In
the dialog box, select Unstructured Document.

6. Click OK. Anzo adds the data type to the Data Types panel.

7. Next, click the Lenses button in the main toolbar and select New from the drop-down list.

Anzo opens the Create Lens dialog box.

Searching for Text in Unstructured Documents 893

8. In the Create Lens dialog box, select Document Search and then click Next. Anzo displays
the General Information dialog box.

9. Type a name for the lens in the Title field and include an optional Description. Then click
Finish. Anzo opens the Document Search Designer where you can configure the search
settings or customize the style sheet, query, and HTML, if necessary. For example:

Searching for Text in Unstructured Documents 894

10. In the Designer, change the optional search settings as needed. The list below describes

each option:

l Show No Results on Empty Search: Determines whether documents are listed in the
search results before a search is run. When enabled, the Document Search lens

remains blank until a search is run.

l Allow Multi Select: Determines whether a user can select multiple documents at a time
in the results. When enabled, multiple documents can be selected by holding the Shift

key and clicking documents in the results.

l Synonym Expansion Dictionary: Determines whether to display an option for
including synonyms in text searches. When enabled, the lens displays an Include
Synonyms checkbox next to the Search field.

l Knowledge Base Dataset: Enables you to include a knowledge base in the search if
one exists. Click the field to select an available knowledge base.

l Ontology: Enables you to select a data model to use for the search.

l Predicates: Enables you to select specific predicates from the model.

Searching for Text in Unstructured Documents 895

11. Click Save. Anzo add the lens to the dashboard. Depending on the search settings, the lens
displays the list of documents. For example:

12. To run a search, type the text to find in the Search field and press Enter. See the Supported
Search Syntax section below for information about supported search syntax. Anzo finds

documents that include the search value and displays the documents, snippets of text to show

the context of where the matches were found, and the Elasticsearch relevance score for the

match. For information about how the relevance score is calculated, see What Is Relevance?

in the Elasticsearch documentation. For example:

Clicking Show More expands the result to display additional matches. For example:

Searching for Text in Unstructured Documents 896

https://www.elastic.co/guide/en/elasticsearch/guide/current/relevance-intro.html

13. To refine the search, alter the text in the Search field and press Enter again. You can also
click highlighted terms in the search results to open a dialog box that shows the full annotated

document where the match was found. For example:

Supported Search Syntax

This section describes the keyword search syntax that Anzo supports.

Wildcard Characters: ? and *

l ?: Use a question mark (?) to represent a single wildcard character. For example, in the
searchco?l, the resulting documents will include terms like "cool" or "coal."

Supported Search Syntax 897

l *: Use an asterisk (*) to represent multiple wildcard characters. For example, in the
searchcol*, the resulting documents will include terms like "collect" or "color."

Boolean Operators: +, -, OR, AND, NOT

l +: Use a plus (+) character to indicate mandatory matches. For example, in the search flight
+New York, the resulting documents can include "flight" as an optional match and must
include "New York."

l -: Use a minus (-) character to indicate a term that must not match. For example, in the search

flight +New York -Los Angeles, the resulting documents can include "flight" as an optional
match, must include "New York," and must not include "Los Angeles."

l OR: In the search New York OR Los Angeles, the resulting documents will include a match
for either "New York" or "Los Angeles."

l AND: In the search New York AND Los Angeles, the resulting documents must include
matches for both "New York" and "Los Angeles."

l NOT: In the search New York NOT Los Angeles, the resulting documents must include
"New York" and cannot contain "Los Angeles."

l Grouping operators: In the search(flight AND New York) OR Los Angeles, the resulting
documents will include "flight" and "New York" and optionally include "Los Angeles."

Fuzzy Matches: ~n

To search for a fuzzy match, use a tilde (~) character followed by a number to represent the number

of fuzzy or incorrect characters. For example, in the search Flgth~3, the resulting documents could
include the term "Flight."

Regular Expressions

For example, the following search expression matches email addresses: /([a-zA-Z0-9_\-\.]+)@([a-
zA-Z0-9_\-\.]+)\.([a-zA-Z]{2,5})/.

For more information about the regular expression syntax that Elasticsearch supports, see Regular

expression syntax in the Elasticsearch documentation.

Supported Search Syntax 898

https://www.elastic.co/guide/en/elasticsearch/reference/current/regexp-syntax.html#regexp-syntax
https://www.elastic.co/guide/en/elasticsearch/reference/current/regexp-syntax.html#regexp-syntax

Sharing Access to Dashboards and Lenses

This topic includes reference information about dashboard and lens permissions and provides

instructions for configuring permissions.

l Dashboard Level Permissions

l Lens Level Permissions

l Configure Dashboard or Lens Permissions

Dashboard Level Permissions

Dashboard level permissions affect a user's ability to view, modify, delete, design, or configure

dashboards and dashboard permissions. There are three predefined permission sets that can be

assigned to an Anzo user or group. You also have the option to customize the set of permissions

that are applied to a user or group.

The table below lists the predefined permission sets and describes the privileges that are granted

for each permission that is part of the predefined set:

Set Permission Allows a user to:

View Read l Search for and open accessible dashboards.

l Save As a new dashboard.

l Share the dashboard.

l View dashboard Properties.

l View lens Properties.

l Export lenses.

Modify In addition to the Read permission described above, theModify set includes the
Write and Delete permissions described below.

Write l Use the dashboard Designer to change the

Sharing Access to Dashboards and Lenses 899

Set Permission Allows a user to:

dashboard.

l Clone lenses.

Delete l Delete the dashboard.

Admin In addition to the Read,Write, and Delete permissions described above, the Admin
set includes theManage permission described below.

Manage l The Manage permission relates only to the Security

tab. If a user has this permission, they can modify

dashboard access by changing permissions for a

user, group, or role.

Default Dashboard Permissions

The table below lists the predefined permission sets that are applied by default when a new

dashboard is created. Besides the sysadmin user, the dashboard creator is granted Admin
privileges by default. The Everyone role is granted View privileges by default. No other users,

groups, or roles have dashboard permissions assigned by default.

User or Role Applied Permission Set

Sysadmin Admin

Dashboard Creator Admin

Everyone Role View

Sharing Access to Dashboards and Lenses 900

Lens Level Permissions

Lens level permissions affect a user's ability to view, modify, delete, design, or configure lenses and

lens permissions. There are three predefined lens permission sets that can be assigned to an Anzo

user or group. You also have the option to customize the set of permissions that are applied. While

dashboard level permissions can affect a user's ability to clone a lens, the appropriate lens level

permissions are required to be able to perform functions such as deleting or redesigning a lens.

The table below lists the predefined permission sets and describes the privileges that are granted

for each permission that is part of the predefined set:

Set Permission Allows a user to:

View Read l Search for and open accessible lenses.

l View lens Properties.

l Export lenses.

Modify In addition to the Read permission described above, theModify set includes the
Write and Delete permissions described below.

Write l Use the lens Designer to change the lens.

l Rename the lens.

l Clone the lens.

Delete l Delete the lens.

Admin In addition to the Read,Write, and Delete permissions described above, the Admin
set includes theManage permission described below.

Manage l The Manage permission relates only to the Security

tab. If a user has this permission, they can modify

Sharing Access to Dashboards and Lenses 901

Set Permission Allows a user to:

lens access by changing permissions for a user,

group, or role.

Default Lens Permissions

The table below lists the predefined permission sets that are applied by default when a new lens is

created. Besides the sysadmin user, the lens creator is granted Admin privileges by default. The
Everyone role is granted View privileges by default. No other users, groups, or roles have lens

permissions assigned by default.

User or Role Applied Permission Set

Sysadmin Admin

Lens Creator Admin

Everyone Role View

Configure Dashboard or Lens Permissions

This section provides instructions for modifying dashboard or lens properties to grant or restrict

access to your dashboards and lenses.

Note
Data can be restricted at a higher level than a dashboard. Though users might have access to

view your dashboards and lenses, graphmart permissions determine whether they can view

the data that the dashboard displays.

Configure Dashboard or Lens Permissions 902

1. Open the dashboard for which you want to modify access.

2. Open the Properties dialog box for the either dashboard or for a specific lens:

l To change access at the dashboard level, click Dashboard in the main toolbar and
select Properties.

Note
Sharing a dashboard automatically shares the lenses in that dashboard.

l To change access for a lens in the dashboard, click the lens to display it and then click

the Properties button in the object toolbar.

3. In the Properties dialog box, click the Security tab. This tab lists the available groups and
users who can view this dashboard or lens. The image below shows the Security tab at the

dashboard level:

Configure Dashboard or Lens Permissions 903

4. Select a user or user group to manage, and then modify any of the following options:

l Remove a user or group: Click the delete icon (X) next to the user or group.

l Add a user or group: Click Add a user or group. On the User/Group Browser dialog
box, select the users or groups that you want to add. Then click OK.

l Access Details: Select the access level for the selected user or group. Refer to
Dashboard Level Permissions or Lens Level Permissions above for details about each of

Configure Dashboard or Lens Permissions 904

the access options.

o None: No permissions set for the selected dashboard or lens.

o View: Grants the View predefined permission set for the selected dashboard or

lens.

o Modify: Grants the Modify predefined permission set for the selected dashboard
or lens.

o Admin: Grants the Admin predefined permission set for the selected dashboard or
lens.

o Other: Enables you to set custom access levels for the selected dashboard or lens.

Select the checkboxes to enable any combination of the following permissions:

Read, Write, Delete, or Manage (administrator permissions).

5. Click Save to save the changes.

To get a URL to your dashboard that you can send to users, click Dashboard in the main toolbar
and select Share. The Share Dashboard dialog box opens and displays a URL for the dashboard.
You can copy the link and send it to users.

Configure Dashboard or Lens Permissions 905

Access Data with the Query Builder

The Query Builder in the user interface provides options for accessing data in various data sources.

The Query Builder includes a Find option that enables users to search for quads by specifying a
single subject, object, predicate, or graph name. It also includes a Query option that enables users
to write, run, and save SPARQL queries. The topics in this section provide information about

accessing data using the Query Builder.

In this section:
Running SPARQL Queries in the Query Builder 907

Searching for Quads in the Query Builder 915

Access Data with the Query Builder 906

Running SPARQL Queries in the Query Builder

The Query Builder includes a Query tab for writing and running SPARQL queries. The query editor

provides syntax assistance, type-ahead suggestions for model entity names, and automated prefix

creation and query formatting for readability. It also includes the option to save queries for later use.

The Query tab supports running queries against the following data sources:

l Graphmarts and specific data layers within graphmarts

l Linked Datasets

l Data sources: Anzo System Data Source, AnzoGraph, Anzo System Tables, Data Profiling

Metrics, LDAP Primary Data Source

Note
To ensure that queries perform well and do not consume too many resources on the system,

keep the following guidelines in mind when developing and testing queries:

l Set a limit on the number of results to return.

l Avoid cross-product joins

l Consider using VALUES clauses instead of FILTER clauses.

l When retrieving a large number of values, use subqueries instead of OPTIONAL

clauses.

For query templates and additional details about best practices, see SPARQL Best Practices

and Query Templates.

Follow the instructions below to write and run SPARQL queries against any of the supported data

sources.

1. In the Anzo application, expand the Access menu and click Query Builder. Anzo displays the
query editor.

Running SPARQL Queries in the Query Builder 907

2. At the top of the screen, click the edit () icon next to the Target data source:

l To query data that is in a graphmart, select the Graphmart radio button.

Click the Select Graphmart drop-down list and select the graphmart to query. If you
want to narrow the scope of the query by selecting one or more data layers in the

graphmart, click the Select Layers drop-down list and select the layer or layers to
target.

l To query data that is in the Datasets catalog, select the Linked Dataset radio button.

Click the Select linked dataset drop-down list and select the linked dataset to query.

l To run queries against the system data source, data profiling metrics, Anzo system

tables, LDAP server, or AnzoGraph, select the Datasource radio button.

Running SPARQL Queries in the Query Builder 908

Click the Datasource drop-down list and select the target source:

o Select System Datasource to search the local Anzo system volume.

o Select the name of an AnzoGraph instance to search for data in graphmarts that

are loaded to that instance.

o Select Data Profiling Metrics to search the data metrics volume.

o Select LDAP Primary Datasource to search the directory server.

o Select System Tables to search Anzo system table data.

By default, the Named Graphs and Default Named Graphs values are set to all named

graphs (http://openanzo.org/namedGraphs/reserved/graphs/ALL). If you

want to narrow the scope of the query, you can replace the values with specific graph

URIs. To list multiple graphs, separate URIs with a space.

3. When you have finished configuring the target, click outside of the dialog box to return to the

Query screen.

4. In the text box below the target, compose the SPARQL query. See SPARQL Best Practices

and Query Templates for tips on writing queries. For information about the supported

SPARQL functions, see Function and Formula Reference.

Running SPARQL Queries in the Query Builder 909

Tip
When adding PREFIX statements, once you type prefix followed by a space Anzo
displays a tooltip that lists all of the global prefixes that are defined for your system.

Clicking a prefix in the list inserts a PREFIX statement into the query. For example:

In addition, typing the abbreviation for a global prefix followed by a colon (:)

automatically inserts the PREFIX statement into the query without opening the tooltip.

When typing entity URIs in the WHERE clause, the query builder also offers

suggestions by listing the properties in the data source. You can click an item in the list

to insert that entity. For example:

When a red exclamation mark icon () is displayed next to a line number, you can

hover the pointer over the icon to view guidance on how to resolve the issue. For

example:

Running SPARQL Queries in the Query Builder 910

5. If you want to format the query for readability, click the Format button and select from the

following options:

l Format: Auto-creates prefixes, inserts URI abbreviations, and restructures the query for
readability.

l Format with simplified variable names: Auto-creates prefixes, inserts URI
abbreviations, simplifies variable names by changing them to ?_var1, ?_var2, ?_varN,

and restructures the query for readability.

For example, the image below shows a query before it is formatted.

After the query is formatted, prefixes and URI abbreviations are added. For example:

Running SPARQL Queries in the Query Builder 911

6. If the query is an INSERT or DELETE query, the Dry Run button becomes active. You can

click Dry Run to do a test run of the update. In a test run, Anzo runs a version of the query
where INSERT or DELETE is replaced with CONSTRUCT, and the results report the number

of statements that the query affects, i.e., the number of additions or removals per graph. If the

results are unexpected, you can adjust the query before clicking running the query and

committing the updates.

7. If necessary, change the query limit. By default, query results are limited to 500. To adjust the

limit, click the Limit results to drop-down list below the query editor and select a value. For

example:

Running SPARQL Queries in the Query Builder 912

8. To run the query, click Run. The results appear at the bottom of the screen. For example:

Tip
You can click any value in the result list to copy that value to the clipboard.

9. To save the query for later use, click the Save button at the top of the screen. Anzo displays
the New Query dialog box.

10. In the dialog box, specify a name for the query in the Title field and an optional description in
the Description field.

Running SPARQL Queries in the Query Builder 913

11. You can click the Folder drop-down list to select a different folder or create a new one to save

the query in. Then click Save. The query is saved and added to the Queries panel on the left
side of the screen.

Running SPARQL Queries in the Query Builder 914

Searching for Quads in the Query Builder

The Query Builder includes a Find tab for searching for data by specifying a single subject, object,

predicate, graph name or any combination of those elements. Statements that match the search

criteria are returned in quads, and the screen includes quick filters that enable users to toggle filters

on and off to show or hide any of the quad elements. The Find tab supports searches against the

following data sources:

l Anzo System Data Source

l AnzoGraph

l Anzo System Tables

l Data Profiling Metrics

l LDAP Primary Data Source

When finding data in the system data source, users have the option to modify or delete statements

directly in the user interface. Follow the instructions below to find data in any of the supported data

sources.

1. In the Anzo application, expand the Access menu and click Query Builder. Anzo displays the
query editor.

Searching for Quads in the Query Builder 915

2. Click the Find tab.

3. Click the Select a Datasource drop-down list and select the data source that you want to
search.

l Select System Datasource to search the local Anzo system volume.

l Select the name of an AnzoGraph instance to search for data in graphmarts that are

loaded to that instance.

l Select Data Profiling Metrics to search the data profiling metrics volume.

l Select LDAP Primary Datasource to search the directory server.

l Select System Tables to search Anzo system table data.

Searching for Quads in the Query Builder 916

4. Follow the guidelines below to specify the data to find in the data source:

l Specify any subject, predicate, object, or graph name in the appropriate field. You can

specify a value for one field in the quad or any combination of fields.

l Any URIs and/or literal values that you specify must match the value in the data. Partial

values, wildcard characters, and regular expressions are not supported.

l If you want to get a list of all of the statements in the data source, you can leave all of the

fields blank.

5. Click Find to search for the statements that match the search criteria. Anzo displays the
matching statements. For example:

6. The following options are available for working with the results:

l To filter results by showing or hiding parts of the quads in the statements, you can select

or clear the following checkboxes above the results.

Searching for Quads in the Query Builder 917

Clearing a checkbox hides that part of the quad in the result list. You can display the item

again by selecting the checkbox.

l To modify the search parameters, you can click any of the graph, subject, predicate, or

object values in the results. The search is automatically run again using only the value

that you clicked.

l If the source that you searched is the System Datasource, you can edit, delete, or add
statements directly. See System Datasource Options below for details.

System Datasource Options

This section provides information about editing, deleting, and adding statements on the Find

screen.

Note
Though the options described below are available for all data sources, adding, deleting, or

editing statements is only successful when the data source is System Datasource.

l Editing a Statement

l Deleting a Statement

l Adding a Statement

Editing a Statement

To edit a statement, click the menu icon () to the right of the statement and select Edit.

Anzo displays the Edit Statement dialog box. For example:

Searching for Quads in the Query Builder 918

Change any of the quad values, and then click Save.

Important
If you edit URI values, make sure that the modified value is a valid URI.

Deleting a Statement

To delete a statement, click the menu icon () to the right of the statement and select Delete. Anzo

displays the statement in a confirmation dialog box. For example:

Click Delete to remove the statement from the system data source.

Searching for Quads in the Query Builder 919

Adding a Statement

To add a quad to the data source, click the Add Statements button at the top of the result list.

Anzo displays the Add Statements dialog box.

Specify the new quad by adding the subject, predicate, object, and named graph URI in the

appropriate fields. Each field is required. URIs must be valid, and the Named Graph URI that you

specify must be present in the data source. You cannot add a new named graph. Click Save to add
the new quad to the data source.

Searching for Quads in the Query Builder 920

Access Data on Demand Endpoints

The topics in this section provide information about accessing Data on Demand endpoints and

using the OData API as well as the Anzo ODBC and JDBC drivers. For information about creating

endpoints, see Creating Data on Demand Endpoints.

In this section:
Accessing an Endpoint Programmatically 922

Accessing an Endpoint from an Application 926

OData Reference 944

Access Data on Demand Endpoints 921

Accessing an Endpoint Programmatically

This topic provides guidance on accessing Data on Demand endpoints programmatically by

showing some example implementations using R and Python.

l Authentication and Data Access

l Access an Endpoint with R (RStudio)

l Access an Endpoint with Python (Linux Terminal)

Authentication and Data Access

Connections to Data on Demand endpoints must be authenticated. Users can submit their Anzo

username and password when accessing data. Ultimately the data that is available to users from

OData endpoints is subject to the security and composition of the graphmart as configured in Anzo.

Access an Endpoint with R (RStudio)

The following example shows how to connect to an OData endpoint from RStudio. The example

uses the R programming language to access a Data on Demand endpoint and pull in data via a

standard dataframe. New or existing R scripts can then be used with the data.

The first step in accessing data from RStudio is to prepare the R script that will construct the target

URL and retrieve the resulting information via HTTP. The example script below accesses a pre-

configured "Sample Data" endpoint. The script has sections for filtering the results as well as

expanding the selection to include information from multiple classes:

require("httr")

require("jsonlite")

require("rstudioapi")

user <- rstudioapi::showPrompt("Username", "Enter Anzo username", "sysadmin")

pw <- rstudioapi::askForPassword(paste("Enter password for",user,sep=" "))

Data on Demand endpoint

odata <- "https://10.100.0.10/dataondemand/Sample-Graphmart/Sample-Data"

Start from Probe class

Accessing an Endpoint Programmatically 922

startClass <- "Probe?"

Filter results for Homo sapiens species

filterKw <- "$filter="

filterVal <- "Species eq 'Hs'"

urlify <- URLencode(filterVal)

filterStr <- paste(filterKw,urlify,sep="")

Select properties of interest (FeatureID) from base class

selectKw <- "&$select="

selectVal <- "FeatureID"

selectStr <- paste(selectKw,selectVal,sep="")

Select properties of interest (symbol) from Gene class

via corresponds_to property on base Probe class

expandKw <- "&$expand="

expandClass <- "corresponds_to"

expandProps <- "symbol"

expSelStr <- "$select="

expandStr <- paste(expandKw,expandClass,"(",expSelStr,expandProps,")",sep="")

Specify format

format <- "&$format=json"

Generate OData URL using fragments above

url <- paste(odata,startClass,filterStr,selectStr,expandStr,format,sep="")

Access OData endpoint

resultRaw <- GET(url, (authenticate(user,pw, type = "basic")))

resultTxt <- content(resultRaw, "text")

resultJson <- fromJSON(resultTxt, flatten = TRUE)

print(url)

Read results into dataframe

resultDataFrame <- as.data.frame(resultJson)

View(resultDataFrame)

Executing the above R script from RStudio results in a dataframe that represents columns from the

Probe and Gene classes.

Accessing an Endpoint Programmatically 923

Access an Endpoint with Python (Linux Terminal)

Many users have existing Python scripts to use with data in Anzo or a familiarity with Python that

would make exploring, retrieving, and leveraging the data easier. The following example shows how

to connect to an OData endpoint by executing a Python script from a Linux terminal.

The first step in accessing data using Python is to prepare the Python script that will construct the

target URL and retrieve the resulting information via HTTP. The example script below accesses a

pre-configured "Sample Data" endpoint. The script has sections for filtering the results as well as

expanding the selection to include information from multiple classes (the same filter and class

properties that were used in the R example above).

import requests

import getpass

from urllib.parse import urlparse

un = getpass.getpass(prompt='Username: ')

pw = getpass.getpass(prompt='Password: ')

OData endpoint

Data on Demand URL

odata = 'https://10.100.0.10/dataondemand/Sample-Graphmart/Sample-Data/'

Start from Lease class

startClass = "Probe?"

Filter results

filterKw = "$filter="

filterVal = "Species eq 'Hs'"

urlify = urlparse(filterVal)

filterStr = filterKw + urlify.geturl()

Select properties of interest (start date, missed payments, lease status) from base

class

selectKw = "&$select="

selectVal = "FeatureID"

selectStr = selectKw + selectVal

Select properties of interest (name, social security number, credit score) from

Individual class

expandKw = "&$expand="

Accessing an Endpoint Programmatically 924

expandClass = "corresponds_to"

expandProps = "symbol"

expSelStr = "$select="

expandStr = expandKw + expandClass + "(" + expSelStr + expandProps + ")"

Specify format

format = "&$format=text/csv"

Generate OData URL using fragments above

url = odata + startClass + filterStr + selectStr + expandStr + format

Access OData endpoint

r = requests.get(url, auth=(un, pw), verify=False)

print("URL")

print(url)

print("CONTENT")

print(r.content.decode('unicode_escape'))

print(type(r))

print(type(r.content))

In this example, the output is returned in CSV format (rather than JSON like the R example).

Accessing an Endpoint Programmatically 925

Accessing an Endpoint from an Application

Since Anzo's Data on Demand service conforms to the OData standard, any tool that supports the

OData V4 REST API can access a Data on Demand endpoint to leverage data in Anzo. In addition,

applications that support ODBC or JDBC APIs can use the Anzo CData ODBC or JDBC drivers to

interact with Data on Demand endpoints. This capability enables users to leverage the benefits of

Anzo's semantic layer, data model, and data blending capabilities in their favorite analytics tools.

This topic provides information about accessing Data on Demand endpoints from third-party

applications.

l JDBC Driver Considerations

l Authentication and Data Access

l Accessing Data via the OData API

l Downloading the Anzo ODBC and JDBC Drivers

l JDBC Driver Documentation

JDBC Driver Considerations

This section describes important items to consider when using JDBC clients for accessing Data on

Demand endpoints:

l Join Performance

l Querying Multi-Valued Properties

l Working with Long Column Names

Join Performance

To join results from multiple classes, Cambridge Semantics strongly recommends using OData or

SPARQL. Hi-Res Analytics and SPARQL are designed to quickly return large results from multiple

classes and should be strongly considered for these use cases. Joins on large data sets are also

well-supported with OData when best practices around paging are applied.

Accessing an Endpoint from an Application 926

You can also join tables upstream in AnzoGraph by creating data layers. For example, you can

create a view that joins the data using a CONSTRUCT query. The view becomes available as an

OData table. For information about view steps, see Construct a View of the Data (View Step).

In addition, Custom Data on Demand endpoints (sometimes called Table endpoints) enable you to

join classes, add filters, and apply functions to properties during endpoint creation. The tables that

you create are automatically translated to SPARQL queries that create views in AnzoGraph,

allowing you to perform complex analytics on the graph yet generate results in the tabular format

that BI tools expect.

Because the JDBC driver generates multiple OData queries and joins the results in memory, SQL

queries that include JOINs on large data sets may take a very long time to complete. When using

the JDBC driver, Cambridge Semantics recommends that you query one class at a time and then

use the BI tool to do analytics on the returned data. For more information, see JDBC Performance

Details below.

Querying Multi-Valued Properties

Some applications do not directly support Anzo’s RDF graph data structures. For example,

sometimes the JDBC driver presents multi-valued properties as arrays, which are not supported by

some BI tools. When creating a Data on Demand endpoint for a graphmart that includes multi-

valued properties, consider denormalizing the results to expand the properties into new rows so that

they can be viewed in BI tools. For more information, see Creating Data on Demand Endpoints.

Working with Long Column Names

By default, the JDBC driver creates column names based on the property labels in the data model.

The property labels can be too long for some clients. For example, Informatica is limited to 128

characters. When ingesting data from a tabular source, the label is a concatenation of the table and

column name. Users may need to shorten the property labels to work with JDBC clients. If the label

is missing, Anzo uses the localName of the IRI. For information about configuring the column names

to be used for a Data on Demand endpoint, see Creating Data on Demand Endpoints.

Accessing an Endpoint from an Application 927

Authentication and Data Access

Connections to Data on Demand endpoints must be authenticated. Users can submit their Anzo

username and password when accessing data. If your applications use single sign-on (SSO)

authentication, you can also use SSO with Anzo. When using SSO, the client authenticates the user

against the SSO provider and then passes the credentials to Anzo. All data is secured according to

the user's SSO profile. For information about the supported SSO providers and instructions on

configuring SSO access, see Connecting to an SSO Provider in the Administration Guide.

Note
Ultimately the data that is available to users from Data on Demand endpoints is subject to the

access control configuration of the graphmart in Anzo.

Accessing Data via the OData API

This section provides guidance on accessing a Data on Demand endpoint from an application that

supports the OData REST API. It includes an example that configures an OData connection in

TIBCO Spotfire. The example steps can also be applied to OData connections in other similar

business intelligence tools.

The first step is to connect to the OData endpoint using the Spotfire Data sources user interface.

When setting up the OData connection, the Service URL is the OData/ODBC URL from the Data on

Demand endpoint configuration details in Anzo. The OData connection uses the user’s Anzo

credentials for authentication.

Accessing Data via the OData API 928

https://docs.cambridgesemantics.com/anzo/v5.4/userdoc/admin-sso.htm

Once the connection is established, Sportfire prompts the user to select the classes and properties

to work with. In this example, the FeatureID property from the Probe class and the symbol property
from the Gene class are selected:

Accessing Data via the OData API 929

Once the properties are chosen, the data is loaded in Spotfire and can be used to inform existing

analytics and data visualizations or create new ones.

Downloading the Anzo ODBC and JDBC Drivers

This section provides guidance on accessing Data on Demand endpoints from applications that

support ODBC or JDBC APIs. Your Anzo deployment includes CData ODBC and JDBC drivers to

use with applications. The first step is to retrieve the appropriate driver for your client. To download

a driver, open a web browser and go to the following URL:

https://<Anzo_server>/installs/anzodataaccess

Where <Anzo_server> is the Anzo server DNS name or IP address. The Anzo Data Access

Software Installation page provides links to download each driver. For example:

Download the appropriate driver to the client server:

l The CData JDBC Driver for Anzo is used to connect to Anzo from most Java applications

and database management tools.

l The CData ODBC Driver for Anzo for Windows or Mac is for use with applications and

database management tools that support open database connectivity, such as Microsoft

Excel or Tableau.

Configuring the Driver and Connecting to the Endpoint

This section provides guidance configuring an ODBC or JDBC driver by showing examples of

configuring DbVisualizer and Tableau to access a Data on Demand endpoint using Anzo's JDBC

driver and configuring Power BI to access an endpoint using the ODBC driver.

Downloading the Anzo ODBC and JDBC Drivers 930

Example JDBC Setup with DbVisualizer

1. In DbVisualizer, go to Tools→ Driver Manager.

2. In the Driver Manager, click the green plus icon to create a new driver.

3. Specify a name for the driver. For example, Anzo JDBC Driver.

4. In the URL Format field, specify the format jdbc:anzo.

5. In the Driver File Paths or Driver jar Files section of the screen, click the folder icon and
then browse to and select the directory where you saved the CData JDBC Driver for Anzo

cdata.jdbc.anzo.jar file that you downloaded to the server. DbVisualizer reads the jar and sets

the Driver Class to cdata.jdbc.anzo.AnzoDriver. For example:

6. To connect to the endpoint in DbVisualizer, go to Database→ Create Database
Connection. Click No Wizard when prompted.

7. Specify a name for the connection in the Name field.

8. In the Driver (JDBC) field, select the Anzo JDBC driver connection.

9. In the Database URL field, specify the JDBC URL from the Anzo Data on Demand endpoint

configuration. For example:

Downloading the Anzo ODBC and JDBC Drivers 931

jdbc:anzo:URL=https://10.10.0.11/dataondemand/Northwind/Northwind

10. Under Authentication, enter your Anzo user ID and password. You should now be able to

connect to the endpoint and view the available schemas. For example:

Example JDBC Setup with Tableau

1. After downloading the CData JDBC Driver for Anzo cdata.jdbc.anzo.jar file, place the .jar in

the appropriate directory depending on your operating system:

l Windows: C:\Program Files\Tableau\Drivers

l MacOS: ~/Library/Tableau/Drivers

l Linux: /var/opt/tableau/tableau_server/data/tabsvc/vizqlserver/Datasources/

2. Restart Tableau and then go to Add a Connection→ To a Server.

3. Click Other Databases (JDBC).

4. In the Database URL field, specify the JDBC URL from the Anzo Data on Demand endpoint

configuration. For example:

Downloading the Anzo ODBC and JDBC Drivers 932

jdbc:anzo:URL=https://10.10.0.11/dataondemand/Northwind/Northwind

5. Enter your Anzo username and password and click Sign In. You should now be able to

connect to the endpoint and view the available schemas.

Example ODBC Setup with Microsoft Power BI

1. After downloading the Windows CData ODBC Driver for Anzo executable file, run the

executable to start the installation wizard. The wizard guides you through installing the driver.

2. At the end of the installation, make sure the Configure ODBC Data Source checkbox is
selected and click Finish. The wizard opens the driver's DNS Configuration screen. For

example:

Downloading the Anzo ODBC and JDBC Drivers 933

3. Under Authentication in Connection Properties, specify the URL, User, and Password to
use for connecting to the Data on Demand endpoint. The User and Password are the Anzo

username and password to use for authentication, and URL is the OData/ODBC service root

URL for the endpoint. You can retrieve the URL from the Data on Demand screen for the

endpoint. For example:

Downloading the Anzo ODBC and JDBC Drivers 934

4. Click OK to save the configuration changes and close the dialog box.

5. Next, connect to the ODBC data source from Power BI. Open Power BI and click the Get Data
button in the tool bar. In the Get Data dialog box, search for "ODBC." For example:

6. The search opens the wizard for creating an ODBC connection to a specified data source.

Select CData Anzo Source from the drop-down list. You do not need to configure the

advanced options.

Downloading the Anzo ODBC and JDBC Drivers 935

7. Click OK to create the connection. Power BI opens the Navigator screen. For example:

Under Display Options, the top level container in the view represents the ODBC driver, the

Anzo item represents the database, and the InitialSample item represents the schema. Each

table is represented as a table entry under the schema. In the example above there is one

table. If you select a table, sample data from that table is displayed on the right side of the

screen. To load table(s), select the checkbox for each table and click the Load button. You
can also use the advanced features of Power BI to transform the data as you load it into the

tool.

JDBC Driver Documentation

This section provides a quick reference for JDBC driver support.

l For the complete JDBC driver documentation, see CData JDBC Driver for Anzo.

l For the complete ODBC driver documentation, see CData ODBC Driver for Anzo.

SQL Compliance

The JDBC driver supports most of the standard operations for querying data. The exceptions are

listed below.

JDBC Driver Documentation 936

https://docs.cambridgesemantics.com/anzo/jdbc/help.htm
https://docs.cambridgesemantics.com/anzo/odbc/help.htm

l The driver does not currently support transactions.

l The driver does not support batching of SQL statements.

l The driver has support for inserting, updating, and deleting records. However, performing

updates via the driver can have unexpected consequences.

For more information about SQL compliance, see the SQL Compliance section in the CData JDBC

Driver documentation.

JDBC Performance Details

By default, the JDBC driver offloads to Anzo as much of the SELECT statement processing as

possible and then processes the rest of the query locally in memory.

l For joins, the driver generates multiple OData queries and joins the results in memory. As a

result, SQL queries that include JOINs can take up to several minutes to complete.

l For aggregates, the driver retrieves all rows necessary to process in memory.

l For predicates, the driver determines which clauses Anzo supports and sends them to Anzo to

retrieve the smallest possible superset of rows that would satisfy the query. It then filters the

rest of the rows client-side.

l The driver's SupportEnhancedSQL setting can be disabled to limit SQL execution to only
what the Anzo API supports. For more information, see the Support Enhanced SQL section in

the CData JDBC Driver documentation.

Tip
To determine which query capabilities the driver can offload to the Anzo API, you can

query the sys_sqlinfo system table. The table contains information about the

functionality that is supported by the connected source. For example:

SELECT * FROM sys_sqlinfo WHERE name='AGGREGATE_FUNCTIONS'

or name = 'COUNT' or name = 'SUPPORTED_OPERATORS' or name = 'GROUP_BY'

or name = 'OUTER_JOINS' or name = 'OJ_CAPABILITIES' or name = 'SUBQUERIES'

or name = 'STRING_FUNCTIONS' or name = 'NUMERIC_FUNCTIONS'

or name = 'TIMEDATE_FUNCTIONS';

JDBC Driver Documentation 937

https://docs.cambridgesemantics.com/anzo/jdbc/help.htm#pg_overview
https://docs.cambridgesemantics.com/anzo/jdbc/help.htm#RSBAnzo_p_SupportEnhancedSQL

For more information, see the sys_sqlinfo section in the CData JDBC Driver

documentation.

Data Caching

Due to the client-side in-memory processing of aggregates and joins, the performance of queries

against extremely large data sets may suffer. If this is a common use case, consider leveraging

caching in the JDBC driver. If the driver maintains a local copy of the data, it reduces the number of

API calls and can increase performance for long-running queries. For more information, see the

Caching Data section in the CData JDBC Driver documentation.

Supported SELECT Statement Clauses

The following list shows the supported SELECT statement clauses. For more information, see the

SELECT Statement section in the CData JDBC Driver documentation.

l SELECT

l INTO

l FROM

l JOIN

l WHERE

l GROUP BY

l HAVING

l UNION

l ORDER BY

l LIMIT

Supported Aggregate Functions

The following list shows the supported aggregate functions. For more information, see the

Aggregate Functions section in the CData JDBC Driver documentation.

JDBC Driver Documentation 938

https://docs.cambridgesemantics.com/anzo/jdbc/help.htm#pg_table-syssqlinfo
https://docs.cambridgesemantics.com/anzo/jdbc/help.htm#pg_caching
https://docs.cambridgesemantics.com/anzo/jdbc/help.htm#pg_select
https://docs.cambridgesemantics.com/anzo/jdbc/help.htm#pg_sfagg

l COUNT

l COUNT_DISTINCT

l AVG

l MIN

l MAX

l SUM

Supported Joins

The following list shows the supported JOIN types. For more information, see the JOIN Queries

section in the CData JDBC Driver documentation.

l Inner Join: Selects only the rows from both tables that match the join condition.

l Left Join: Selects all of the rows in the FROM table and only matching rows in the JOIN table.

SQL Function Reference

The JDBC driver provides implementations of the following common SQL functions. For more

information, see the SQL Functions section in the CData JDBC Driver documentation.

Note
The driver interprets all function input as either column names or strings. Therefore, all string

literals must be escaped with single quotes. For example, SELECT DATENAME

('yy',GETDATE())).

String Functions

l ASCII(character_expression)

l CHAR(integer_expression)

l CHARINDEX(expressionToFind ,expressionToSearch [,start_location])

l CONCAT(string_value1, string_value2 [, string_valueN])

l CONTAINS(expressionToSearch, expressionToFind)

JDBC Driver Documentation 939

https://docs.cambridgesemantics.com/anzo/jdbc/help.htm#pg_sfjoin
https://docs.cambridgesemantics.com/anzo/jdbc/help.htm#pg_sqlfunctions

l ENDSWITH(character_expression, character_suffix)

l FORMAT(value, format)

l FROM_UNIXTIME(time, format, issecond)

l INDEXOF(expressionToSearch, expressionToFind [,start_location])

l ISNULL(check_expression , replacement_value)

l JSON_AVG(json, jsonpath)

l JSON_COUNT(json, jsonpath)

l JSON_EXTRACT(json, jsonpath)

l JSON_MAX(json, jsonpath)

l JSON_MIN(json, jsonpath)

l JSON_SUM(json, jsonpath)

l LEFT(character_expression , integer_expression)

l LEN(string_expression)

l LOWER(character_expression)

l LTRIM(character_expression)

l NCHAR(integer_expression)

l PATINDEX(pattern, expression)

l QUOTENAME(character_string [, quote_character])

l REPLACE(string_expression, string_pattern, string_replacement)

l REPLICATE(string_expression ,integer_expression)

l REVERSE(string_expression)

l RIGHT(character_expression , integer_expression)

l RTRIM(character_expression)

JDBC Driver Documentation 940

l SOUNDEX(character_expression)

l SPACE(repeatcount)

l STARTSWITH(character_expression, character_prefix)

l STR(float_expression [, integer_length [, integer_decimal]])

l STUFF(character_expression , integer_start , integer_length , replaceWith_expression)

l SUBSTRING(expression,integer_start,integer_length)

l TOSTRING(string_value1)

l TRIM(character_expression)

l UNICODE(ncharacter_expression)

l UPPER(character_expression)

l XML_EXTRACT(xml, xpath [, separator])

Date Functions

l CURRENT_DATE()

l CURRENT_TIMESTAMP()

l DATEADD(datepart , integer_number , date [, dateformat])

l DATEDIFF(datepart , startdate , enddate)

l DATEFROMPARTS(integer_year, integer_month, integer_day)

l DATENAME(datepart , date)

l DATEPART(datepart, date [,integer_datefirst])

l DATETIME2FROMPARTS(integer_year, integer_month, integer_day, integer_hour, integer_

minute, integer_seconds, integer_fractions, integer_precision)

l DATETIMEFROMPARTS(integer_year, integer_month, integer_day, integer_hour, integer_

minute, integer_seconds, integer_milliseconds)

l EOMONTH(start_date [, integer_month_to_add])

JDBC Driver Documentation 941

l GETDATE()

l GETUTCDATE()

l ISDATE(date, [date_format])

l SMALLDATETIMEFROMPARTS(integer_year, integer_month, integer_day, integer_hour,

integer_minute)

l SYSDATETIME()

l SYSUTCDATETIME()

l TIMEFROMPARTS(integer_hour, integer_minute, integer_seconds, integer_fractions,

integer_precision)

l YEAR(date)

Math Functions

l ABS(numeric_expression)

l ACOS(float_expression)

l ASIN(float_expression)

l ATAN(float_expression)

l ATN2(float_expression1 , float_expression2)

l CEILING(numeric_expression)

l COS(float_expression)

l COT(float_expression)

l DEGREES(numeric_expression)

l EXP(float_expression)

l EXPR(expression)

l FLOOR(numeric_expression)

l LOG(float_expression [, base])

JDBC Driver Documentation 942

l LOG10(float_expression)

l PI()

l POWER(float_expression , y)

l RADIANS(float_expression)

l RAND([integer_seed])

l ROUND(numeric_expression , integer_length [,function])

l SIGN(numeric_expression)

l SIN(float_expression)

l SQRT(float_expression)

l SQUARE(float_expression)

l TAN(float_expression)

JDBC Driver Documentation 943

OData Reference

The Anzo Data on Demand service follows the OData Version 4.0 specification, which defines the

standard URL conventions and query options. This topic provides a quick reference for learning

OData basics and viewing the supported string operators and output formats. It also provides some

example queries.

l OData URL Conventions

l Supported Query Operators

l Example OData Requests

OData URL Conventions

An OData service URL has three main parts:

1. The Service Root URL that Anzo provides. The service root URL is the metadata that
describes all of the available feeds (tables).

2. The optional Resource Path that narrows the scope of the available data to the individual
table (class) level, property level, or the schema.

3. The Query Options for analyzing the data.

For example, the following OData URL shows the service root from the Data on Demand screen in

Anzo, a resource path that narrows the scope of the data to the Employees table (class), and query

options that filter the result set to show data for the NA region only:

OData requests need to be URL-encoded. Typically you can configure programs to encode

requests automatically. And browsers encode URLs that are pasted into the address bar.

OData Reference 944

http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part1-protocol.html

Supported Query Operators

OData query options are used to dynamically query data via the endpoint and control the amount

and order of the data returned. The Data on Demand service supports the following OData query

operators. See Example OData Requests below for example queries that employ the operators.

Operator Description

$count Used to count the number of matching resources in the result set.

$expand Used to retrieve related data and include it in the results. When you query data via
OData, the default response does not include related entities. The $expand option
provides flexibility for exploring data across the data model. It allows the related
information to be embedded in the response.

$filter Used to filter a result set. The expression specified with $filter is evaluated for
each resource identified by the resource path, and only items where the
expression evaluates to true are included in the response.

$format Used to specify the output format for the results. The supported formats are
text/CSV, JSON, and XML. For example: $format=json

$metadata Used to return the schema, entity set, and property metadata.

$orderby Used to return results in ascending (asc) or descending (desc) order. If asc or
desc is not specified, solutions are returned in ascending order.

$select Used to specify the subset of properties to include in the result set.

$skip Used to specify the number of solutions to exclude in the results. The $top and
$skip OData query options are similar to the LIMIT and OFFSET clauses in
SPARQL queries.

$top Used to limit the number of solutions that are returned.

Supported Query Operators 945

Example OData Requests

This section demonstrates the use of OData query operators by providing examples of common

types of OData requests.

The examples below are run against a sample graphmart, called LeagueGM, that contains data
about the teams and players in a small local baseball league. The Data on Demand endpoint is

named LeagueData. The following service root URL was created by Anzo:

https://10.100.0.10/dataondemand/LeagueGM/LeagueData

For readability, the examples below abbreviate "https://10.100.0.10/dataondemand" to

dataondemand. In addition, the examples are not URL-encoded.

The data has Leagues, Teams, Players, and Positions classes (or entities in OData). And the image

below shows a graph view of the data model. To view the TriG version of the model, click here.

To view the instance data for each class, you can click a link below to view the data for that class.

The data is in JSON format.

Leagues Teams Players Positions

Retrieving Metadata

The request below retrieves the schema, entity set, and property metadata for the endpoint.

dataondemand/LeagueGM/LeagueData/$metadata

Supported Query Operators 946

https://docs.cambridgesemantics.com/anzo/v5.4/userdoc/attachments/LeagueData-ont.trig
https://docs.cambridgesemantics.com/anzo/v5.4/userdoc/attachments/Leagues.json
https://docs.cambridgesemantics.com/anzo/v5.4/userdoc/attachments/Teams.json
https://docs.cambridgesemantics.com/anzo/v5.4/userdoc/attachments/Players.json
https://docs.cambridgesemantics.com/anzo/v5.4/userdoc/attachments/Positions.json

The results are in XML format. A snippet of the results is shown below. To view the complete

response, click here.

<?xml version="1.0" encoding="UTF-8"?>

<edmx:Edmx Version="4.0" xmlns:edmx="http://docs.oasis-open.org/odata/ns/edmx">

<edmx:DataServices>

<Schema xmlns="http://docs.oasis-open.org/odata/ns/edm" Namespace="Feeds">

<EntityContainer Name="Default">

<EntitySet Name="Leagues"

EntityType="com.cambridgesemantics.ont.autogen.LeagueDict.LeagueData.Leagues">

<NavigationPropertyBinding Path="LeagueToTeam" Target="Teams"/>

</EntitySet>

<EntitySet Name="Teams"

EntityType="com.cambridgesemantics.ont.autogen.LeagueDict.LeagueData.Teams">

<NavigationPropertyBinding Path="TeamToLeague" Target="Leagues"/>

<NavigationPropertyBinding Path="TeamToPlayer" Target="Players"/>

</EntitySet>

<EntitySet Name="Positions"

EntityType="com.cambridgesemantics.ont.autogen.LeagueDict.LeagueData.Positions">

<NavigationPropertyBinding Path="PositionToPlayer" Target="Players"/>

</EntitySet>

<EntitySet Name="Players"

EntityType="com.cambridgesemantics.ont.autogen.LeagueDict.LeagueData.Players">

<NavigationPropertyBinding Path="PlayerToPosition" Target="Positions"/>

<NavigationPropertyBinding Path="PlayerToTeam" Target="Teams"/>

</EntitySet>

</EntityContainer>

</Schema>

...

Counting an Entity

The request below returns the number of teams in the graphmart. Adding the resource path Teams
to the request narrows the scope to the Teams entity (or class in Anzo).

dataondemand/LeagueGM/LeagueData/Teams/$count

Result

4

This request returns the number of players:

dataondemand/LeagueGM/LeagueData/Players/$count

Supported Query Operators 947

https://docs.cambridgesemantics.com/anzo/v5.4/userdoc/attachments/LeagueGM-metadata.xml

Result

12

Counting a Property of an Entity

The request below counts the number of players on the Al Thomas team. The request uses the

team_key to identify the team and the TeamToPlayer to identify each player.

dataondemand/LeagueGM/LeagueData/Teams

('aHR0cDovL2NzaS5jb20vVGVhbXMvMQ')/TeamToPlayer/$count

Result

3

This request counts the number of positions played by James Smith:

dataondemand/LeagueGM/LeagueData/Players

('aHR0cDovL2NzaS5jb20vUGxheWVycy8y')/PlayerToPosition/$count

Result

2

Filtering Data via Text Search

The request below filters the results to show data for the TeamName that equals "Black Sox." The

request also returns results in JSON format:

dataondemand/LeagueGM/LeagueData/Teams?$filter=TeamName eq 'Black Sox'&$format=json

Result

{

"@odata.context":

"https://10.100.0.10/dataondemand/LeagueGM/LeagueData/$metadata#Teams",

"value": [

{

"teams_key": "aHR0cDovL2NzaS5jb20vVGVhbXMvMg",

"TeamId": 2,

"teamtoleague_key": [

"aHR0cDovL2NzaS5jb20vTGVhZ3Vlcy8x"

],

Supported Query Operators 948

"TeamName": "Black Sox",

"teamtoplayer_key": [

"aHR0cDovL2NzaS5jb20vUGxheWVycy80",

"aHR0cDovL2NzaS5jb20vUGxheWVycy81",

"aHR0cDovL2NzaS5jb20vUGxheWVycy82"

]

}

]

}

This request filters the data to find the players whose name contains "Ted."

dataondemand/LeagueGM/LeagueData/Players?$filter=contains(PlayerName,'Ted')

The request can also use "startswith" in place of contains to filter specifically for player names that

start with "Ted."

dataondemand/LeagueGM/LeagueData/Players?$filter=startswith(PlayerName,'Ted')

Result

{

"@odata.context":

"https://10.100.0.10/dataondemand/LeagueGM/LeagueData/$metadata#Players",

"value": [

{

"players_key": "aHR0cDovL2NzaS5jb20vUGxheWVycy8xMA",

"playertoposition_key": [

"aHR0cDovL2NzaS5jb20vUG9zaXRpb25zLzM",

"aHR0cDovL2NzaS5jb20vUG9zaXRpb25zLzI"

],

"PlayerId": 10,

"playertoteam_key": [

"aHR0cDovL2NzaS5jb20vVGVhbXMvNA"

],

"PlayerName": "Ted James",

"DefensiveRating": 92.55

},

{

"players_key": "aHR0cDovL2NzaS5jb20vUGxheWVycy84",

"playertoposition_key": [

"aHR0cDovL2NzaS5jb20vUG9zaXRpb25zLzI",

"aHR0cDovL2NzaS5jb20vUG9zaXRpb25zLzEw"

Supported Query Operators 949

],

"PlayerId": 8,

"playertoteam_key": [

"aHR0cDovL2NzaS5jb20vVGVhbXMvMw"

],

"PlayerName": "Ted Sale",

"DefensiveRating": 77.33

}

]

}

Selecting Properties and Ordering Results

The request below selects player names and their defensive ratings. The results are ordered by

defensive rating in descending order so that the player with the highest defensive rating is listed

first. The request also formats the results in text/csv.

dataondemand/LeagueGM/LeagueData/Players?$select=PlayerName,DefensiveRating&$orderby=De

fensiveRating desc&$format=text/csv

Result

PlayerName,DefensiveRating

James Smith,98.33

Alex Granderson,98.22

Matt Butler,95.66

Tim Hooper,93.43

Steve Jones,93.28

Ted James,92.55

Fred Wynn,88.68

Jared Bonds,86.34

Billy Roper,83.44

Mike Magazine,78.33

Ted Sale,77.33

Chris Underwood,66.22

Expanding the Results to Include Related Entities

The request below uses the $expand operator to retrieve data from the Players entity and include

the related Positions data for each player. For this example, the request limits the number of results

returned to 2 players by adding $top=2:

dataondemand/LeagueGM/LeagueData/Players?$expand=PlayerToPosition&$top=2

Supported Query Operators 950

Result

{

"@odata.context":

"https://10.100.0.10/dataondemand/LeagueGM/LeagueData/$metadata#Players",

"value": [

{

"players_key": "aHR0cDovL2NzaS5jb20vUGxheWVycy8x",

"playertoposition_key": [

"aHR0cDovL2NzaS5jb20vUG9zaXRpb25zLzg"

],

"PlayerId": 1,

"playertoteam_key": [

"aHR0cDovL2NzaS5jb20vVGVhbXMvMQ"

],

"PlayerName": "Steve Jones",

"DefensiveRating": 93.28,

"PlayerToPosition": [

{

"positions_key": "aHR0cDovL2NzaS5jb20vUG9zaXRpb25zLzg",

"PositionId": 8,

"ShortName": "CF",

"positiontoplayer_key": [

"aHR0cDovL2NzaS5jb20vUGxheWVycy8xMg",

"aHR0cDovL2NzaS5jb20vUGxheWVycy8x"

],

"Description": "Centerfield"

}

]

},

{

"players_key": "aHR0cDovL2NzaS5jb20vUGxheWVycy8xMA",

"playertoposition_key": [

"aHR0cDovL2NzaS5jb20vUG9zaXRpb25zLzI",

"aHR0cDovL2NzaS5jb20vUG9zaXRpb25zLzM"

],

"PlayerId": 10,

"playertoteam_key": [

"aHR0cDovL2NzaS5jb20vVGVhbXMvNA"

],

"PlayerName": "Ted James",

"DefensiveRating": 92.55,

"PlayerToPosition": [

Supported Query Operators 951

{

"positions_key": "aHR0cDovL2NzaS5jb20vUG9zaXRpb25zLzI",

"PositionId": 2,

"ShortName": "C",

"positiontoplayer_key": [

"aHR0cDovL2NzaS5jb20vUGxheWVycy84",

"aHR0cDovL2NzaS5jb20vUGxheWVycy8xMA"

],

"Description": "Catcher"

},

{

"positions_key": "aHR0cDovL2NzaS5jb20vUG9zaXRpb25zLzM",

"PositionId": 3,

"ShortName": "1B",

"positiontoplayer_key": [

"aHR0cDovL2NzaS5jb20vUGxheWVycy83",

"aHR0cDovL2NzaS5jb20vUGxheWVycy8xMA"

],

"Description": "First Base"

}

]

}

]

}

Supported Query Operators 952

Access the SPARQL Endpoint

Anzo offers a standard HTTP(S) SPARQL endpoint for sending SPARQL requests between client

applications and Anzo. The endpoint is enabled by default. This topic provides the base endpoint

URL and describes the supported HTTP methods and parameters.

Tip
You can generate a cURL request against the SPARQL endpoint from a query in the Query

Builder. Once you have a valid query, click the More button under the query and select Copy
CURL Command. For more information about writing queries in the Query Builder, see
Running SPARQL Queries in the Query Builder.

Authentication

The Anzo SPARQL endpoint supports Basic Authentication. The endpoint can be configured to

enable other Anzo-supported authentication methods. However, implementing alternate

authentication mechanisms can have unexpected results. For more information, contact Cambridge

Semantics Support.

Note
Ultimately the data that is available to users from SPARQL endpoints depends on the access

control configuration of the graphmart or linked data set as configured in Anzo.

HTTP Methods and Options

The Anzo SPARQL endpoint accepts HTTP GET and POST methods. GET is used to retrieve data

from the endpoint, and POST is used to send data to the endpoint. Update queries must use the

POST method, and read queries can be submitted using GET or POST.

Endpoint Base URL

Use the following base URL to access data in Anzo via the SPARQL endpoint. The table below

describes each base URL component:

Access the SPARQL Endpoint 953

<protocol>://<hostname>:<port>/sparql/<store_type>/<url-encoded_dataset_uri>

Option Description

protocol The protocol to use for the connection: http for HTTP protocol or https for SSL
protocol.

hostname The DNS name or IP address of the Anzo server.

port The port for the endpoint. The port that you specify depends on the protocol that
you choose. By default, the HTTP port is 80 and the HTTPS port is 443. To view
the ports that are configured for your Anzo instance, see Server Settings in the
Administrationmenu.

sparql Required keyword for the SPARQL endpoint.

store_type The type of RDF store for the data. Typically users specify graphmart to query
data that is in a graphmart. It is also possible to query the metadata for a linked
data set (LDS) in the Dataset catalog. To query an LDS that is stored in a local
volume, specify lds as the store type.

url-
encoded_
dataset_uri

The URI for the graphmart or the catalog entry for the LDS. The URI must be URL-
encoded using upper case hexadecimal digits. Lower case hexadecimal digits are
not supported at this time.

How do I find the URI for a graphmart?

How do I find the catalog entry URI for a dataset?

For example, the following base endpoint URL targets the data in a graphmart:

https://10.100.10.20:8443/sparql/graphmart/http%3A%2F%2Fcambridgesemantics.com%2FGraphm

art%2F1ad0ee911b834097ad7f71ee0ae1c0ff

The example below shows a base endpoint URL that targets a dataset catalog entry:

Access the SPARQL Endpoint 954

https://10.100.10.20:8443/sparql/lds/http%3A%2F%2Fopenanzo.org%2FcatEntry

(%255Bhttp%253A%252F%252Fcsi.com%252FFileBasedLinkedDataSet%252F001e517db4f0eaea9f27942

7e4e2a828%255D%2540%255Bhttp%253A%252F%252Fopenanzo.org%252Fdatasource%252FsystemDataso

urce%255D)

HTTP Header Options

The HTTP header provides information related to the transfer of data between the requesting client

and the SPARQL endpoint. The table below describes the supported HTTP header options. Both of

the fields are optional.

Option Description

Content-
Type

The Content-Type specifies the type of request that is being sent by the client. Anzo
supports the following Content-Type values:

l application/x-www-form-urlencoded: Including this value specifies that
the query string will be passed as the value of a "query" or "update" HTTP

parameter. This is the default value. When Content-Type is not specified,

the endpoint behaves as if Content-Type: application/x-www-

form-urlencoded is specified.

l application/sparql-query: Including this value specifies that the HTTP
request body includes a SPARQL read (non-update) query.

l application/sparql-update: Including this value specifies that the HTTP
request body includes a SPARQL update query.

Accept The Accept field specifies the response formats that are acceptable for the server to
send back to the client. You can use this field to specify the output serialization
format for query results in place of the format HTTP parameter. For details about the
supported formats, see Format Options below.

Access the SPARQL Endpoint 955

HTTP Body Parameters

The HTTP parameters in the body of the request provide the rest of the information about the

request. Certain parameters are appropriate for read-only queries, SELECT and CONSTRUCT, and

others are appropriate for updates, INSERT and DELETE. The tables below describe the supported

parameters for query and update requests.

Query Parameters

Parameter Description

query Specifies the full read-only query string to run. If you do not specify
a url-encoded_dataset_uri, default-graph-uri or named-graph-uri in
the request, the query string should contain the appropriate FROM
clauses.

To run an update query (INSERT or DELETE), use the update

parameter.

default-graph-uri Specifies a default graph URI to query. You can include this
parameter multiple times in a request. When the base URL
specifies a graphmart URI, you can specify a data layer URI to
narrow the scope of the query to a specific data layer in the
graphmart.

named-graph-uri Specifies a named graph URI to query. You can include this
parameter multiple times in a request. When the base URL
specifies a graphmart URI, you can specify a data layer URI to
narrow the scope of the query to a specific data layer in the
graphmart.

format Specifies the serialization format to use for the results of the query.
For details about the supported formats, see Format Options
below.

Access the SPARQL Endpoint 956

Parameter Description

includeMetadataGraphs A boolean value that specifies whether to query the metadata
graphs. Only valid for queries that target a linked data set (LDS)
that is stored in a local volume. The default value is
includeMetadataGraphs=false.

delim Specifies a custom delimiter character to use in CSV output results.
Valid only for SELECT queries where the output format is text/csv.
This field accepts any character. When delim is not specified the
default value is a , (comma).

dedup A boolean value that specifies whether to deduplicate
CONSTRUCT results on the client side. When dedup is not
specified, the default value is dedup=true.

serverDedup A boolean value that specifies whether to deduplicate
CONSTRUCT results on the server side. When serverDedup is not
specified, the default value is serverDedup=true.

skipCache A boolean value that specifies whether to skip the reuse of any
query cache that exists from a previous run of the query. When
skipCache is not specified, the default value is skipCache=false.
Anzo server's query cache should be forcibly skipped/ignored

hasHeader A boolean value that specifies whether to include headers in CSV
results. Valid only for SELECT queries where the output format is
text/csv. When hasHeader is not specified, the default value is
hasHeader=false.

attachResult A boolean value that specifies whether to provide the query
response as a file "attachment," i.e. the HTTP response will include
the Content-Disposition of attachment. When attachResult is not
specified, the default value is attachResult=false. When returning

Access the SPARQL Endpoint 957

Parameter Description

results as an attachment, you can specify a file name in filename
the parameter.

filename If attachResult is true, this parameter specifies the file name to use
for the attachment, excluding the file extension. If attachResult is
true and filename is not specified, the default file name is
QueryResult.

Format Options

The table below describes the options for specifying the serialization format of the results that the

server sends back to the client. These format options, i.e., MIME types or file extensions, can be

specified in the format parameter in the body of the request or in the Accept header.

Note
When the request does not include the format parameter or Accept header, the default result

format for SELECT queries is SPARQL XML (application/sparql-results+xml). For
CONSTRUCT queries, the default format depends on whether the query includes GRAPH

clauses. If no GRAPH clause is present, the default format for CONSTRUCT results is RDF

Turtle. If GRAPH clauses are present, the default format is RDF TriG.

Format Accepted Values Query Type Description

XML application/sparql-
results+xml
application/xml
xml
xml2
srx

SELECT only Returns results in SPARQL
Query Results XML Format.

application/rdf+xml
rdf

CONSTRUCT
only

Returns results in RDF 1.1 XML
format.

Access the SPARQL Endpoint 958

https://www.w3.org/TR/rdf-sparql-XMLres/
https://www.w3.org/TR/turtle/
https://www.w3.org/TR/turtle/
https://www.w3.org/TR/trig/
https://www.w3.org/TR/rdf-sparql-XMLres/
https://www.w3.org/TR/rdf-sparql-XMLres/
https://www.w3.org/TR/rdf-syntax-grammar/

Format Accepted Values Query Type Description

owl
rdfs

JSON application/json
json

SELECT and
CONSTRUCT

For SELECT queries, results are
returned in SPARQL Query
Results JSON Format.

For CONSTRUCT queries,

results are returned in Anzo's

native JSON RDF serialization

format. See Anzo JSON RDF

Serialization for details.

application/sparql-
results+json

SELECT only Returns results in SPARQL
Query Results JSON Format.

CSV text/csv
csv

SELECT only Returns results in SPARQL
Query Results CSV Format.

TriG and
Gzipped
TriG

application/x-trig
trig
application/x-trigz
trigz
gz
trig.gz

CONSTRUCT
only

CONSTRUCT queries with a
GRAPH clause return RDF 1.1
TriG by default if no format is
specified.

Turtle and
Gzipped
Turtle

application/x-turtle
ttl
application/x-turtlez
ttlz
ttl.gz

CONSTRUCT
only

Returns RDF 1.1 Turtle.

CONSTRUCT queries without a

GRAPH clause return Turtle by

default if no format is specified.

Access the SPARQL Endpoint 959

https://www.w3.org/TR/2013/REC-sparql11-results-json-20130321/
https://www.w3.org/TR/2013/REC-sparql11-results-json-20130321/
https://www.w3.org/TR/2013/REC-sparql11-results-json-20130321/
https://www.w3.org/TR/2013/REC-sparql11-results-json-20130321/
https://www.w3.org/TR/2013/REC-sparql11-results-csv-tsv-20130321/
https://www.w3.org/TR/2013/REC-sparql11-results-csv-tsv-20130321/
https://www.w3.org/TR/trig/
https://www.w3.org/TR/trig/
https://www.w3.org/TR/turtle/

Format Accepted Values Query Type Description

N-Triples text/plain
nt

CONSTRUCT
only

Returns results in RDF 1.1 N-
Triples format.

Notation3
and
Gzipped
Notation3

text/rdf+n3
n3
text/rdf+n3z
n3z
n3z.gz

CONSTRUCT
only

Returns results in RDF Notation3
format.

N-Quads text/x-nquads
nq
nquad
nquads

CONSTRUCT
only

Returns results in RDF 1.1 N-
Quads format.

TriX application/trix
trix

CONSTRUCT
only

Returns results in RDF Triples in
XML format.

Update Parameters

Parameter Description

update Specifies the full update string to run. If you do not specify a url-
encoded_dataset_uri, using-graph-uri or using-named-graph-uri in
the request, the update query should contain the appropriate
USING clauses.

To run a non-update query (SELECT or CONSTRUCT), use the

query parameter.

using-graph-uri Specifies a default graph URI to update. You can include this
parameter multiple times in a request. When the base URL
specifies a graphmart URI, you can specify a data layer URI to
narrow the scope of the update to a specific data layer in the

Access the SPARQL Endpoint 960

https://www.w3.org/TR/n-triples/
https://www.w3.org/TR/n-triples/
https://www.w3.org/TeamSubmission/n3/
https://www.w3.org/TR/n-quads/
https://www.w3.org/TR/n-quads/
https://www.hpl.hp.com/techreports/2004/HPL-2004-56.html
https://www.hpl.hp.com/techreports/2004/HPL-2004-56.html

Parameter Description

graphmart.

using-named-graph-uri Specifies a named graph URI to update. You can include this
parameter multiple times in a request. When the base URL
specifies a graphmart URI, you can specify a data layer URI to
narrow the scope of the update to a specific data layer in the
graphmart.

includeMetadataGraphs A boolean value that specifies whether to query the metadata
graphs. Only valid for queries that target a linked data set (LDS)
that is stored in a local volume. The default value is false.

Examples

The following example uses cURL to send a request that runs a SELECT query against a

graphmart. Since the request does not include an Accept header or format parameter, results will be

returned in SPARQL XML format.

curl --user sysadmin:@nz0 -c cookiejar.txt -L -v -k

http://10.100.10.20/sparql/graphmart/http%3A%2F%2Fcambridgesemantics.com%2FGraphmart%2F

2dc579b101654ae29eb91b0c7d046ca1

--data-urlencode "query=SELECT * WHERE{ ?s ?p ?o . } LIMIT 100"

The following example sends a GET request that runs a SELECT query against a graphmart. The

format parameter is included to format the results in text/csv serialization.

Access the SPARQL Endpoint 961

For reference, below is the URL-encoded version of the request string shown in the image above.

When sending a request from a client that does not automatically encode requests, you must

convert the string. Line breaks are added for readability:

http://10.100.10.20/sparql/graphmart/http%3A%2F%2Fcambridgesemantics.com%2F

Graphmart%2F646861d1bab54d67bc79dea94e02f3e6

?query=select%20*%20where%20%7B%3Fs%20%3Fp%20%3Fo%7D%20limit%20100

The example below sends a POST request that runs a SELECT query. In this example, the query is

included in the body of the request and the response format is XML.

Access the SPARQL Endpoint 962

The example below sends a GET request that runs a CONSTRUCT query. The response format is

set to JSON, and the results are formatted in Anzo JSON RDF Serialization.

Access the SPARQL Endpoint 963

The example below uses a Python script to send a request that runs a SPARQL query.

import requests

import urllib

server = 'https://company.anzo.com:'

port = 443

graphmart = 'http://cambridgesemantics.com/Graphmart/be4bd080c5654628b6fff90ca1b647d6'

url = server + str(port) + '/sparql/graphmart/' + urllib.quote_plus(graphmart)

#urllib.parse.quote_plus(graphmart) in Python 3

queryText = 'SELECT * WHERE {?instance a ?type .} LIMIT 10'

payload = {'query':queryText, 'format':'text/csv'}

r = requests.post(url, data = payload, auth = ('sysadmin','<pw>'))

print r.text

Access the SPARQL Endpoint 964

Access the HTTP Client Interface

In addition to the SPARQL HTTP(S) endpoint that enables users to send SPARQL queries to Anzo

over HTTP, Anzo provides an HTTP(S) servlet that can be used to invoke Anzo client operations

over HTTP. The client servlet enables external systems to interact with Anzo semantic services as

well as custom services. It also enables remote servers to interact with Anzo without needing the

Anzo command line interface.

HTTP Methods and Options

The Anzo client servlet accepts HTTP GET and POST methods. GET is used for operations that

retrieve data, and POST is used for update operations that add or remove data. Update operations

must use the POST method, and read operations can be submitted using GET or POST.

Client Servlet Base URL

Use the following URL to access Anzo services via the HTTP client servlet. The table below

describes each URL component:

<protocol>://<hostname>:<port>/anzoclient/<client_operation>

For example:

https://10.100.10.20:8443/anzoclient/call

Option Description

protocol The protocol to use for the connection: http for HTTP protocol or https for SSL
protocol.

hostname The DNS name or IP address of the Anzo server.

port The port for the endpoint. The port that you specify depends on the protocol that
you choose. By default, the HTTP port is 80 and the HTTPS port is 443. To view
the ports that are configured for your Anzo instance, see Server Settings in the

Access the HTTP Client Interface 965

Option Description

Administrationmenu.

anzoclient Required keyword for the client servlet.

client_
operation

The type of Anzo client operation to invoke. The list below provides an overview of
the supported operation types. For more information about the operations, see
Client Operations below.

l call: Invokes the semantic service operation identified by the URI
provided in the request (analogous to the anzo call CLI command)

l add: Imports the specified statements to Anzo (analogous to the anzo
import CLI command)

l remove: Removes the specified statements from Anzo (analogous to the

anzo update -r CLI command)

l get: Gets the specified named graph from Anzo (analogous to the anzo

get CLI command)

l find: Finds the statements in Anzo that match the specified pattern
(analogous to the anzo find CLI command)

Client Operations

This section provides usage information and examples for each of the Anzo client operations.

l Call

l Add

l Remove

l Get

l Find

Access the HTTP Client Interface 966

Call

The call operation invokes a semantic service. Identify the service to call by providing the URI for

the service in the request header. The call operation is supported with HTTP GET and POST

methods. When including RDF data as input to the service, the request must use the POST method.

Call Header Options

Call operations support the following header parameters. Only the uri parameter is required:

l uri: Required parameter that specifies the URI of the semantic service to invoke.

l mimeType, Content-Type, or format: Include one of these optional parameters to specify
the MIME type for the RDF serialization used in the request body as well as the response from

the service. The default type is application/json if the header does not specify the format. For
more information about the supported RDF serialization types, see Format Options.

Call Body Options

If the call operation supplies data as input to the service, include the data in the request body. The

data must be serialized as specified in the request header, or application/json if the header does
not specify a serialization type.

Call Examples

The following cURL example uses a GET call to invoke a health check service.

curl https://10.100.10.20:8443/anzoclient/call \

--user sysadmin:123 \

--header 'uri: http://www.csi.com/service/genericIngestManager#healthCheck'

The example below uses a POST call to invoke a service operation. The call passes in a request

data set that is serialized as RDF JSON.

curl https://10.100.10.20:8443/anzoclient/call \

--header 'Content-Type: application/json' \

--user sysadmin:123 \

--header 'uri: http://someServiceURI#someOperation' \

--data '{"subject" : {"objectType": "uri" ,"value" : "urn://test"},

"predicate" : "urn://predicate",

Access the HTTP Client Interface 967

"object" : {"objectType": "uri" ,"value" : "urn://object"},

"namedGraphUri" : "urn://ng"}'

The example below uses a POST call to invoke a service operation. The call passes in a request

data set that is serialized as TriG.

curl https://10.100.10.20:8443/anzoclient/call \

--header 'Content-Type: application/x-trig' \

--user sysadmin:123 \

--header 'uri: http://www.csi.com/service/genericIngestManager#healthCheck'

--data '<urn://ng> { <urn://test> <urn://predicate> <urn://object> .}'

Add

The add operation adds statements to the Anzo graphstore. Add is supported with the HTTP POST

method. The header can includemimeType, Content-Type, or format to specify the MIME type for

the RDF serialization used in the request body as well as the response from the service. The default

type is application/json if the header does not specify the format. For more information about the
supported RDF serialization types, see Format Options. The request body includes the statements

to add.

Add Examples

The following example add operation uses cURL to issue a POST call to add a statement to the

graphstore. The statement is specified in Anzo JSON RDF serialization format.

curl https://10.100.10.20:8443/anzoclient/add \

--user sysadmin:123 \

--data '{"subject" : {"objectType": "uri" ,"value" : "urn://test"},

"predicate" : "urn://predicate",

"object" : {"objectType": "uri" ,"value" : "urn://object"},

"namedGraphUri" : "urn://ng"}'

Remove

The remove operation deletes statements from the Anzo graphstore. Remove is supported with the

HTTP POST method. The header can includemimeType, Content-Type, or format to specify the
MIME type for the RDF serialization used in the request body as well as the response from the

Access the HTTP Client Interface 968

service. The default type is application/json if the header does not specify the format. For more
information about the supported RDF serialization types, see Format Options. The request body

specifies the statements to remove.

Remove Examples

The following example remove operation uses cURL to issue a POST call to remove a statement

from the graphstore. The statement is specified in Anzo JSON RDF serialization format.

curl https://10.100.10.20:8443/anzoclient/remove \

--user sysadmin:123 \

--data '{"subject" : {"objectType": "uri" ,"value" : "urn://test"},

"predicate" : "urn://predicate",

"object" : {"objectType": "uri" ,"value" : "urn://object"},

"namedGraphUri" : "urn://ng"}'

Get

The get operation retrieves a named graph from the Anzo graphstore. The get operation is

supported with HTTP GET and POST methods. The named graph URI that contains the contents to

retrieve can be included as a query parameter or as a uri parameter in the request body. The get
operation also returns the metadata graph, which is equivalent to running anzo get -m <named_

graph_uri> with the Anzo admin CLI. The header can includemimeType, Content-Type, or
format to specify the MIME type for the RDF serialization used to format the response from the

service. The default type is application/json if the header does not specify the format.

Get Examples

The following example get operation uses cURL to retrieve the contents of a named graph.

curl -k -XPOST https://10.100.10.20:8443/anzoclient/get --user sysadmin:123

--data-urlencode

"uri=http://cambridgesemantics.com/Graphmart/9da211618a15476daa10cead2292d8e7"

This example uses Python with requests:

import requests

url = "https://10.100.10.20:8443/anzoclient/get"

data = {"uri":

Access the HTTP Client Interface 969

"http://cambridgesemantics.com/Graphmart/9da211618a15476daa10cead2292d8e7"}

username = "sysadmin"

password = "123"

r = requests.post(url, data=data, auth=(username, password), verify=False)

print (r.text

Find

The find operation finds the statements in the graphstore that match the pattern that is specified in

the request. The find operation is supported with HTTP GET and POST methods. Header options

are not applicable. The list below describes each of the supported parameters. These parameters

can be included as query parameters in the URL or as parameters in the request body:

l graph: The named graph URI for the find pattern.

l sub: The subject of the find pattern.

l pred: The predicate of the find pattern.

l lit: The object of the find pattern if that object is a literal value.

l uri: The object URI of the find pattern if that object is a URI.

l type: If the object is a literal, this parameter can be used to specify the data type of the literal
value.

l lang: If the object is a literal, this parameter can be used to specify the language of the literal
value.

Results returned by the find operation are in Anzo JSON RDF serialization format. See Anzo JSON

RDF Serialization below for details.

Find Examples

The following example find operation (using the GET HTTP method) finds all of the statements in

the graphstore with predicate http://w3.org/1999/02/22-rdf-syntax-ns#type and an

object URI of
http://cambridgesemantics.com/ontologies/2009/05/LinkedData#LinkedDataSet

. The parameters are specified as query parameters in the URL.

Access the HTTP Client Interface 970

curl https://10.100.10.20:8443/anzoclient/find?pred=http://www.w3.org/1999/02/22-rdf-

syntax-

ns%23type&uri=http://cambridgesemantics.com/ontologies/2009/05/LinkedData%23LinkedD

ataSet' \

--user sysadmin:123

The example below finds the same statements but issues a POST call. The URL-encoded

parameters are specified in the request body.

curl https://10.100.10.20:8443/anzoclient/find \

--user sysadmin:123

--data 'pred=http%3A%2F%2Fwww.w3.org%2F1999%2F02%2F22-rdf-syntax-

ns%23type&uri=http%3A%2F%2Fcambridgesemantics.com%2Fontologies%2F2009%2F05%2FLinkedData

%23LinkedDataSet'

Anzo JSON RDF Serialization

Anzo's JSON RDF serialization standard is straightforward but differs from the common public

JSON RDF serialization standards. In Anzo JSON serialization format, a set of statements (quads)

are represented as an array of JSON objects. Each JSON object (statement) is defined as a

key/value pair, where the key specifies the component of the statement, i.e., the subject, predicate,

object, or namedGraphUri. Depending on the component, properties such as the component's value

and data type are specified in nested objects.

The following example array shows Anzo's JSON serialization. The list below the example

describes the structure.

[

{

"subject" : {

"objectType": "uri" ,

"value" : "urn://test"

},

"predicate" : "urn://predicate",

"object" : {

"objectType": "uri" ,

"value" : "urn://object"

},

"namedGraphUri" : "urn://ng"

},

Access the HTTP Client Interface 971

{

"subject" : {

"objectType": "uri" ,

"value" : "urn://test"

},

"predicate" : "urn://predicate2",

"object" : {

"objectType": "literal" ,

"value" : "test literal",

"dataType" : "http://www.w3.org/2001/XMLSchema#string"

},

"namedGraphUri" : "urn://ng"

}

]

l subject is a JSON object with two properties:

o objectType: The resource type of the subject value. This is either a "uri" or "bnode"
(blank node).

o value: The blank node value or a string literal that specifies the URI.

l predicate is a string literal that specifies the predicate URI.

l object is a JSON object with two required properties and two optional properties:

o objectType: Required property that specifies whether the object is a "uri," "literal," or
"bnode."

o value: Required property that specifies the string representation of the object value.

o dataType: Optional property for use if the objectType is "literal." This property describes
the data type of the literal value. It is a string literal of the XSD data type URI. For

example: "http://www.w3.org/2001/XMLSchema#string"

o language:Optional property for use if the objectType is "literal." This property describes
the language of the literal value.

l namedGraphUri is a string literal that specifies the named graph URI.

Access the HTTP Client Interface 972

Share Access to Artifacts

All Anzo artifacts—data sources, schemas, models, graphmarts, etc.—that you create can be

shared with other groups (or users) from the Sharing tab in the Anzo application. This topic
provides an overview of the Sharing tab and basic instructions for configuring artifact permissions.

Note
For specifics about sharing multifaceted artifacts like graphmarts that include layers and

dashboards that include multiple lenses, see Sharing Access to Graphmarts and Sharing

Access to Dashboards and Lenses.

l Sharing Tab Overview

l Permission Settings

l Sharing an Artifact

Sharing Tab Overview

Access the Sharing tab by navigating to an artifact and clicking Sharing. For example, the image
below shows the Sharing tab for a data source.

Share Access to Artifacts 973

Inheritance

The top of the screen displays the permission inheritance settings:

To facilitate common workflows, the Anzo application applies logic so that artifacts in the same

workflow inherit the same permissions. You can alter the inheritance configuration by choosing the

artifact or artifacts that this artifact should inherit from by choosing the artifacts to Inherit
permissions from. Since the example above is a data source and no artifacts precede the source

in Anzo, the Inherit Permissions From setting is empty.

You can also configure an artifact to Pass permissions to other artifacts. In the example above,
the Movies data source passes permissions to the Movies schema instance and the Movies

graphmart.

Note
Permissions are additive. Copying permissions from multiple artifacts with differing

permission levels results in the super set being acquired by the artifact that is inheriting the

permissions. In addition, any permissions that are configured in the table at the bottom of the

screen are also added to the set. For more conceptual information about permission

inheritance, see Permission Inheritance in the Administration Guide.

User and Group Permissions

In addition to the inheritance settings, the bottom of the screen lists the users and groups that this

artifact has been shared with. For example:

Share Access to Artifacts 974

https://docs.cambridgesemantics.com/anzo/v5.4/userdoc/artifact-access-concepts.htm#inheritance

The current level of access is listed next to each name: View, Modify, or Admin. View, Modify, and
Admin are predefined permission sets. Each predefined set selects a certain combination of six

permissions. You also have the option to create a Custom set of permissions. Selecting a user or

group from the list displays the following permissions table on the right side of the screen:

Typing a value in the Search users, roles or groups field finds and displays the users or groups
that you can add to the list. The Permission Settings section below defines each of the permission

sets.

Permission Settings

The tables below list the predefined permission sets and describe the privileges that are granted for

each permission that is part of the set:

View

The following table describes the permissions in the View set.

Share Access to Artifacts 975

Permission Allows a user to:

View l See the artifact in the Anzo application.

l Create versions of the artifact.

Meta View Relates only to an artifact's permissions. A user with Meta View can see the
permissions on the Sharing tab but they cannot modify, add, or remove
permissions.

Modify

In addition to the View and Meta View permissions described above, the Modify set includes the
Add/Edit and Delete permissions described below.

Permission Allows a user to:

Add/Edit l Change an artifact, such as to rename it or edit its description.

l Add an entity to an artifact. For example, add a schema to a data source

or a layer to a graphmart.

Delete l Remove an entity from the artifact. For example, delete a layer from a

graphmart or a schema from a data source.

l Does not give permission to remove the parent artifact. For
example, a user can remove a schema from a source but cannot delete

the data source.

Admin

In addition to the View, Meta View, Add/Edit, and Delete permissions described above, the Admin
set includes the Meta Add/Edit and Meta Delete permissions described below.

Share Access to Artifacts 976

Permission Allows a user to:

Meta Add/Edit Relates only to an artifact's permissions. A user with Meta Add/Edit can add
permissions to a user or group. They cannot remove permissions from any user
or group.

Meta Delete l Remove permissions from a user or group.

l Delete the parent artifact and its related entities.

Sharing an Artifact

Follow the instructions below to share access to an artifact.

1. In the Anzo application, navigate to the artifact that you want to share access to. Then click

the Sharing tab.

2. If you want to change the inheritance for the artifact, use the fields at the top of the screen:

l To apply all of the permissions from another artifact to this one, select the artifact to

inherit from in the Inherit permissions from field.

l To pass this artifact's permissions to other artifacts, select the artifacts to pass

permissions to in the Pass permissions to field.

Note
Permissions are additive. Copying permissions from multiple artifacts with differing

permission levels results in the super set being acquired by the artifact that is inheriting

the permissions. In addition, any permissions that are configured in the table at the

bottom of the screen are also added to the set. For more conceptual information about

permission inheritance, see Permission Inheritance in the Administration Guide.

3. To share access to this artifact with a particular user or group, type a value in the Search
users, roles or groups field to find and display the user or group. The resulting list shows the
current permission level that is set for each user or group in the search results. For example,

Share Access to Artifacts 977

https://docs.cambridgesemantics.com/anzo/v5.4/userdoc/artifact-access-concepts.htm#inheritance

the image below shows the current permissions for the IT group (None):

4. Select the user or group for which you want to configure permissions. The permissions

settings are displayed on the right side of the screen. For example:

5. To assign a predefined set of permissions, click the View, Modify, or Admin radio button to
assign that level of access to the selected user or group. Refer to Permission Settings above

for details about the permissions sets. For example, the image below gives Admin
permissions to users in the IT group:

Share Access to Artifacts 978

If you want to customize the permissions, click the Custom radio button and then select or

deselect the permissions checkboxes. To clear permissions for a user or group, click the
trashcan icon () next to the name.

Repeat the steps above to share the artifact with additional groups. Changes to permissions take

effect immediately. Users do not need to log out of the application and log back in.

Share Access to Artifacts 979

Version and Migrate Artifacts

The topics in this section provide guidance on creating backup versions of artifacts and migrating

artifacts by exporting them from one server and importing them to another server.

Tip
For information about migrating artifacts and their related entities in bulk, see Migration

Packages in the Administration Guide.

In this section:
Creating and Restoring Versions of Artifacts 981

Exporting an Artifact 986

Making Properties Replaceable on Export 991

Importing Exported Versions of Artifacts 992

Version and Migrate Artifacts 980

https://docs.cambridgesemantics.com/anzo/v5.4/userdoc/admin-migration-packages.htm
https://docs.cambridgesemantics.com/anzo/v5.4/userdoc/admin-migration-packages.htm

Creating and Restoring Versions of Artifacts

Before making changes to data sources, schemas, unstructured pipelines, models, graphmarts,

etc., users can take a snapshot of the current version of that artifact. When a backup is created,

Anzo automatically creates a backup version of each entity that is related to that artifact. For

example, backing up a graphmart backs up the same version of any related models, datasets, and

dashboards. In addition, Anzo backs up the metadata graphs for all of the entities. Metadata graphs

store information about the artifacts such as the creator and creation date and the permissions

configuration. Changed artifacts can be reverted at any time to any of the saved versions. If an

artifact is restored to a previous version, Anzo automatically saves a version of the current state of

the artifact and its related entities and metadata. Follow the appropriate instructions to create or

restore a backup version of an artifact.

l Create a Backup Version

l Restore a Backup Version

Create a Backup Version

Follow the instructions below to save a snapshot of an artifact.

1. In the Anzo application, navigate to the artifact that you want to back up, and then click the

Versions tab. For example, the image below shows the Versions tab for a graphmart. In this

example, the graphmart does not have any backup versions:

Creating and Restoring Versions of Artifacts 981

Note
For data models, add the model that you want to back up to the Working Set and then

open it in the Model editor. Then click the Versions tab.

2. Click the Create button. Anzo displays the Create New Version screen.

3. In the Name for New Version field, type a name for the backup version. Then type details
about the version in the optional Comment for New Version field.

4. Click Save. Anzo takes a snapshot of the artifact as well as its related entities and adds the
version to the list on the left side of the screen. Depending on the size and number of related

entities, the backup operation can take a few minutes to complete. For example:

5. If necessary, select the new version in the list to view details on the right side of the screen.

The screen displays details such as the version creator and created date and lists each of the

related entities that were also backed up. In the list of related entities, the Actions column
displays a compare icon next to each entity that has changed since the previous version.

Create a Backup Version 982

Example
In the image below, the compare icon in the Graphmart row indicates that this version of

the graphmart includes changes that were not in the previous version:

Clicking the icon in the Actions column opens the Compare Versions dialog box, which

shows a side-by-side comparison of the TriG files for the two versions:

Users can now make changes to the current version of the backed up artifacts, and the new

changes can be reverted to a backup version at any time.

Restore a Backup Version

Follow the instructions below to restore an artifact and its related entities to a previous backup

version.

Restore a Backup Version 983

1. In the Anzo application, go to Versions tab for the artifact that you want to restore.

Note
For data models, add the model that you want to restore to the Working Set and then

open it in the Model editor. Then click the Versions tab.

2. On the Versions screen, select the backup version that you want to restore. For example:

3. Click the Restore button to restore the artifact to the version that you selected. Since Anzo
automatically creates a snapshot of the current version before you restore an artifact, Anzo

displays the Restore Version dialog box so that you can specify a label for the new version.

Restore a Backup Version 984

4. In the Restore Version dialog box, type a name for the version in the Name for New Version
field. You can also add an optional comment in the Comment for New Version field.

5. Specify whether you want to revert to the backed up version's metadata graphs for this artifact

and its related entities:

l If you want the restored version to use the metadata, such as permission configuration

and last created date, that was saved at the time of the backup, select the Restore
metadata graphs checkbox. Anzo will revert the metadata to the saved version.

l If changes were made to the metadata for the current version of the artifact and you want

to preserve those changes, such as if the permissions were modified to further restrict or

allow access, leave the Restore metadata graphs checkbox blank. Anzo will preserve
the current metadata graphs instead of reverting the metadata to the saved version.

6. Specify whether you would like Anzo to create a backup version of the current version of the

artifact before restoring it:

l If you want Anzo to make a backup copy of the current version before restoring it, leave

the Create version of current state before restoring checkbox selected.

l If you want do not want Anzo to create a backup copy of the current version before

restoring it, clear the Create version of current state before restoring checkbox.

7. Click Save. Anzo saves the current version and restores the current files to the backup
version. The new version is added to the list of available backups.

Restore a Backup Version 985

Exporting an Artifact

You can export the current version of an artifact and its related entities or any backup version.

Follow the instructions below to export an artifact. For instructions on creating a backup version, see

Creating and Restoring Versions of Artifacts.

1. In the Anzo application, navigate to the artifact that you want to export.

Note
For data models, add the model that you want to export to the Working Set and then

open it in the Model editor.

2. Follow one of the options below, depending on whether you want to export the current version

of the artifact or a backup version:

l If you want to export the current, working version of the artifact, click the Export icon ()

under the artifact name.

Tip
The image below shows an example of the Export icon for an artifact that has a
backup version. Clicking the Export icon () exports the current version of the

artifact, not the backup version that is listed.

l If you want to export a backup version of the artifact, click the Versions tab, which lists
the backups that exist for the artifact. Select the version that you want to export and then

click the Export button. For example, the image below shows the Versions tab for a

Exporting an Artifact 986

graphmart:

The Export dialog box is displayed. For example:

3. On the Export dialog box, configure the following export options as needed. The list below

describes each option:

l Include Related Entities: Indicates whether to export the artifact's related entities.
Since most artifacts have dependencies with other artifacts, Cambridge Semantics

recommends that you enable Include Related Entities (selected by default) and export
all related entities. The number and type of related entities that are included varies by

the type of artifact that is being exported.

l Include Registry Statements: Indicates whether to export the registry statements for
the artifact and each of its related entities.

Exporting an Artifact 987

l Include Metadata: Indicates whether to export the metadata graph for the artifact and
its related entities, such as the permissions configuration and last modified date. If you

exclude the metadata, the artifacts in this export will follow the metadata configuration

on the destination server when they are imported. Select Include Metadata if you want
to migrate the existing metadata to the destination server. Enabling this setting also

gives you the option to change the permissions configuration for the exported entities.

l Include Dataset Editions and Components: If a dataset is included in the export
package, this setting controls whether to include all of the editions and components with

that dataset.

4. If you want to change permissions or replace the values for certain properties in the exported

version of an entity, such as the user name and password for a data source, the base folder

location for a File Store connection, or the file path for an Anzo Data Store, expand the

Advanced option to view the Included Entities list. For example:

The entities with replaceable values are expandable. Click the ^ character to the right of an

entity name to expand the options and view the editable properties. Replace any of the

existing values with the new values that you want to define for the exported version of the

artifact.

Exporting an Artifact 988

Tip
For information about configuring additional properties so that their values are

replaceable on export, see Making Properties Replaceable on Export.

If you specified Include Metadata and want modify permissions for the exported entities, click
the Sharing tab. For information about changing permissions on the Sharing tab, see Share
Access to Artifacts.

Tip
When a row in the Related Entities list includes the compare versions icon () in the

Actions column, you can click the icon to open a side-by-side comparison of the TriG

files for the two versions. For example:

5. Click Export to export the artifacts.

Anzo packages the files into a .zip file and downloads it to your computer. You do not need to

extract the files in order to import the artifacts to another Anzo server. See Exported ZIP File

Contents below for a description of the files that are included in the .zip file.

Exported ZIP File Contents

Depending on the options configured for the export, the resulting .zip file contains one or more of the

following files:

Exporting an Artifact 989

l <artifact_name>_export.trig contains statements about the type of artifact that was
exported and the export settings that were configured.

l <artifact_name>_graph.trig contains the artifact definitions.

l <artifact_name>_metadata.trig contains metadata statements such as the access control
configuration and last modified date for the exported entities.

l <artifact_name>_registry.trig contains registry statements such as the named graph
information for the artifacts.

Exporting an Artifact 990

Making Properties Replaceable on Export

When exporting artifacts, users can replace the existing values for certain properties like the user

name and password for database data sources, the base folder location for file connections, and the

file path for Anzo Data Stores. This topic provides instructions for configuring additional properties

so that their values can be modified in the exported version of an artifact.

To configure a property so that its value is replaceable on export, add the following statement to the

http://cambridgesemantics.com/annotations/replaceStatements graph:

<class_URI> http://cambridgesemantics.com/ontologies/2018/06/Export#replaceStatement

<property_URI>

Where <class_URI> is the URI for the class that defines the property whose value should be
replaceable. And <property_URI> is the URI of the property.

Important
The specified property must be a datatype property that contains a literal value.

You can use the following TriG contents as a template for defining properties with replaceable

values. The contents show the default replaceable properties. You can add your statements to the

ann:replaceStatements list and then import the file.

@prefix ds: <http://cambridgesemantics.com/ontologies/DataSources#> .

@prefix exp: <http://cambridgesemantics.com/ontologies/2018/06/Export#> .

@prefix ann: <http://cambridgesemantics.com/annotations/> .

#Mode:ADD

ann:replaceStatements {

ds:PathConnection exp:replaceStatement ds:filePath .

ds:FileConnection exp:replaceStatement ds:fileConnectionBaseFolder .

ds:DbDataSource exp:replaceStatement ds:dbUser , ds:dbDatabase, ds:dbPassword .

}

Making Properties Replaceable on Export 991

Importing Exported Versions of Artifacts

Follow the instructions below to import an exported version of an artifact (as described in Exporting

an Artifact) and its related entities.

Note
To import a model that was created outside of Anzo or was downloaded from Anzo (as

described in Downloading a Model), see Uploading a Model.

1. In the Anzo application, go to the resource selection screen for the type of artifact that you

want to import. For example, the image below shows the Graphmarts screen:

2. Click the Add ... button on the top of the screen and select Import Anzo opens the Import
dialog box.

Importing Exported Versions of Artifacts 992

3. On the Import screen, click the Version Location field to open the File Location dialog box.

4. If the exported .zip file is on your computer, drag and drop the file onto the screen or click

browse to navigate to the file and select it. If the .zip file is on a File Store, select the From
File Store radio button and select the file on the File Store.

5. Click OK to save the file location value and close the File Location dialog box.

6. Enable or disable the following options as needed, depending on the data that the import file

contains:

l Include Related Entities: Indicates whether to import the artifact's related entities.
Since most artifacts have dependencies with other artifacts, the Include Related
Entities option is selected by default when an artifact is exported. Capturing all related
entities on export ensures that all of an artifact's dependencies are included when that

artifact is migrated. For example, an exported pipeline has the data source, schema, and

model artifacts that it relies on when the pipeline is run. If the exported package includes

related entities, Cambridge Semantics recommends that you enable Include Related
Entities on import.

l Include Registry Statements: Indicates whether to import the registry statements for
the artifact and its related entities. This option is selected by default. Registry statements

Importing Exported Versions of Artifacts 993

should be included in imports. When registry statements are not included, the imported

artifacts are not displayed in Anzo. For example, if a data source artifact is imported

without registry statements, it would not be added to the Data Sources Registry and

therefore not be displayed in the list of data sources in the Anzo application.

l Include Metadata: Indicates whether to import the metadata graph for the artifact and
its related entities, such as the access control configuration and last modified date. If you

select Include Metadata, you have the option to edit the permission configuration
before importing the artifact.

l Include Dataset Editions And Components: This option specifies whether to import
all of the editions and components for each dataset included in the import package.

7. Choose one of the following options to proceed with the import:

l If you want to import the files as alternate versions of artifacts and not as the current,

working version, and you do not want to replace any values or change permissions, click

Proceed. Anzo imports the data and the imported files become available as versions on
the relevant Version screens for the imported artifacts.

l If you want to import these files as the current working version, and/or you want to

change values or modify the permissions, click Proceed With Advanced. Anzo opens
the Import Advanced Options dialog box. For example:

Importing Exported Versions of Artifacts 994

Click the ^ character to the right of an entity name to expand the options and view the

editable properties. Replace any of the existing values with the new values that you want

to define for the imported version of the entity. If you specified Include Metadata and
want modify permission settings for the import, click the Sharing tab and edit or add
permissions for users and groups. For details about the Sharing tab, see Share Access

to Artifacts.

When you are ready to import the entities, choose one of the following options:

l If you want to import the files as alternate versions and not as the current, working version,

click Import. Anzo imports the files and the entities become available as versions on the
relevant Version screens.

l If you want to import the files so that they become the current, working versions of the

artifacts, click Import & Apply. Anzo creates a backup version of the existing working
versions and then imports the artifacts as the new working versions.

Importing Exported Versions of Artifacts 995

SPARQL Best Practices and Query Templates

To provide guidance on developing performant SPARQL queries and avoiding unexpected results,

this section offers SPARQL best practices and query templates that you can use as a starting point

for writing SPARQL queries in Anzo, such as in data layers, dashboard query lenses, and the Query

Builder.

In this section:
SPARQL Best Practices 997

SPARQL Query Templates 1004

SPARQL Best Practices and Query Templates 996

SPARQL Best Practices

This topic provides some background information on query execution and gives general guidelines

to follow to help ensure that your SPARQL queries are optimized and do not exhaust Anzo or

AnzoGraph resources.

l Query Execution Overview

l Clause Execution Order and Optimization

l General Guidelines

Query Execution Overview

When you run a new query against a graphmart, AnzoGraph parses the text and then plans the

query execution strategy. The planner determines the steps that are required to compute the results

in an optimal way. The plan is based on the statistics about your data that is gathered during

graphmart activation. After the plan is determined, code for the plan is generated, compiled, and

then distributed throughout the cluster to be executed. The plan XML file and compiled code are

both saved to disk so that they can be reused when the query is run again. That is why the first run

of a query takes longer than subsequent runs.

In addition to the caching that AnzoGraph performs, Anzo caches the query results. If you enable

the Skip server cache option when running a query in the Query Builder, it means that Anzo will not
access the cache that is available from a previous run of the query.

Clause Execution Order and Optimization

The following image shows the execution order of clauses in a read (SELECT or CONSTRUCT)

query. The list below describes the order.

SPARQL Best Practices 997

1. First, any subselects or subqueries are performed. Note that the ordering presented in the

image also applies to the clauses included in subqueries.

2. Then the graph patterns that are not included in a subquery are scanned.

3. Next, filtering is applied if a FILTER clause is included.

4. Once the WHERE clause has been processed, grouping is performed if a GROUP BY clause

is included.

5. Next, the result clause is processed, including keywords like DISTINCT and any aggregation

or other functions.

6. Lastly, the results are ordered when ORDER BY is specified. The ORDER BY clause is more

complex when GROUP BY and LIMIT are included: Nlog(M) where N is the number of

grouped solutions and M is the LIMIT.

The GROUP BY and result clauses (steps 4 and 5) add linear complexity on top of the complexity in

the WHERE clause. Query execution time increases proportionally to the total number of solutions

found by the WHERE clause. To reduce complexity, trim the WHERE clause to have as few

solutions as possible so that the expensive clauses are executed against as few solutions as

possible.

SPARQL Best Practices 998

General Guidelines

This section offers guidance on developing performant queries and avoiding unexpected results.

l Limit the Results

l Replace FILTER with VALUES or Triple Patterns

l Avoid Cross-Product Joins

l Use Subqueries for Large Amounts of Data

Limit the Results

The easiest way to reduce query execution time in some cases is to apply a LIMIT statement to limit

the result set to a specific number of solutions. Limiting the number of results improves performance

for cases where query results are calculated and returned in a streaming fashion. Limiting results is

particularly useful when results need to be ordered so that the first group of results are the only ones

of interest.

Example: Find the sample ID and binding density for the top 10 most dense samples

PREFIX biom: <http://identifiers.csi.com/pharmakg/def/biomarker#>

SELECT ?sampleId ?bindingDensity

WHERE {

?sample a biom:Sample ;

biom:sampleId ?sampleId ;

biom:bindingDensity ?bindingDensity .

}

ORDER BY DESC(?bindingDensity)

LIMIT 10

Replace FILTER with VALUES or Triple Patterns

While a FILTER clause is useful for narrowing down selected data per a set of requirements, only

use FILTER when the logic does not lend to other operations. In many cases, replacing FILTER with

a VALUES clause or a well-organized set of triple patterns increases query performance. When

SPARQL Best Practices 999

processing a FILTER statement, all non-filtered data must be retrieved before the FILTER can be

applied. Using a VALUES clause or triple pattern, however, reduces the amount of data that is

retrieved and processed after the retrieval.

Example 1: Inappropriate use of FILTER for a value-driven SELECT query

PREFIX uriRoot: <http://example.com/rootOfUris#>

SELECT ?var1 ?var2

WHERE {

?instanceOfClass a uriRoot:Class ;

uriRoot:varName1 ?var1 ;

uriRoot:varName2 ?var2 ;

uriRoot:filteredVar ?filteredVar .

FILTER(?filteredVar = 'COMPAREDDATA1' || ?filteredVar = ‘COMPAREDDATA2’ ||

?filteredVar = ‘COMPAREDDATA3’)

filteredVar is first retrieved and then run through several comparisons

}

Solution 1: Use VALUES to select certain values

PREFIX uriRoot: <http://example.com/rootOfUris#>

SELECT ?var1 ?var2

WHERE {

?instanceOfClass a uriRoot:Class ;

uriRoot:varName1 ?var1 ;

uriRoot:varName2 ?var2 ;

uriRoot:filteredVar ?valueVar .

VALUES (?valueVar) {

(‘COMPAREDDATA1’)

(‘COMPAREDDATA2’)

(‘COMPAREDDATA3’)

}

selection is performed once for each entry in the VALUES clause,

retrieving no more data than necessary

}

Example 2: Inappropriate use of FILTER for a value-driven SELECT query

PREFIX uriRoot: <http://example.com/rootOfUris#>

SPARQL Best Practices 1000

SELECT ?var1 ?filteredVar

WHERE {

?instanceOfClass a uriRoot:ClassName ;

uriRoot:varName1 ?var1 ;

uriRoot:varName2 ?var2 ;

uriRoot:filteredVar ?filteredVar .

FILTER(?filteredVar = 'COMPAREDDATA1')

filteredVar is first retrieved and then compared

}

Solution 2: Use a triple literal to select certain values

PREFIX uriRoot: <http://example.com/rootOfUris#>

SELECT ?var1 ?filteredVar

WHERE {

?instanceOfClass a uriRoot:Class ;

uriRoot:varName1 ?var1 ;

uriRoot:filteredVar 'COMPAREDDATA' .

data is only retrieved if filteredVar matches desired compared data upon

initial retrieval

}

Avoid Cross-Product Joins

When trying to gather data from multiple classes at once, it is possible to accidentally create a

cross-product join, a selection that combines the selected data in a hyper-linear way rather than

simply assembling the data and returning an unprocessed set.

Example: Accidental cross-product query

PREFIX uriRoot: <http://example.com/rootOfUris#>

SELECT ?var1 ?var2

WHERE {

?instanceOfClass1 a uriRoot:Class1 ;

uriRoot:varName1 ?var1 .

?instanceOfClass2 a uriRoot:Class2 ;

uriRoot:varName2 ?var2 .

}

SPARQL Best Practices 1001

In the above example, the goal may have been to retrieve IDs from all instances of Class1 and all

instances of Class2, for example, all of the participants and all of the subjects. However, the result

of the query would be every combination of participant and subject. If there are 10 participants and 5

subjects, there would be 50 results rather than 15. In large data sets, this severely affects

performance and puts the system under unnecessary strain.

There are two straightforward ways to separate or parameterize data to write a more performant

query:

Solution 1: Use UNION to replace the cross-product

PREFIX uriRoot: <http://example.com/rootOfUris#>

SELECT ?commonVar

WHERE {

{

?instanceOfClass1 a uriRoot:Class1 ;

uriRoot:varName1 ?var1 .

BIND(?var1 as ?commonVar)

}

UNION

{

?instanceOfClass2 a uriRoot:Class2 ;

uriRoot:varName2 ?var2 .

BIND(?var2 as ?commonVar)

}

this creates a temporary graph that is a union of two graphs

in each of the two graphs, the desired data is saved under the same name

}

Solution 2: Use VALUES to replace the cross-product

PREFIX uriRoot: <http://example.com/rootOfUris#>

SELECT ?commonVar

WHERE {

?instanceOfClass a ?classURI ;

?propertyURI ?commonVar .

VALUES (?classURI ?propertyURI) {

(uriRoot:Class1 uriRoot:varName1)

SPARQL Best Practices 1002

(uriRoot:Class2 uriRoot:varName2)

}

}

Use Subqueries for Large Amounts of Data

When analyzing data, there may be a need to aggregate data and then perform a selection or

derivation on the resulting aggregate. In this case, it is advisable to use one or more subselects or

subqueries, where a SELECT query is included inside the WHERE clause and the remainder of the

WHERE clause operates on the results of that SELECT as though the data were immediately

available in the graph.

Example: Aggregate a variable and then process the aggregation

PREFIX uriRoot: <http://example.com/rootOfUris#>

SELECT ?var1 ?var2Aggregation

WHERE {

{

SELECT ?var1 (GROUP_CONCAT(?var2) as ?var2Aggregation)

WHERE {

?instanceOfClass1 a uriRoot:Class1 ;

uriRoot:varName1 ?var1 .

?instanceOfClass2 a uriRoot:Class2 ;

uriRoot:varName2 ?var2 .

}

GROUP BY ?var1

}

var1 and var2Aggregation are now available for the usual processing

while var2 is no longer available as it only existed within the subselect

FILTER(regex(?var2Aggregation, ‘DESIREDVAR2VAL’))

FILTER is used for illustrative purposes, but any processing would work

}

SPARQL Best Practices 1003

SPARQL Query Templates

This topic provides templates that you can use as a starting point for writing SPARQL queries. The

templates are based on the best practices described in SPARQL Best Practices.

l Basic Data Selection

l Graph Traversal Data Selection

l Text Cleanup with REGEX

l Data Aggregation

l Apply a Filter to Selected Data

l Create or Derive New Variables

Basic Data Selection

The most fundamental use case for writing SPARQL queries is to select data from properties from a

collection of instances. The following template and example query illustrate how to access a class in

a model and return the properties on that class using their URIs.

Abstracted Query Template

Replace the bold text to modify the query.

PREFIX uriRoot: <http://example.com/rootOfUris#>

select the variables that are populated in the WHERE clause

SELECT ?var1 ?var2

WHERE {

?instanceOfClass a uriRoot:ClassName ;

uriRoot:varName1 ?var1 ;

use a prefix to abbreviate a property URI as shown above

or use the full URI as shown below

<http://example.com/rootOfUris#varName2> ?var2 .

}

Example: Get the sample ID and anatomical location for each sample

PREFIX bm: <http://identifiers.csi.com/pharmakg/def/biomarker#>

SPARQL Query Templates 1004

SELECT ?sampleId ?anatomicalLocation

WHERE {

?sample a bm:Sample ;

bm:sampleId ?sampleId ;

<http://identifiers.csi.com/pharmakg/def/biomarker#fmi_anatomicalLocation>

?anatomicalLocation .

}

Graph Traversal Data Selection

The graph model enables the flexibility to combine data from different classes. The following

template illustrates how to traverse between classes in the data model and access data from

properties on multiple classes.

Abstracted Query Template

Replace the bold text to modify the query.

PREFIX uriRoot: <http://example.com/rootOfUris#>

select the variables that are populated in the WHERE clause

SELECT ?var1 ?var2 ?varFromOtherClass

WHERE {

?instanceOfClass a uriRoot:ClassName ;

uriRoot:varName1 ?var1 ;

use a prefix to abbreviate a property URI as shown above

or use the full URI as shown below

<http://example.com/rootOfUris#varName2> ?var2 ;

getting data from other classes requires traversing per the model

uriRoot:pointerToOtherClass ?instanceOfOtherClass .

?instanceOfOtherClass a uriRoot:OtherClassName ;

uriRoot:varName3 ?varFromOtherClass .

}

Text Cleanup with REGEX

Once data is onboarded to Anzo, it is common to encounter strings that include issues such as

unintended characters, missing spaces, and inconsistent formatting. You can use regular

expressions in a data layer query to manipulate those values so that they are consistent and

readable in analytics against the graphmart.

SPARQL Query Templates 1005

The BIND clause in the query below trims any white space from before and after the string, converts

the characters to upper case, and removes all non-alphanumeric characters and non-spaces.

Replace the bold text as needed:

PREFIX : <http://csi.com/>

DELETE {

GRAPH ${targetGraph}{

?s ?pred ?old_val

}

}

INSERT {

GRAPH ${targetGraph}{

?s ?pred ?new_val

}

}

${usingSources}

WHERE {

?s a :Class ;

?pred ?old_val .

VALUES (?pred) {

(:property)

}

BIND(TRIM(UPPER(REPLACE(?val, "[^a-zA-Z0-9[[:space:]]", ""))) as ?new_val)

}

Data Aggregation

Grouping data selections around a central property yields a more complete representation or

summary of the data available. The following template illustrates how to use one property to act as a

pivot point for collecting all the data from another property.

Abstracted Query Template

Replace the bold text to modify the query

PREFIX pref: <http://example.com/rootOfUris#>

SELECT

data can be aggregated to yield counts, concatenations of data, etc.

?instanceId GROUP_CONCAT(DISTINCT(?instanceDetail) as ?instanceDetails)

WHERE {

SPARQL Query Templates 1006

apply selection/filtering logic to narrow the aggregation

or get summaries of total data by applying only simple restrictions

?instance a pref:Class ;

pref:instanceId ?instanceId ;

pref:instanceDetail ?instanceDetail .

}

GROUP BY ?instanceId

all non-aggregated variables must be grouped in GROUP BY

Apply a Filter to Selected Data

Filtering the results for a query gives the ability to focus on specific aspects of the data. The

following template illustrates how to restrict the total selected result set by including a filter on a

variable.

Abstracted Query Template

Replace the bold text to modify the query.

PREFIX pref1: <http://example.com/rootOfUris1#>

PREFIX pref2: <http://example.com/rootOfUris2#>

SELECT ?varFromClass1 ?varFromClass2 ?varFromClass3 ?filteredVar

WHERE {

?instance1 a pref1:Class1 ;

pref1:varName1 ?varFromClass1 ;

the path on the model points from Class1 to Class2

pref1:pointerToClass2 ?instance2 .

?instance2 a pref1:Class2 ;

pref1:varName2 ?varFromClass2 .

models with different prefixes can still be joined

?instance3 a pref2:Class3 ;

the path on the model points from Class3 to Class2

pref2:pointerToClass2 ?instance2 ;

pref2:filteredVarName ?filteredVar .

filters use comparisons to scope the selected data

they can use existence checks or other boolean expressions as well

FILTER(?filteredVar = 'COMPAREDDATA')

}

SPARQL Query Templates 1007

Tip
For optimal query performance, replace FILTER clauses. See Replace FILTER with VALUES

or Triple Patterns for more information.

Create or Derive New Variables

Storing intermediate or derived data within a query enables a single query to answer more complex

questions. The following template illustrates how to bind a derived value to a variable. That variable

is then available for selection or further manipulation.

Abstracted Query Template

Replace the bold text to modify the query.

PREFIX pref1: <http://example.com/rootOfUris1#>

PREFIX pref2: <http://example.com/rootOfUris2#>

PREFIX pref3: <http://example.com/rootOfUris3#>

SELECT ?var1 ?filterVar ?var2AndVar3

WHERE {

?instance1 a pref1:Class1 ;

pref1:varName1 ?var1 .

?filterInstance a pref2:MedicalHistory ;

pref2:filterVarName ?filterVar ;

multiple traversals between classes may be necessary to link appropriate data

pref2:pointerToIntermediateClass ?intermediateInstance .

?intermediateInstance a pref2:IntermediateClass ;

pref2:pointerToClass1 ?instance1 .

?instance2 a pref3:Class2 ;

forwards traversals tend to be more performant

it is still possible to identify a latter class and do a backwards traversal

pref3:pointerToClass1 ?instance1 ;

pref3:varName2 ?var2 .

?instance3 a pref3:Class3 ;

pref3:pointerToClass2 ?instance2 ;

pref3:varName3 ?var3 .

SPARQL Query Templates 1008

filters can be executed on various data types

FILTER(?filterVar < "filterData"^^xsd:filterDataType)

binding allows population of new/derived variables

BIND(CONCAT(?var2, "--", ?var3) as ?var2AndVar3)

}

SPARQL Query Templates 1009

Function and Formula Reference

This section describes the standard and advanced built-in functions that are available when working

with Hi-Res Analytics dashboards or writing SPARQL queries in data layers or the Query Builder.

In this section:
String Functions 1011

Math Functions 1040

Aggregate Functions 1071

Date and Time Functions 1092

Casting Functions 1113

Logical Functions 1131

Informational or Testing Functions 1142

Hash Functions 1154

Window Aggregate and Ranking Functions 1158

Function and Formula Reference 1010

String Functions

This topic describes the Anzo functions that operate on string data types.

Typographical Conventions

This documentation uses the following conventions in function syntax:

l CAPS: Although SPARQL is case-insensitive, function names and other keywords are written

in uppercase for readability.

l [argument]: Brackets are used to indicate optional arguments. Arguments without

brackets are required.

Functions

l BUSINESS_ENTITY_EXCLUDER: Removes suffixes that represent business entities.

l CONCATENATE: Concatenates two or more strings and returns the result as a string.

l CONCATURL: Concatenates two or more strings and returns the result as a URI.

l CONTAINS: Evaluates whether the specified string contains the given pattern.

l ENCODE_FOR_URI: Encodes the specified string as a URI.

l ESCAPEHTML: Escapes the specified string for use in HTML.

l FIND: Returns the position—from left to right—of a string within another string.

l FINDREVERSE: Returns the position—from right to left—of a string within another string.

l GROUP_CONCAT: Concatenates a group of strings into a single string.

l GROUPCONCAT: Concatenates a group of strings into a single string. This function is a

customizable version of GROUP_CONCAT.

l LANG: Returns any language tags that are included with strings.

l LANGMATCHES: Evaluates whether a string includes a language tag that matches the

specified language range.

l LCASE: Converts the letters in a string literal to lower case.

String Functions 1011

l LEFT: Returns the specified number of characters starting from the beginning (left side) of the

string.

l LEN: Calculates the length (number of characters) in a string.

l LEVENSHTEIN_DIST: Calculates the Levenshtein distance or measure of similarity between

two strings.

l LOWER: Converts all letters in a string to lower case.

l MD5: Returns the MD5 checksum of a string as a hexadecimal string.

l MID: Returns the specified number of characters from a string, starting from a given position

in the string.

l REGEX: Evaluates whether a string matches the specified regular expression pattern.

l REGEXP_SUBSTR: Searches a string for the specified regular expression pattern and

returns the substring that matches the pattern.

l REPLACE: Extends the REGEX function to provide the ability to find a pattern in a string and

replace it with another pattern.

l RIGHT: Returns the specified number of characters starting from the end (right side) of the

string.

l SEARCH: Uses text search semantics to evaluate whether the specified string matches the

given pattern.

l SHA1: Calculates the SHA-1 digest of a string value.

l SHA224: Calculates the SHA-224 digest of a string value.

l SHA256: Calculates the SHA-256 digest of a string value.

l SHA384: Calculates the SHA-384 digest of a string value.

l SHA512: Calculates the SHA-512 digest of a string value.

l STRAFTER: Returns the portion of a string that comes after the specified substring.

l STRBEFORE: Returns the portion of a string that comes before the specified substring.

String Functions 1012

l STRDT: Constructs a literal value with the specified data type.

l STRENDS: Evaluates whether the specified string ends with the specified substring.

l STRLANG: Constructs a literal value with the specified language tag.

l STRLEN: Calculates the length of a string.

l STRSTARTS: Evaluates whether the specified string starts with the specified substring.

l STRUUID: Returns a string that is the result of generating a Universally Unique Identifier

(UUID).

l SUBSTITUTE: Substitutes the existing text for the specified new text.

l SUBSTR: Returns a substring from a string value.

l TOURI: Casts a string to a URI.

l TRIM: Removes all spaces from a string except for any single spaces between words.

l UCASE: Converts all letters in a string to upper case.

l UPPER: Converts the letters in a string literal to upper case.

BUSINESS_ENTITY_EXCLUDER

This function removes from strings the suffixes that represent business entities.

Syntax

BUSINESS_ENTITY_EXCLUDER(text)

Argument Type Description

text string The string from which you want to remove business entities.

Returns

Data Type Description

string The string without the business entity suffix.

BUSINESS_ENTITY_EXCLUDER 1013

CONCATENATE

This function concatenates two or more strings and returns the result as a string.

Syntax

CONCATENATE(text1, text2 [, textN])

Argument Type Description

text1–N string The strings that you want to concatenate to form a single string.

Returns

Type Description

string The concatenated string.

CONCATURL

This function concatenates two or more strings and returns the result as a URI.

Syntax

CONCATURL(text1, text2 [, textN])

Argument Type Description

text1–N string The strings that you want to concatenate to form a URI.

Returns

Type Description

URI The concatenated string as a URI.

CONCATENATE 1014

CONTAINS

This function evaluates whether the specified strings contain the given pattern. Results are grouped

under "true" or "false."

Syntax

CONTAINS(text, pattern)

Argument Type Description

text string The string value that you want to check against the specified pattern.

pattern string The string pattern that you want to look for in the supplied text.

Returns

Type Description

boolean True if the strings contain the pattern and false if they do not.

ENCODE_FOR_URI

This function encodes the specified string as a URI and returns a string in URI format.

Syntax

ENCODE_FOR_URI(text)

Argument Type Description

text string The string value to encode as a URI.

Returns

Type Description

string The string as a URI.

CONTAINS 1015

ESCAPEHTML

This function escapes the specified string for use in HTML.

Syntax

ESCAPEHTML(text)

Argument Type Description

text string The string value to escape for HTML.

Returns

Type Description

string The string escaped for HTML.

FIND

This function returns the position—from left to right—of a string within another string.

Tip
You can use FINDREVERSE to find the character or substring position from right to left.

Syntax

FIND(find_text, within_text, start_num)

Argument Type Description

find_text string The string to look for in the within_text.

within_text string The string to search within.

start_num int An integer that indicates the position to start from when looking for the
find_text. The starting position is at the beginning of the within_

ESCAPEHTML 1016

Argument Type Description

text value and characters are counted from left to right.

Returns

Type Description

int The character position (from left to right) where the substring starts.

FINDREVERSE

Similar to FIND, this function returns the position—from right to left—of a string within another

string.

Syntax

FINDREVERSE(find_text, within_text, start_num)

Argument Type Description

find_text string The string to look for in the within_text value.

within_text string The string to search within.

start_num int An integer that indicates the position to start from when looking for the
find_text. The starting position is the end of the within_text
value and characters are counted from right to left.

Returns

Type Description

int The character position (from right to left) where the substring starts.

FINDREVERSE 1017

GROUP_CONCAT

This function concatenates a group of strings into a single string. It is a simplified version of

GROUPCONCAT as it takes only one argument.

Syntax

GROUP_CONCAT(text)

Argument Type Description

text string The string property whose values to concatenate into a single string.

Returns

Type Description

string The concatenated string.

GROUPCONCAT

This function concatenates a group of strings into a single string. Unlike GROUP_CONCAT, this

function allows for customization of the separator to use as well as the configuration of limits and

options like prefixes and suffixes.

Syntax

GROUPCONCAT(group1, [group2, ..., groupN,] group_value_separator, separator,

serialize,

row_limit, value_limit, delimit_blanks [, prefix] [, suffix] [, max_

length])

Argument Type Description

group1–N string The group(s) of strings to concatenate.

group_value_
separator

string The separator string to use between the groups of strings if you
specified more than one group.

GROUP_CONCAT 1018

Argument Type Description

separator string The separator string to use between the values in a
concatenated group of strings.

serialize boolean A boolean value that indicates whether returned values should
be serialized with the value's data type.

row_limit int An integer that puts a maximum limit on the number of rows to
retrieve for a group.

value_limit int An integer that puts a maximum limit on the number of values to
retrieve from a group of rows.

delimit_blanks boolean A boolean value that indicates whether to delimit blanks with the
separator value.

prefix string Optional string to add as a prefix to the resulting string.

suffix string Optional string to add as a suffix to the resulting string.

max_length int Optional integer that puts a maximum limit on the number of
characters the resulting string can have.

Returns

Type Description

string The concatenated string.

LANG

This function returns any language tags that are included in the string. The results are grouped by

each language tag or by "blank" if a value does not have a language tag.

LANG 1019

Syntax

LANG(text)

Argument Type Description

text string The string to search for language tags.

Returns

Type Description

string The found language tags.

LANGMATCHES

This function tests whether a string includes a language tag that matches the specified language

range.

Syntax

LANGMATCHES(text, language_range)

Argument Type Description

text string The string to evaluate.

language_range string The language tag to match in the text.

Example

LANGMATCHES(LANG(?prop),"en")

Returns

Type Description

boolean True if strings include a language tag that matches the range and false if they do

LANGMATCHES 1020

Type Description

not.

LCASE

This function converts the letters in a string literal to lower case.

Syntax

LCASE(text)

Argument Type Description

text string The string literal to convert to lower case.

Returns

Type Description

string The string with lower case letters.

LEFT

This function returns the specified number of characters starting from the beginning (left side) of the

string.

Syntax

LEFT(text, num_chars)

Argument Type Description

text string The string from which to return the specified number of characters.

num_chars int An integer that specifies the number of characters to return, starting
from the left side of the text.

LCASE 1021

Returns

Type Description

string The specified number of characters from the string.

LEN

This function calculates the length (number of characters) in a string.

Syntax

LEN(text)

Argument Type Description

text string The string for which to calculate the length.

Returns

Type Description

int The number of characters in the string.

LEVENSHTEIN_DIST

This function calculates the Levenshtein distance or measure of similarity between two strings. The

distance is the number of edits required to transform the first string into the second string.

Syntax

LEVENSHTEIN_DIST(text1, text2)

Argument Type Description

text1 string The string that would be transformed into text2.

text2 string The string to measure text1 against.

LEN 1022

Returns

Type Description

int The Levenshtein distance between the strings.

LOWER

This function converts all letters in a string to lower case.

Syntax

LOWER(text)

Argument Type Description

text string The string to convert to lower case.

Returns

Type Description

string The string with lower case letters.

MD5

This function returns the MD5 checksum of a string as a hexadecimal string.

Syntax

MD5(text)

Argument Type Description

text string The string for which to return the MD5 checksum.

LOWER 1023

Returns

Type Description

string The hexadecimal string.

MID

This function returns the specified number of characters from a string, starting from a given position

in the string.

Syntax

MID(text, start_num, num_chars)

Argument Type Description

text string The string from which to return the specified characters.

start_num int An integer that indicates the starting position in the string.

num_chars int An integer that specifies the number of characters to return, starting
with the character indicated by start_num.

Returns

Type Description

string The specified number of characters from the string.

REGEX

This function tests whether a string matches the specified regular expression pattern.

Syntax

REGEX(text, pattern [, flags])

MID 1024

Argument Type Description

text string The string to test against the pattern.

pattern string The regular expression pattern to look for in the text. For information
about the supported regular expression syntax, see the Regular
Expression Syntax section of the W3C XQuery 1.0 and XPath 2.0
Functions and Operators specification.

flags string You can include one or more optional modifier flags that further define
the pattern. For information about flags, see the Flags section of the
W3C Functions and Operators specification.

Returns

Type Description

boolean True if the string matches the regular expression pattern and false if it does not.

REGEXP_SUBSTR

This function searches a string for the specified regular expression pattern and returns the substring

that matches the pattern.

Syntax

REGEXP_SUBSTR(text, pattern [, start_position] [, nth_appearance])

Argument Type Description

text string The string to test against the pattern.

pattern string The regular expression pattern to look for in the text. For
information about the supported regular expression syntax, see the
Regular Expression Syntax section of the W3C XQuery 1.0 and
XPath 2.0 Functions and Operators specification.

REGEXP_SUBSTR 1025

https://www.w3.org/TR/xpath-functions/#regex-syntax
https://www.w3.org/TR/xpath-functions/#regex-syntax
https://www.w3.org/TR/xpath-functions/#flags
https://www.w3.org/TR/xpath-functions/#regex-syntax

Argument Type Description

start_position int An optional integer that specifies the number of characters from the
beginning of the string to start searching for matches (the default
value is 1).

nth_
appearance

int An optional integer that specifies which occurrence of the pattern to
match (the default value is 1).

Returns

Type Description

string The substring that matches the regular expression pattern.

REPLACE

This function extends the REGEX function to provide the ability to find a pattern in a string and

replace it with another pattern. The function returns the replaced string.

Syntax

REPLACE(text, pattern, replacement_pattern [, flags])

Argument Type Description

text string The string to test against the pattern.

pattern string The regular expression pattern to look for in the text. For
information about the supported regular expression syntax, see
the Regular Expression Syntax section of the W3C XQuery 1.0
and XPath 2.0 Functions and Operators specification.

replacement_
pattern

string The pattern to replace the pattern with.

REPLACE 1026

https://www.w3.org/TR/xpath-functions/#regex-syntax

Argument Type Description

flags string You can include one or more optional modifier flags that further
define the pattern. For information about flags, see the Flags
section of the W3C Functions and Operators specification.

Returns

Type Description

string The string that contains the replacement pattern.

RIGHT

This function returns the specified number of characters starting from the end (right side) of the

string.

Syntax

RIGHT(text, num_chars)

Argument Type Description

text string The string from which to return the specified number of characters.

num_chars int An integer that specifies the number of characters to return, starting
from the right side of the text.

Returns

Type Description

string The specified characters from the string.

RIGHT 1027

https://www.w3.org/TR/xpath-functions/#flags

SEARCH

This function uses text search semantics to evaluate whether the specified string matches the given

pattern.

Syntax

SEARCH(text, pattern [, required] [, wildcard] [, escape])

Argument Type Description

text string The string to search.

pattern string The search string to look for in the text. Anzo automatically
converts the value to a regular expression pattern that uses text
search semantics.

required boolean An optional boolean value that indicates whether the textmust
include all elements of the search pattern to qualify as a match or
whether matching just part of the pattern qualifies as a match.

wildcard boolean An optional boolean value that indicates whether or not to add the
wildcard character * to the end of the search pattern.

escape boolean An optional boolean value that indicates whether or not escape all
of the special characters (such as +, -, or |) in the text.

Returns

Type Description

boolean True if strings match the pattern and false if they do not.

SHA1

This function calculates the SHA-1 digest of a string.

SEARCH 1028

Syntax

SHA1(text)

Argument Type Description

text string The string for which to calculate the SHA-1 digest.

Returns

Type Description

string The SHA-1 digest.

SHA224

This function calculates the SHA-224 digest of a string.

Syntax

SHA224(text)

Argument Type Description

text string The string for which to calculate the SHA-224 digest.

Returns

Type Description

string The SHA-224 digest.

SHA256

This function calculates the SHA-256 digest of a string.

Syntax

SHA256(text)

SHA224 1029

Argument Type Description

text string The string for which to calculate the SHA-256 digest.

Returns

Type Description

string The SHA-256 digest.

SHA384

This function calculates the SHA-384 digest of a string.

Syntax

SHA384(text)

Argument Type Description

text string The string for which to calculate the SHA-384 digest.

Returns

Type Description

string The SHA-384 digest.

SHA512

This function calculates the SHA-512 digest of a string.

Syntax

SHA512(text)

SHA384 1030

Argument Type Description

text string The string for which to calculate the SHA-512 digest.

Returns

Type Description

string The SHA-512 digest.

STRAFTER

This function returns the portion of a string that comes after the specified substring.

Syntax

STRAFTER(text, substring)

Argument Type Description

text string The string from which to return the characters that follow the
substring.

substring string The string to match in the text. The function will return the part of the
text that comes after this substring.

Returns

Type Description

string The part of the string that comes after the substring.

STRBEFORE

This function returns the portion of a string that comes before the specified substring.

STRAFTER 1031

Syntax

STRAFTER(text, substring)

Argument Type Description

text string The string from which to return the characters that precede the
substring.

substring string The string to match in the text. The function will return the part of the
text that comes before this substring.

Returns

Type Description

string The part of the string that comes before the substring.

STRDT

This function constructs a literal value with the specified data type.

Syntax

STRDT(text, datatype)

Argument Type Description

text string The string to add a data type specification to.

datatype URI The data type URI to add to the text. For example, xsd:integer or
<http://www.w3.org/2001/XMLSchema#integer>.

STRDT 1032

Returns

Type Description

string The typed literal value.

STRENDS

This function evaluates whether the specified string ends with the specified substring.

Syntax

STRENDS(text, substring)

Argument Type Description

text string The string to search for the substring.

substring string The string to match at the end of text. The function returns true if the
text ends in the specified substring and false if it does not.

Returns

Type Description

boolean True if strings end with the specified substring and false if they do not.

STRLANG

This function constructs a literal value with the specified language tag.

Syntax

STRLANG(text, language_tag)

STRENDS 1033

Argument Type Description

text string The string to add the language tag to.

language_tag string The language tag to add to the text.

Returns

Type Description

string The literal value with the language tag.

STRLEN

This function calculates the length (in characters) of a string value.

Syntax

STRLEN(text)

Argument Type Description

text string The string for which to return the length.

Returns

Type Description

long The number of characters in the string.

STRSTARTS

This function evaluates whether the specified string starts with the specified substring.

Syntax

STRENDS(text, substring)

STRLEN 1034

Argument Type Description

text string The string to search for the substring.

substring string The string to match at the beginning of text. The function returns true
if the text starts with the specified substring and false if it does not.

Returns

Type Description

boolean True if strings begin with the specified substring and false if they do not.

STRUUID

This function returns a string that is the result of generating a Universally Unique Identifier (UUID).

Syntax

STRUUID()

Returns

Type Description

string The UUID.

SUBSTITUTE

This function substitutes the existing text for the specified new text.

Syntax

SUBSTITUTE(text, old_text, new_text [, instance_num])

Argument Type Description

text string The string to substitute text in.

STRUUID 1035

Argument Type Description

old_text string The string within the text to replace.

new_text string The string to replace the old_text with.

instance_
num

int An optional integer that specifies the number of old_text instances
to replace.

Returns

Type Description

string The string with the new text.

SUBSTR

This function returns a substring from a string value.

Syntax

SUBSTR(text, start [, length])

Argument Type Description

text string The string to find the substring in.

start int An integer that specifies the number of the character in the text that
should be the start of the substring.

length int An optional integer that specifies the total number of characters to
include in the substring. If not specified, the substring will end at the
end of the text value.

SUBSTR 1036

Returns

Type Description

string The substring.

TOURI

This function casts a string literal value to a URI.

Syntax

TOURI(text)

Argument Type Description

text string The string literal to cast to a URI.

Returns

Type Description

URI The literal value as a URI.

TRIM

This function removes all spaces from a string except for any single spaces between words.

Syntax

TRIM(text)

Argument Type Description

text string The string to trim.

TOURI 1037

Returns

Type Description

string The string with spaces removed.

UCASE

This function converts all letters in a string to upper case.

Syntax

UPPER(text)

Argument Type Description

text string The string value to convert to upper case.

Returns

Type Description

string The string with upper case characters.

UPPER

This function converts all letters in a string literal to upper case.

Syntax

UPPER(text)

Argument Type Description

text string The string literal to convert to upper case.

UCASE 1038

Returns

Type Description

string The string with upper case characters.

UPPER 1039

Math Functions

This topic describes the mathematical functions in Anzo.

Typographical Conventions

This documentation uses the following conventions in function syntax:

l CAPS: Although SPARQL is case-insensitive, function names and other keywords are written

in uppercase for readability.

l [argument]: Brackets are used to indicate optional arguments. Arguments without

brackets are required.

Functions

l ABS: Calculates the absolute value of the specified number.

l ADD: Adds two numeric values.

l AVERAGEIF: Calculates the average of the range of values that meet the specified criterion.

l AVERAGEIFS: Calculates the averages of the ranges of values that meet the specified

criteria.

l AVG: Calculates the average (arithmetic mean) value for a group of numbers.

l CEILING: Rounds up a numeric value to the nearest integer.

l COS: Calculates the cosine of an angle.

l DIVIDE: Divides a number by another number.

l EQUAL: Evaluates whether two values are equal.

l EXP: Raises e to the specified power.

l FACT: Calculates the factorial of the specified number.

l FLOOR: Rounds down a numeric value to the nearest integer.

l GE: Evaluates whether one value is greater than or equal to (>=) another value.

l GT: Evaluates whether one value is greater than (>) another value.

Math Functions 1040

l HAMMING_DIST: Calculates the hamming distance between two values.

l HAVERSINE_DIST: Computes the haversine distance between two latitude and longitude

values.

l LE: Evaluates whether one value is less than or equal to (<=) another value.

l LN: Calculates the natural logarithm of a double value.

l LOG: Calculates the specified base logarithm of a double value.

l LOG2: Calculates the base two logarithm of a double value.

l LT: Evaluates whether one value is less than (<) another value.

l MAXVAL: Determines the maximum value from the given literal values.

l MINVAL: Determines the minimum value from the given literal values.

l MOD: Calculates the modulo of the division between two numbers.

l MULTIPLY: Multiplies two number values.

l NOT_EQUAL: Evaluates whether two values are not equal.

l NPV: Calculates the net present value of an investment.

l NUMERIC-ADD: Adds two numeric values.

l NUMERIC-SUBTRACT: Subtracts one numeric value from another numeric value.

l PI: Returns the value for PI.

l POWER: Raises the specified number to the specified power.

l PRODUCT: Calculates the product of a group of numbers.

l QUOTIENT: Calculates the quotient between two numbers.

l RAD: Converts to radians an angle value that is in degrees.

l RAND: Returns a random double value between 0 and 1.

l RANDBETWEEN: Returns a random integer that falls between two specified integers.

l ROUND: Rounds a numeric value to the nearest integer.

Math Functions 1041

l ROUNDDOWN: Rounds a numeric value down to the specified number of digits.

l ROUNDUP: Rounds a numeric value up to the specified number of digits.

l SIN: Calculates the sine of an angle.

l SQRT: Calculates the square root of a number.

l SUBTRACT: Subtracts one RDF term from another RDF term type value.

l SUM: Calculates the sum of the numbers within a group.

l SUMIF: Calculates the sum of the range of values that meet the specified criterion.

l SUMIFS: Calculates the sums of the ranges of values that meet the specified criteria.

l SUMPRODUCT: Multiplies the numbers in a group and adds the results.

l SUMSQ: Calculates the square root of each number in a group and adds the results.

l TAN: Calculates the tangent of an angle.

ABS

This function calculates the absolute value of the specified number.

Syntax

ABS(number)

Argument Type Description

number numeric The numeric value for which to calculate the absolute value.

Returns

Type Description

number The absolute value.

ABS 1042

ADD

This function adds two numeric values.

Syntax

ADD(value1, value2)

Argument Type Description

value1 numeric The first numeric value to add.

value2 numeric The second numeric value to add.

Returns

Type Description

number The result of the addition operation.

AVERAGEIF

This function calculates the average of the range of values that meet the specified criterion.

Tip
You can use AVERAGEIFS to specify multiple value ranges and conditions.

Syntax

AVERAGEIF(values_to_test, criterion [, range_of_values])

Argument Type Description

values_to_
test

RDF term The literal, URI, or blank node value that defines the values to test
against the criteria.

criterion RDF term The literal, URI, or blank node value that defines the condition to

ADD 1043

Argument Type Description

test values against.

range_of_
values

numeric An optional number that defines the range of values to average.
When omitted, values_to_test is used.

Returns

Type Description

number The average value from the range of values that meet the criterion.

AVERAGEIFS

This function calculates the averages of the ranges of values that meet the specified criteria. Unlike

AVERAGEIF, this function enables you to specify multiple ranges and multiple conditions.

Syntax

AVERAGEIFS(values_to_average, value_range1, criteria1,

value_range2, criteria2

[, value_rangeN, criteriaN])

Argument Type Description

values_to_
average

numeric The numeric value that defines the overall range of values to
evaluate.

value_
range1–N

RDF term The literal, URI, or blank node value that defines the range of
values to test against the corresponding criteria.

criteria1–N RDF term The literal, URI, or blank node value that defines the condition to
test the corresponding value_range against.

AVERAGEIFS 1044

Returns

Type Description

number The average values from the ranges of values that meet the criteria.

AVG

This function calculates the average (arithmetic mean) value for a group of numbers.

Syntax

AVG(number)

Argument Type Description

number numeric The numeric value for which to calculate the average.

Returns

Type Description

number The arithmetic mean of the input values.

CEILING

This function rounds up a numeric value to the nearest integer if the value has a fractional part.

CEILING returns the value itself if it is a whole number.

Syntax

CEILING(number)

Argument Type Description

number numeric The numeric value to round up.

AVG 1045

Returns

Type Description

number The rounded up value.

COS

This function calculates the cosine of the specified angle.

Syntax

COS(angle)

Argument Type Description

angle double The angle in radians (double data type) to calculate the cosine for. If
you have angle values in degrees, you can use RAD to convert the
degrees to radians.

Returns

Type Description

double The cosine of the angle.

DIVIDE

This function divides one number by another number.

Syntax

DIVIDE(value1, value2)

Argument Type Description

value1 numeric The number that is the dividend in the equation.

COS 1046

Argument Type Description

value2 numeric The number to divide value1 by.

Returns

Type Description

number The result of the division operation.

EQUAL

This function evaluates whether value1 is equal to value2.

Syntax

EQUAL(value1, value2)

Argument Type Description

value1 numeric, boolean,
dateTime, RDF term

The number, boolean, datetime, literal, URI, or blank
node value to compare to value2.

value2 numeric, boolean,
dateTime, RDF term

The number, boolean, datetime, literal, URI, or blank
node value to compare to value1.

Returns

Type Description

boolean True if the values are equal and false if they are not.

EXP

This function raises the base of the natural logarithms, e, to the specified power.

EQUAL 1047

Syntax

EXP(power)

Argument Type Description

power numeric The number to raise e to.

Returns

Type Description

number E raised to the specified power.

FACT

This function calculates the factorial of the specified number.

Syntax

FACT(number)

Argument Type Description

number int The number for which to calculate the factorial.

Returns

Type Description

int The factorial of the input values.

FLOOR

This function rounds down a numeric value to the nearest integer if the value has a fractional part.

FLOOR returns the value itself if it is a whole number.

FACT 1048

Syntax

FLOOR(number)

Argument Type Description

number numeric The numeric value to round down.

Returns

Type Description

number The rounded down value.

GE

This function evaluates whether value1 is greater than or equal to (>=) value2.

Syntax

GE(value1, value2)

Argument Type Description

value1 numeric,
boolean,
dateTime,
RDF term

The number, boolean, datetime, literal, URI, or blank node value
to compare to value2. This is the value that will be checked to
see if it is greater than or equal to value2.

value2 numeric,
boolean,
dateTime,
RDF term

The number, boolean, datetime, literal, URI, or blank node value
to compare to value1.

GE 1049

Returns

Type Description

boolean True if value1 >= value2. False if not.

GT

This function evaluates whether value1 is greater than (>) value2.

Syntax

GE(value1, value2)

Argument Type Description

value1 numeric,
boolean,
dateTime,
RDF term

The number, boolean, datetime, literal, URI, or blank node value
to compare to value2. This is the value that will be checked to
see if it is greater than value2.

value2 numeric,
boolean,
dateTime,
RDF term

The number, boolean, datetime, literal, URI, or blank node value
to compare to value1.

Returns

Type Description

boolean True if value1 > value2. False if not.

HAMMING_DIST

This function calculates the hamming distance between two values.

GT 1050

Syntax

HAMMING_DIST(number1, number2)

Argument Type Description

number1 long The first number.

number2 long The second number.

Returns

Type Description

int The hamming distance.

HAVERSINE_DIST

This function computes the haversine distance between two latitude and longitude values and

returns the distance in kilometers. The function uses the Haversine formula, which is accurate for

most purposes but assumes a spherical Earth. Since the Earth is elliptical, distances involving

points near the poles will be more inaccurate than other points.

Syntax

HAVERSINE_DIST(latitude1, longitude1, latitude2, longitude2)

Argument Type Description

latitude1 double The first latitude value.

longitude1 double The first longitude value.

latitude2 double The second latitude value.

longitude2 double The second longitude value.

HAVERSINE_DIST 1051

Returns

Type Description

double The distance in kilometers.

LE

This function evaluates whether value1 is less than or equal to (<=) value2.

Syntax

LE(value1, value2)

Argument Type Description

value1 numeric,
boolean,
dateTime,
RDF term

The number, boolean, datetime, literal, URI, or blank node value
to compare to value2. This is the value that will be evaluated to
see if it is less than or equal to value2.

value2 numeric,
boolean,
dateTime,
RDF term

The number, boolean, datetime, literal, URI, or blank node value
to compare to value1.

Returns

Type Description

boolean True if value1 <= value2. False if not.

LN

This function calculates the natural logarithm of a double value.

LE 1052

Syntax

LN(number)

Argument Type Description

number double The double value for which to calculate the natural logarithm.

Returns

Type Description

double The natural logarithm of the input value.

LOG

This function calculates the specified base logarithm of a double value.

Syntax

LOG(number [, base])

Argument Type Description

number double The double value for which to calculate the base logarithm.

base double An optional double value that specifies the base for the logarithm. If
omitted, base e is used.

Returns

Type Description

double The base logarithm of the input value.

LOG2

This function calculates the base two logarithm of a double value.

LOG 1053

Syntax

LOG2(number)

Argument Type Description

number double The double value for which to calculate the base 2 logarithm.

Returns

Type Description

double The base two logarithm of the input value.

LT

This function evaluates whether value1 is less than (<) value2.

Syntax

LT(value1, value2)

Argument Type Description

value1 numeric,
boolean,
dateTime, RDF
term

The number, boolean, datetime, or RDF term type value to
compare to value2. This is the value that will be evaluated to
see if it is less than value2.

value2 numeric,
boolean,
dateTime, RDF
term

The number, boolean, datetime, or RDF term type value to
compare to value1.

LT 1054

Returns

Type Description

boolean True if value1 < value2. False if not.

MAXVAL

This function determines the maximum value from the given literal values.

Syntax

MAXVAL(value1 [, value2] [, valueN])

Argument Type Description

value1–N literal A literal value from which you want to find the maximum value.

Returns

Type Description

literal The maximum value.

MINVAL

This function determines the minimum value from the given literal values.

Syntax

MINVAL(value1 [, value2] [, valueN])

Argument Type Description

value1–N literal A literal value from which you want to find the minimum value.

MAXVAL 1055

Returns

Type Description

literal The minimum value.

MOD

This function calculates the modulo or remainder of the division between two numbers.

Syntax

MOD(number, divisor)

Argument Type Description

number numeric The number that is the dividend in the equation.

divisor numeric The number to divide the dividend by.

Returns

Type Description

number The modulo between the input numbers.

MULTIPLY

This function multiplies two numbers.

Syntax

MULTIPLY(value1, value2)

Argument Type Description

value1 numeric The first number in the multiplication equation.

MOD 1056

Argument Type Description

value2 numeric The number to multiply value1 by.

Returns

Type Description

number The result of the multiplication operation.

NOT_EQUAL

This function evaluates whether value1 is not equal to value2.

Syntax

NOT_EQUAL(value1, value2)

Argument Type Description

value1 numeric, boolean,
dateTime, RDF term

The number, boolean, datetime, literal, URI, or blank
node value to compare to value2.

value2 numeric, boolean,
dateTime, RDF term

The number, boolean, datetime, literal, URI, or blank
node value to compare to value1.

Returns

Type Description

boolean True if value1 is not equal to value2. False if they are equal.

NPV

This function calculates the net present value of an investment by using a discount rate and a series

of future payments (negative values) and income (positive values).

NOT_EQUAL 1057

Syntax

NPV(rate, year, value)

Argument Type Description

rate double A double value that defines the discount rate to use in the
calculation.

year double A double value that indicates which year the value is in.

value double The double values that represent payments and income.

Returns

Type Description

double The net present value.

NUMERIC-ADD

This function adds two numeric values.

Syntax

NUMERIC-ADD(value1, value2)

Argument Type Description

value1 numeric The first number in the addition equation.

value2 numeric The number to add to value1.

NUMERIC-ADD 1058

Returns

Type Description

number The result of the addition operation.

NUMERIC-SUBTRACT

This function subtracts one numeric value from another numeric value.

Syntax

NUMERIC-SUBTRACT(value1, value2)

Argument Type Description

value1 numeric The first number in the subtraction equation.

value2 numeric The number to subtract from value1.

Returns

Type Description

number The result of the subtraction operation.

PI

This function returns the value for PI.

Syntax

PI()

NUMERIC-SUBTRACT 1059

Returns

Type Description

double The PI value.

POWER

This function raises the specified number to the specified power.

Syntax

POWER(value, power)

Argument Type Description

value numeric The number to raise by the power.

power numeric The number to raise value by.

Returns

Type Description

number The result of value raised to the specified power.

PRODUCT

This function calculates the product of a group of numbers.

Syntax

PRODUCT(number)

Argument Type Description

number numeric The group of numbers to multiply.

POWER 1060

Returns

Type Description

number The product of the group.

QUOTIENT

This function calculates the quotient between two numbers.

Syntax

QUOTIENT(numerator, denominator)

Argument Type Description

numerator numeric The number to divide by the denominator.

denominator numeric The number to divide the numerator by.

Returns

Type Description

long The quotient between the input values.

RAD

This function converts to radians an angle value that is in degrees.

Syntax

RAD(angle)

Argument Type Description

angle double The angle value to convert to radians.

QUOTIENT 1061

Returns

Type Description

double The angle in radians.

RAND

This function returns a random double value between 0 and 1.

Syntax

RAND()

Returns

Type Description

double The random value between 0 and 1.

RANDBETWEEN

This function returns a random integer that falls between the two specified integers. The two

integers are included as options to be returned.

Syntax

RANDBETWEEN(low_number, high_number)

Argument Type Description

low_number int The lowest integer in the range of values.

high_number int The highest integer in the range of values.

RAND 1062

Note
If the arguments are decimal values, Anzo returns a random integer between CEIL(low_

number) and FLOOR(high_number).

Returns

Type Description

int The random value between the given low and high numbers.

ROUND

This function rounds a numeric value to the nearest integer.

Syntax

ROUND(number)

Argument Type Description

number numeric The number to round to the nearest integer.

Returns

Type Description

long The rounded value.

ROUNDDOWN

This function rounds a numeric value down to the specified number of digits.

Syntax

ROUNDDOWN(number, num_digits)

ROUND 1063

Argument Type Description

number numeric The number to round down.

num_digits int An integer that specifies the number of digits to round down to.

Returns

Type Description

number The rounded down value.

ROUNDUP

This function rounds a numeric value up to the specified number of digits.

Syntax

ROUNDUP(number, num_digits)

Argument Type Description

number numeric The number to round up.

num_digits int An integer that specifies the number of digits to round up to.

Returns

Type Description

number The rounded up value.

SIN

This function calculates the sine of the specified angle.

ROUNDUP 1064

Syntax

SIN(angle)

Argument Type Description

angle double The angle in radians to calculate the sine for. If you have angle
values in degrees, you can use RAD to convert the degrees to
radians.

Returns

Type Description

double The sine of the angle.

SQRT

This function calculates the square root of the specified number.

Syntax

SQRT(number)

Argument Type Description

number numeric The number for which to calculate the square root.

Returns

Type Description

double The square root of the input value.

SQRT 1065

SUBTRACT

This function subtracts one RDF term type (a literal value, URI, or blank node) value from another

RDF term type value.

Syntax

SUBTRACT(term1, term2)

Argument Type Description

term1 RDF
term

The literal, URI, or blank node value that term2 will be subtracted
from.

term2 RDF
term

The literal, URI, or blank node value to subtract from term1.

Returns

Type Description

RDF term The result of the subtraction operation.

SUM

This function calculates the sum of the numbers within a group.

Syntax

SUM(number)

Argument Type Description

number numeric The group of numbers to sum.

SUBTRACT 1066

Returns

Type Description

number The sum of the values in the group.

SUMIF

This function calculates the sum of the range of values that meet the specified criterion.

Tip
You can use SUMIFS to specify multiple value ranges and conditions.

Syntax

SUMIF(values_to_test, criterion [, range_of_values])

Argument Type Description

values_to_
test

RDF term The literal, URI, or blank node value that defines the values to test
against the criterion.

criterion RDF term The literal, URI, or blank node value that defines the condition to
test values against.

range_of_
values

numeric An optional number that defines the range of values to sum. When
omitted, values_to_test is used.

Returns

Type Description

number The sum of the range of values.

SUMIF 1067

SUMIFS

This function calculates the sums of the ranges of values that meet the specified criteria. Unlike

SUMIF, this function enables you to specify multiple ranges and multiple conditions.

Syntax

SUMIFS(values_to_sum, value_range1, criteria1,

value_range2, criteria2

[, value_rangeN, criteriaN])

Argument Type Description

values_to_
sum

numeric The numeric value that defines the overall range of values to
evaluate.

value_
range1–N

RDF term The literal, URI, or blank node value that defines the range of
values to test against the corresponding criteria.

criteria1–N RDF term The literal, URI, or blank node value that defines the condition to
test the corresponding value_range against.

Returns

Type Description

number The sums of the ranges of values.

SUMPRODUCT

This function multiplies the numbers in a group and adds the results.

Syntax

SUMPRODUCT(number)

SUMIFS 1068

Argument Type Description

number numeric The group of numbers to multiply and then sum the results.

Returns

Type Description

number The sum of the product of the numbers in the group.

SUMSQ

This function calculates the square root of each number in a group and adds the results.

Syntax

SUMSQ(number)

Argument Type Description

number numeric The group of numbers for which to calculate the square root and
then sum the results.

Returns

Type Description

number The sum of the square root of the numbers in the group.

TAN

This function calculates the tangent of the specified angle.

Syntax

TAN(angle)

SUMSQ 1069

Argument Type Description

angle double The angle in radians to calculate the tangent for. If you have angle
values in degrees, you can use RAD to convert the degrees to
radians.

Returns

Type Description

double The tangent of the angle.

TAN 1070

Aggregate Functions

This topic describes the aggregate functions in Anzo.

Typographical Conventions

This documentation uses the following conventions in function syntax:

l CAPS: Although SPARQL is case-insensitive, function names and other keywords are written

in uppercase for readability.

l [argument]: Brackets are used to indicate optional arguments. Arguments without

brackets are required.

Functions

l AVERAGEIF: Calculates the average of the range of values that meet the specified criterion.

l AVERAGEIFS: Calculates the averages of the ranges of values that meet the specified

criteria.

l AVG: Calculates the average (arithmetic mean) value for a group of numbers.

l CHOOSE_BY_MAX: Returns the value from a group that corresponds to the maximum value

from another group.

l CHOOSE_BY_MIN: Returns the value from a group that corresponds to the minimum value

from another group.

l COUNT: Counts the number of values that exist for a group.

l COUNT_DISTINCT: Counts the number of unique values that exist for a group.

l COUNTIF: Counts the number of values that meet the specified criterion.

l COUNTIFS: Counts the number of values that meet the specified criteria.

l GROUP_CONCAT: Concatenates a group of strings into a single string.

l GROUPCONCAT: Concatenates a group of strings into a single string. This function is a

customizable version of GROUP_CONCAT.

l MAX: Returns the maximum value from each group of values.

Aggregate Functions 1071

l MEDIAN: Returns the median number out of a group of numbers.

l MIN: Returns the minimum value from each group of values.

l MODE: Returns the mode (the value that occurs most frequently) from a group of values.

l MODEPERCENT: Calculates the percentage of values in a group that belong to the mode.

l PERCENTILE_CONT: Calculates a percentile based on the continuous distribution of the

specified group of values.

l PERCENTILE_DISC: Calculates a percentile based on the discrete distribution of the

specified group of values.

l PRODUCT: Calculates the product of a group of numbers.

l SAMPLE: Returns an arbitrary value from the specified group of values.

l STDEV: Measures the standard deviation in a group of numbers.

l STDEVP: Calculates the product of the standard deviation for a group of numbers.

l SUM: Calculates the sum of the numbers within a group.

l SUMIF: Calculates the sum of the range of values that meet the specified criterion.

l SUMIFS: Calculates the sums of the ranges of values that meet the specified criteria.

l SUMPRODUCT: Multiplies the numbers in a group and adds the results.

l SUMSQ: Calculates the square root of each number in a group and adds the results.

l VAR: Calculates the unbiased (sample) variance of a group of numbers.

l VARP: Calculates the biased (population) variance of a group of numbers.

l WEIGHTEDAVERAGE: Calculates the weighted average of a group of values.

AVERAGEIF

This function calculates the average of the range of values that meet the specified criterion.

AVERAGEIF 1072

Tip
You can use AVERAGEIFS to specify multiple value ranges and conditions.

Syntax

AVERAGEIF(values_to_test, criterion [, range_of_values])

Argument Type Description

values_to_
test

RDF term The literal, URI, or blank node value that defines the values to test
against the criteria.

criterion RDF term The literal, URI, or blank node value that defines the condition to
test values against.

range_of_
values

numeric An optional number that defines the range of values to average.
When omitted, values_to_test is used.

Returns

Type Description

number The average value from the range of values that meet the criterion.

AVERAGEIFS

This function calculates the averages of the ranges of values that meet the specified criteria. Unlike

AVERAGEIF, this function enables you to specify multiple ranges and multiple conditions.

Syntax

AVERAGEIFS(values_to_average, value_range1, criteria1,

value_range2, criteria2

[, value_rangeN, criteriaN])

AVERAGEIFS 1073

Argument Type Description

values_to_
average

numeric The numeric value that defines the overall range of values to
evaluate.

value_
range1–N

RDF term The literal, URI, or blank node value that defines the range of
values to test against the corresponding criteria.

criteria1–N RDF term The literal, URI, or blank node value that defines the condition to
test the corresponding value_range against.

Returns

Type Description

number The average values from the ranges of values that meet the criteria.

AVG

This function calculates the average (arithmetic mean) value for a group of numbers.

Syntax

AVG(number)

Argument Type Description

number numeric The numeric value for which to calculate the average.

Returns

Type Description

number The arithmetic mean of the input values.

AVG 1074

CHOOSE_BY_MAX

This function calculates the maximum value for one group and returns the value from another group

that corresponds to the maximum from the first group.

Syntax

CHOOSE_BY_MAX(test, value)

Argument Type Description

test RDF
term

The group of literal, URI, or blank node values from which to find the
maximum value.

value RDF
term

The group of literal, URI, or blank node values from which to return the
value that corresponds to the maximum value of test.

Example

In a fictional ticket sales data set, the following statement returns the ID of the buyer who paid the

most:

CHOOSE_BY_MAX(?totalPaid, ?buyerID)

Returns

Type Description

RDF
term

The term from the value group that corresponds to the maximum value from the test
group.

CHOOSE_BY_MIN

This function calculates the minimum value for one group and returns the value from another group

that corresponds to the minimum from the first group.

Syntax

CHOOSE_BY_MIN(test, value)

CHOOSE_BY_MAX 1075

Argument Type Description

test RDF
term

The group of literal, URI, or blank node values from which to find the
minimum value.

value RDF
term

The group of literal, URI, or blank node values from which to return the
value that corresponds to the minimum value of test.

Example

In a fictional ticket sales data set, the following statement returns the ID of the seller who sold the

least number of tickets:

CHOOSE_BY_MIN(?totalTickets, ?sellerID)

Returns

Type Description

RDF
term

The term from the value group that corresponds to the minimum value from the test
group.

COUNT

This function counts the number of values that exist for a group.

Syntax

COUNT(value)

Argument Type Description

value RDF term The group of literal, URI, or blank node values to count.

COUNT 1076

Returns

Type Description

long The number of values in the group.

COUNT_DISTINCT

This function counts the number of unique values that exist for a group.

Syntax

COUNT_DISTINCT(value)

Argument Type Description

value RDF
term

The group of literal, URI, or blank node values for which to count the
number of distinct values.

Returns

Type Description

long The number of unique values in the group.

COUNTIF

This function counts the number of values that meet the specified criterion.

Tip
You can use COUNTIFS to specify multiple conditions.

Syntax

COUNTIF(values_to_test, criterion)

COUNT_DISTINCT 1077

Argument Type Description

values_to_
test

RDF
term

The literal, URI, or blank node value that defines the values to test
against the criterion.

criterion RDF
term

The literal, URI, or blank node value that defines the condition to test
values against.

Returns

Type Description

long The number of values that meet the criterion.

COUNTIFS

This function counts the number of values that meet the specified criteria. Unlike COUNTIF, this

function enables you to specify multiple conditions.

Syntax

COUNTIFS(values_to_count, criteria1 [, criteria2] [, criteriaN])

Argument Type Description

values_to_
count

RDF
term

The literal, URI, or blank node value to compare against the criteria.

criteria1–N RDF
term

A literal, URI, or blank node value that defines a condition to test the
values_to_count against.

Returns

Type Description

long The number of values that meet the specified conditions.

COUNTIFS 1078

GROUP_CONCAT

This function concatenates a group of strings into a single string. It is a simplified version of

GROUPCONCAT as it takes only one argument.

Syntax

GROUP_CONCAT(text)

Argument Type Description

text string The string property whose values to concatenate into a single string.

Returns

Type Description

string The concatenated string.

GROUPCONCAT

This function concatenates a group of strings into a single string. Unlike GROUP_CONCAT, this

function allows for customization of the separator to use as well as the configuration of limits and

options like prefixes and suffixes.

Syntax

GROUPCONCAT(group1, [group2, ..., groupN,] group_value_separator, separator,

serialize,

row_limit, value_limit, delimit_blanks [, prefix] [, suffix] [, max_

length])

Argument Type Description

group1–N string The group(s) of strings to concatenate.

group_value_
separator

string The separator string to use between the groups of strings if you
specified more than one group.

GROUP_CONCAT 1079

Argument Type Description

separator string The separator string to use between the values in a
concatenated group of strings.

serialize boolean A boolean value that indicates whether returned values should
be serialized with the value's data type.

row_limit int An integer that puts a maximum limit on the number of rows to
retrieve for a group.

value_limit int An integer that puts a maximum limit on the number of values to
retrieve from a group of rows.

delimit_blanks boolean A boolean value that indicates whether to delimit blanks with the
separator value.

prefix string Optional string to add as a prefix to the resulting string.

suffix string Optional string to add as a suffix to the resulting string.

max_length int Optional integer that puts a maximum limit on the number of
characters the resulting string can have.

Returns

Type Description

string The concatenated string.

MAX

This function returns the maximum value from each group of values.

MAX 1080

Syntax

MAX(value1 [, value2] [, valueN])

Argument Type Description

value1–N RDF
term

The group(s) of literal, URI, or blank node values for which to return
the maximum value.

Returns

Type Description

RDF term The maximum value from each group.

MEDIAN

This function returns the median value from a group of numbers. The median is the number in the

group where half of the numbers are greater than the number and half are less than the number.

Syntax

MEDIAN(number)

Argument Type Description

number numeric The group of numeric values for which to calculate the median.

Returns

Type Description

number The median for the group.

MIN

This function returns the minimum value from each group of values.

MEDIAN 1081

Syntax

MIN(value1 [, value2] [, valueN])

Argument Type Description

value1–N RDF
term

The group(s) of literal, URI, or blank node values for which to return
the minimum value.

Returns

Type Description

RDF term The minimum value from each group.

MODE

This function returns the mode from a group of values. The mode is the value that occurs most

frequently in the group.

Syntax

MODE(value)

Argument Type Description

value RDF
term

The group of literal, URI, or blank node values for which to return the
mode.

Returns

Type Description

RDF term The mode from the group.

MODEPERCENT

This function calculates the percentage of values in a group that belong to the mode.

MODE 1082

Syntax

MODEPERCENT(value)

Argument Type Description

value RDF
term

The group of literal, URI, or blank node values for which to calculate
the modepercent.

Returns

Type Description

double The percentage of values that belong to the mode.

PERCENTILE_CONT

This function calculates a percentile based on the continuous distribution of the specified group of

values. The returned value is interpolated and may not be equal to any of the values in the group.

Syntax

PERCENTILE_CONT(percentile, value)

Argument Type Description

percentile float A float value that specifies the percentile to compute.

value RDF
term

The group of literal, URI, or blank node values for which to calculate
the percentile.

Returns

Type Description

RDF term The interpolated percentile.

PERCENTILE_CONT 1083

PERCENTILE_DISC

This function calculates a percentile based on the discrete distribution of the specified group of

values.

Syntax

PERCENTILE_DISC(percentile, value)

Argument Type Description

percentile float A float value that specifies the percentile to compute.

value RDF
term

The group of literal, URI, or blank node values for which to calculate
the percentile.

Returns

Type Description

RDF term The percentile based on the discrete distribution of the group.

PRODUCT

This function calculates the product of a group of numbers.

Syntax

PRODUCT(number)

Argument Type Description

number numeric The group of numbers to multiply.

PERCENTILE_DISC 1084

Returns

Type Description

number The product of the group.

SAMPLE

This function returns an arbitrary value from the specified group of values.

Syntax

SAMPLE(value)

Argument Type Description

value RDF
term

The group of literal, URI, or blank node values from which to choose a
sample value.

Returns

Type Description

RDF term The arbitrary value from the group.

STDEV

This function measures the standard deviation (amount of dispersion) of a group of numbers.

Syntax

STDEV(value)

Argument Type Description

value numeric The numeric value that defines the set of numbers for which to
measure the standard deviation.

SAMPLE 1085

Returns

Type Description

number The standard deviation of the group.

STDEVP

This function calculates the product of the standard deviation for a group of numbers.

Syntax

STDEVP(value)

Argument Type Description

value numeric The numeric value that defines the set of numbers for which to
measure the standard deviation and compute the product.

Returns

Type Description

number The product of the standard deviation for the group.

SUM

This function calculates the sum of the numbers within a group.

Syntax

SUM(number)

Argument Type Description

number numeric The group of numbers to sum.

STDEVP 1086

Returns

Type Description

number The sum of the values in the group.

SUMIF

This function calculates the sum of the range of values that meet the specified criterion.

Tip
You can use SUMIFS to specify multiple value ranges and conditions.

Syntax

SUMIF(values_to_test, criterion [, range_of_values])

Argument Type Description

values_to_
test

RDF term The literal, URI, or blank node value that defines the values to test
against the criterion.

criterion RDF term The literal, URI, or blank node value that defines the condition to
test values against.

range_of_
values

numeric An optional number that defines the range of values to sum. When
omitted, values_to_test is used.

Returns

Type Description

number The sum of the range of values.

SUMIF 1087

SUMIFS

This function calculates the sums of the ranges of values that meet the specified criteria. Unlike

SUMIF, this function enables you to specify multiple ranges and multiple conditions.

Syntax

SUMIFS(values_to_sum, value_range1, criteria1,

value_range2, criteria2

[, value_rangeN, criteriaN])

Argument Type Description

values_to_
sum

numeric The numeric value that defines the overall range of values to
evaluate.

value_
range1–N

RDF term The literal, URI, or blank node value that defines the range of
values to test against the corresponding criteria.

criteria1–N RDF term The literal, URI, or blank node value that defines the condition to
test the corresponding value_range against.

Returns

Type Description

number The sums of the ranges of values.

SUMPRODUCT

This function multiplies the numbers in a group and adds the results.

Syntax

SUMPRODUCT(number)

SUMIFS 1088

Argument Type Description

number numeric The group of numbers to multiply and then sum the results.

Returns

Type Description

number The sum of the product of the numbers in the group.

SUMSQ

This function calculates the square root of each number in a group and adds the results.

Syntax

SUMSQ(number)

Argument Type Description

number numeric The group of numbers for which to calculate the square root and
then sum the results.

Returns

Type Description

number The sum of the square root of the numbers in the group.

VAR

This function calculates the unbiased (sample) variance for a group of numbers.

Syntax

VAR(value)

SUMSQ 1089

Argument Type Description

value numeric The numeric value that defines the set of numbers for which to
measure the variance.

Returns

Type Description

number The unbiased variance for the group.

VARP

This function calculates the biased (population) variance for a group of numbers.

Syntax

VARP(value)

Argument Type Description

value number The value that defines the set of numbers for which to measure the
population variance.

Returns

Type Description

decimal The biased variance for the group.

WEIGHTEDAVERAGE

This function calculates the weighted average of a group of values.

Syntax

WEIGHTEDAVERAGE(value, weight)

VARP 1090

Argument Type Description

value decimal The decimal value that defines the group of values for which to
calculate the weighted average.

weight decimal The decimal value that defines the weight to use in the calculation.

Returns

Type Description

decimal The weighted average for the group.

WEIGHTEDAVERAGE 1091

Date and Time Functions

This topic describes the date, time, and duration functions in Anzo.

Typographical Conventions

This documentation uses the following conventions in function syntax:

l CAPS: Although SPARQL is case-insensitive, function names and other keywords are written

in uppercase for readability.

l [argument]: Brackets are used to indicate optional arguments. Arguments without

brackets are required.

Functions

l DATE: Returns an xsd:date value based on the specified year, month, and day.

l DATEPART: Returns the date part of a literal string, date, long, or dateTime value.

l DATETIME (or xsd:dateTime): Returns a dateTime value from the given string, long, or

dateTime.

l DAY: Returns the day of the month from the specified date.

l DAYSFROMDURATION: Returns the days portion of a duration value.

l DUR_TO_MILLIS: Calculates the time in milliseconds from a duration or numeric value.

l DURATION: Returns an xsd:duration value from the given numeric or duration value.

l DURATIONFORMAT: Converts a duration or numeric value to a string in the specified

duration format.

l DURATIONPERIODFORMAT: Calculates the duration between the given start and end

values and returns a string in the specified duration format.

l FORMATDATE: Converts a numeric or date value into a string with the specified date format.

l HOUR: Returns the hour portion of the given dateTime value.

Date and Time Functions 1092

l MASKEDDATETIME: Replaces the year, month, day, hour, minute, second, and millisecond

values for the given date or dateTime value with the new date and time values that you

specify.

l MILLIS: Calculates the number of milliseconds in the given date or dateTime value.

l MINUTE: Returns the minutes portion of the given dateTime value.

l MONTH: Returns the month portion of the given dateTime value.

l NOW: Returns the current server date and time.

l NOWMILLIS: Returns the current server date and time in epoch milliseconds.

l PARSEDATETIME: Attempts to convert the given string or plain literal to a date, time, or

dateTime value.

l SECOND: Returns the seconds portion of the given dateTime value.

l TIME: Returns an xsd:time value based on the specified hour, minute, and second values.

l TIMEPART: Returns the time part of a time or dateTime value.

l TIMEVALUE: Converts the specified RDF term type value to an xsd:time value.

l TIMEZONE: Returns as a duration the timezone part of a dateTime value.

l TODAY: Returns today's date based on the server date.

l TZ: Returns as a string the timezone from a dateTime value.

l WEEKDAY: Returns the day of the week from a date or dateTime value.

l WEEKNUM: Returns the week of the year in which the given date or dateTime occurs.

l xsd:date: Converts the specified string, date, or dateTime value to an xsd:date.

l YEAR: Returns the year portion of the given dateTime value.

l YEARMONTH: Returns the year and month (in the format "year-month") from the specified

date or dateTime value.

Date and Time Functions 1093

DATE

This function returns an xsd:date value based on the specified year, month, and day values.

Syntax

DATE(year, month, day)

Argument Type Description

year int An integer that represents the year.

month int An integer that represents the month.

day int An integer that represents the day.

Returns

Type Description

date The date according to the input values.

DATEPART

This function returns the date part of a literal string, date, long, or dateTime value.

Syntax

DATEPART(value)

Argument Type Description

value literal string, date, long,
or dateTime

The literal string, date, long, or dateTime value from
which to return the date.

DATE 1094

Returns

Type Description

date The date part of the input values.

DATETIME (or xsd:dateTime)

This function returns a dateTime value from the given string, long, or dateTime.

Syntax

DATETIME(value)

Argument Type Description

value string, long,
dateTime

The string, long, or dateTime value from which to return a
dateTime.

Returns

Type Description

dateTime The dateTime value.

DAY

This function returns the day of the month from the specified date value.

Syntax

DAY(value)

Argument Type Description

value date The date value from which to return the day of the month.

DATETIME (or xsd:dateTime) 1095

Returns

Type Description

int The day of the month.

DAYSFROMDURATION

This function returns the days portion of a duration value.

Syntax

DAYSFROMDURATION(value)

Argument Type Description

value duration The duration value from which to return the days.

Returns

Type Description

long The number of days in the duration.

DUR_TO_MILLIS

This function calculates the time in milliseconds from a duration or numeric value.

Syntax

DUR_TO_MILLIS(value)

Argument Type Description

value duration,
numeric

The duration or numeric value from which to calculate the time in
milliseconds.

DAYSFROMDURATION 1096

Returns

Type Description

long The number of milliseconds.

DURATION

This function returns an xsd:duration value from the given numeric or duration value.

Syntax

DURATION(value)

Argument Type Description

value duration,
numeric

The duration or numeric value from which to return an
xsd:duration.

Returns

Type Description

duration The duration value.

DURATIONFORMAT

This function converts a duration or numeric value to a string in the specified duration format.

Syntax

DURATIONFORMAT(value [, format])

Argument Type Description

value duration,
numeric

The duration or numeric value to format.

DURATION 1097

Argument Type Description

format string An optional value that specifies the format to use for the resulting
duration string. Anzo supports Pattern Tokens for defining the
format:

l y for year digits

l M for months

l d for days

l H for hours

l m for minutes

l s for seconds

l S for milliseconds

l 'text' for arbitrary text content

If format is not specified, H:mm:ss.SSS is used.

Returns

Type Description

string The duration as a string.

DURATIONPERIODFORMAT

This function calculates the duration between the given start and end dateTime or numeric values

and returns a string in the specified duration format.

Syntax

DURATIONPERIODFORMAT(start, end [, format])

DURATIONPERIODFORMAT 1098

Argument Type Description

start dateTime,
numeric

The dateTime or numeric value that is the start of the duration
period.

end dateTime,
numeric

The dateTime or numeric value that is the end of the duration
period.

format string An optional value that specifies the format to use for the resulting
duration string. Anzo supports Pattern Tokens for defining the
format:

l y for year digits

l M for months

l d for days

l H for hours

l m for minutes

l s for seconds

l S for milliseconds

l 'text' for arbitrary text content

If format is not specified, the default is

'P'yyyy'Y'M'M'd'DT'H'H'm'M's.SSS'S'. The default

value uses 'text' patterns with Pattern Tokens, which results in

a string such as P1Y3M4DT1H4M44.000S.

Returns

Type Description

string The duration as a string.

DURATIONPERIODFORMAT 1099

FORMATDATE

This function converts a numeric or date value into a string with the specified date format.

Syntax

FORMATDATE(value, format)

Argument Type Description

value date,
numeric

The date or numeric value to convert to a string in the specified date
format.

format string The format to use for the resulting date string. Anzo supports
Pattern Tokens for defining the format:

l y for year digits

l M for months

l d for days

l 'text' for arbitrary text content

For example, "yyyy.MM.dd" or "dd/MM/yyyy".

Returns

Type Description

string The date as a string.

HOUR

This function returns the hour portion of the given dateTime value.

Syntax

HOUR(value [, timezone])

FORMATDATE 1100

Argument Type Description

value dateTime The dateTime value from which to return the hour portion.

timezone string An optional value that specifies the timezone for the value.

Returns

Type Description

int The hour.

MASKEDDATETIME

This function replaces the year, month, day, hour, minute, second, and millisecond values for the

given date or dateTime value with the new date and time values that you specify.

Syntax

MASKEDDATETIME(value, year, month, day, hour, minute, second, milliseconds)

Argument Type Description

value date,
dateTime

The date or dateTime for which to replace the year, month,
date, hour, minute, second, and milliseconds values.

year int The year to include in the resulting dateTime value.

month int The month to include in the resulting dateTime value.

day int The day to include in the resulting dateTime value.

hour int The hour to include in the resulting dateTime value.

minute int The minutes value to include in the resulting dateTime value.

MASKEDDATETIME 1101

Argument Type Description

second int The seconds value to include in the resulting dateTime value.

milliseconds int The milliseconds value to include in the resulting dateTime
value.

Returns

Type Description

dateTime The dateTime value with the specified input values.

MILLIS

This function calculates the number of milliseconds in the given date or dateTime value.

Syntax

MILLIS(value)

Argument Type Description

value date,
dateTime

The date or dateTime value for which to calculate the number of
milliseconds.

Returns

Type Description

long The number of milliseconds.

MINUTE

This function returns the minutes portion of the given dateTime value.

MILLIS 1102

Syntax

MINUTE(value)

Argument Type Description

value dateTime The dateTime value from which to return the minutes portion.

Returns

Type Description

int The minutes portion of the input value.

MONTH

This function returns the month portion of the given dateTime value.

Syntax

MONTH(value)

Argument Type Description

value dateTime The dateTime value from which to return the month portion.

Returns

Type Description

int The month number.

NOW

This function returns the current server date and time.

Syntax

NOW([timezone])

MONTH 1103

Argument Type Description

timezone string An optional value that specifies the timezone for which to return the
current dateTime.

Returns

Type Description

dateTime The current server date and time.

NOWMILLIS

This function returns the current server date and time in epoch milliseconds.

Syntax

NOWMILLIS()

Returns

Type Description

long The current server date and time in milliseconds.

PARSEDATETIME

This function attempts to convert the given string or plain literal to a date, time, or dateTime value.

For values that do not include a timezone, Anzo stores them in GMT. Values that include a timezone

are stored as the appropriate value in GMT for that timezone.

Syntax

PARSEDATETIME(value [, output_type] [, format])

Argument Type Description

value string, The string or plain literal value to convert to a date, time, or dateTime.

NOWMILLIS 1104

Argument Type Description

literal

output_type URI An optional URI (xsd:date, xsd:time, or xsd:dateTime) that
specifies the type of value to return. If output_type is not specified,
dateTime is returned.

format string An optional string that species the format to use for the resulting date,
time, or dateTime value. Anzo supports Pattern Tokens for defining
the format:

l y for year digits

l M for months

l d for days

l H for hours

l m for minutes

l s for seconds

l S for milliseconds

l 'text' for arbitrary text content

For example, "yyyy.MM.dd HH:mm" or "dd/MM/yyyy

HH:mm:ss".

Returns

Type Description

date, time, or dateTime The conversion of the string to the desired type.

SECOND

This function returns the seconds portion of the given dateTime value.

SECOND 1105

Syntax

SECOND(value)

Argument Type Description

value dateTime The dateTime value from which to return the seconds portion.

Returns

Type Description

int The seconds portion of the input value.

TIME

This function returns an xsd:time value based on the specified hour, minute, and second values.

Syntax

TIME(hour, minute, second)

Argument Type Description

hour int An integer that represents the hour.

minute int An integer that represents the minute.

second int An integer that represents the seconds.

Returns

Type Description

time The time according to the input values.

TIME 1106

TIMEPART

This function returns the time part of a time or dateTime value.

Syntax

TIMEPART(value)

Argument Type Description

value time,
dateTime

The time or dateTime value from which to return the time
portion.

Returns

Type Description

time The time portion of the input value.

TIMEVALUE

This function converts the specified RDF term type value to an xsd:time value.

Syntax

TIMEVALUE(value)

Argument Type Description

value RDF term The literal, URI, or blank node value to convert to a time value.

Returns

Type Description

time The conversion of the term to a time value.

TIMEPART 1107

TIMEZONE

This function returns the timezone part of a dateTime value as a duration. An error is returned if the

input value does not include the timezone.

Syntax

TIMEZONE(value)

Argument Type Description

value dateTime The dateTime value to return the timezone from.

Returns

Type Description

duration The timezone in duration format.

TODAY

This function returns today's date based on the server date.

Syntax

TODAY()

Returns

Type Description

date Today's date according to the server.

TZ

This function returns the timezone part of a dateTime value as a string.

Syntax

TZ(value)

TIMEZONE 1108

Argument Type Description

value dateTime The dateTime value to return the timezone from.

Returns

Type Description

string The timezone as a string.

WEEKDAY

This function returns the day of the week from a date or dateTime value.

Syntax

WEEKDAY(value [, day_number_start])

Argument Type Description

value date,
dateTime

The date or dateTime value from which to return the day of the
week.

day_
number_
start

int An optional value of 1, 2, or 3 that defines how the days of the
week are represented as numbers.

l 1 means Sunday is day 1. Saturday is day 7.

l 2 means Monday is day 1. Sunday is day 7.

l 3 means Monday is day 0. Sunday is day 6.

If day_number_start is not specified, the default value is 1.

Returns

Type Description

int The day of the week from the input values.

WEEKDAY 1109

WEEKNUM

This function returns the week of the year in which the given date or dateTime occurs.

Syntax

WEEKNUM(value [, day_week_begins])

Argument Type Description

value date,
dateTime

The date or dateTime value from which to return the week
number.

day_week_
begins

int An optional value of 1 or 2 that defines which day the weeks
start on.

l 1 means a new week starts on Sunday.

l 2 means a new week starts on Monday.

If day_week_begins is not specified, the default value is

1.

Returns

Type Description

int The week of the year the input value falls in.

xsd:date

This function converts the specified string, date, or dateTime value to an xsd:date.

Syntax

xsd:date(value)

WEEKNUM 1110

Argument Type Description

value string, date,
dateTime

The string, date, or dateTime value to convert to an
xsd:date.

Returns

Type Description

date The input values converted to dates.

YEAR

This function returns the year portion of the given dateTime value.

Syntax

YEAR(value)

Argument Type Description

value dateTime The dateTime value to return the year from.

Returns

Type Description

int The year portion of the input values.

YEARMONTH

This function returns the year and month (in the format "year-month") from the specified date or

dateTime value.

Syntax

YEARMONTH(value)

YEAR 1111

Argument Type Description

value literal date or dateTime The value to return the year-month from.

Returns

Type Description

gYearMonth The year-month from the input values.

YEARMONTH 1112

Casting Functions

This topic describes the functions that are available for coercing data types in Anzo.

Typographical Conventions

This documentation uses the following conventions in function syntax:

l CAPS: Although SPARQL is case-insensitive, function names and other keywords are written

in uppercase for readability.

l [argument]: Brackets are used to indicate optional arguments. Arguments without

brackets are required.

Functions

l BNODE: Creates a blank node.

l BOOLEAN: Casts a literal value to a boolean data type.

l BYTE: Casts a literal value to a byte data type.

l CONCATURL: Concatenates two or more strings and returns the result as a URI.

l DATATYPE: Returns the data type of the given value.

l DATETIME (or xsd:dateTime): Returns a dateTime value from the given string, long, or

dateTime.

l DATEVALUE: Casts a string to a date.

l DECIMAL: Casts a literal value to a decimal data type.

l DOUBLE: Casts a literal value to a double data type.

l DURATION: Returns an xsd:duration value from the given numeric or duration value.

l DURATIONFORMAT: Converts a duration or numeric value to a string in the specified

duration format.

l ENCODE_FOR_URI: Encodes the specified string as a URI.

l FLOAT: Casts a literal value to a float data type.

Casting Functions 1113

l FORMATDATE: Casts a numeric or date value to a string in the specified date format.

l FORMATFRACTION: Converts a numeric value into a fraction string.

l FORMATNUMBER: Casts a numeric value to a string in the specified format.

l INT: Casts a literal value to an int data type.

l INTEGER: Casts a literal value to an integer data type.

l LONG: Casts a literal value to a long data type.

l PARSEDATETIME: Attempts to convert the given string or plain literal to a date, time, or

dateTime value.

l RAD: Converts to radians an angle value that is in degrees.

l SERIALIZE: Creates a literal value from the string representation of the specified RDF term.

l SHORT: Casts a literal value to a short data type.

l STR: Casts an RDF term type value to a string.

l TEXT: Casts a numeric or dateTime value to a string in the specified format.

l TIMEVALUE: Converts the specified RDF term type value to an xsd:time value.

l TOURI: Casts a string literal value to a URI.

l UUID: Generates a Universally Unique Identifier (UUID).

l xsd:date: Converts the specified string, date, or dateTime value to an xsd:date.

BNODE

This function creates a blank node.

Syntax

BNODE([value])

Argument Type Description

value string An optional string value from which to create the blank node.

BNODE 1114

Returns

Type Description

blank node The generated blank node.

BOOLEAN

This function casts a literal value to a boolean data type.

Syntax

BOOLEAN(value)

Argument Type Description

value literal The literal value to cast to a boolean type.

Returns

Type Description

boolean The input cast to boolean.

BYTE

This function casts a literal value to a byte data type.

Syntax

BYTE(value)

Argument Type Description

value literal The literal value to cast to a byte type.

BOOLEAN 1115

Returns

Type Description

byte The input value cast to a byte.

CONCATURL

This function concatenates two or more strings and returns the result as a URI.

Syntax

CONCATURL(text1, text2 [, textN])

Argument Type Description

text1–N string The strings that you want to concatenate to form a URI.

Returns

Type Description

URI The concatenated string as a URI.

DATATYPE

This function returns the data type of the given literal value.

Syntax

DATATYPE(value)

Argument Type Description

value literal The literal value for which to return the data type.

CONCATURL 1116

Returns

Type Description

URI The data type.

DATETIME (or xsd:dateTime)

This function returns a dateTime value from the given string, long, or dateTime.

Syntax

DATETIME(value)

Argument Type Description

value string, long,
dateTime

The string, long, or dateTime value from which to return a
dateTime.

Returns

Type Description

dateTime The dateTime value.

DATEVALUE

This function casts the given string value to a date.

Syntax

DATEVALUE(value)

Argument Type Description

value string The string value from which to return the date.

DATETIME (or xsd:dateTime) 1117

Returns

Type Description

date The string cast to a date.

DECIMAL

This function casts a literal value to a decimal data type.

Syntax

DECIMAL(value)

Argument Type Description

value literal The literal value to convert to a decimal type.

Returns

Type Description

decimal The literal value cast to a decimal type.

DOUBLE

This function casts a literal value to a double data type.

Syntax

DOUBLE(value)

Argument Type Description

value literal The literal value to convert to a double type.

DECIMAL 1118

Returns

Type Description

double The literal value cast to a double type.

DURATION

This function returns an xsd:duration value from the given numeric or duration value.

Syntax

DURATION(value)

Argument Type Description

value duration,
numeric

The duration or numeric value from which to return an
xsd:duration.

Returns

Type Description

duration The duration value.

DURATIONFORMAT

This function converts a duration or numeric value to a string in the specified duration format.

Syntax

DURATIONFORMAT(value [, format])

Argument Type Description

value duration,
numeric

The duration or numeric value to format.

DURATION 1119

Argument Type Description

format string An optional value that specifies the format to use for the resulting
duration string. Anzo supports Pattern Tokens for defining the
format:

l y for year digits

l M for months

l d for days

l H for hours

l m for minutes

l s for seconds

l S for milliseconds

l 'text' for arbitrary text content

If format is not specified, H:mm:ss.SSS is used.

Returns

Type Description

string The duration as a string.

ENCODE_FOR_URI

This function encodes the specified string as a URI and returns a string in URI format.

Syntax

ENCODE_FOR_URI(text)

Argument Type Description

text string The string value to encode as a URI.

ENCODE_FOR_URI 1120

Returns

Type Description

string The string as a URI.

FLOAT

This function casts a literal value to a float data type.

Syntax

FLOAT(value)

Argument Type Description

value literal The literal value to convert to a float type.

Returns

Type Description

float The literal value cast to a float type.

FORMATDATE

This function converts a numeric or date value into a string with the specified date format.

Syntax

FORMATDATE(value, format)

Argument Type Description

value date,
numeric

The date or numeric value to convert to a string in the specified date
format.

format string The format to use for the resulting date string. Anzo supports

FLOAT 1121

Argument Type Description

Pattern Tokens for defining the format:

l y for year digits

l M for months

l d for days

l 'text' for arbitrary text content

For example, "yyyy.MM.dd" or "dd/MM/yyyy".

Returns

Type Description

string The date as a string.

FORMATFRACTION

This function converts a numeric value into a fraction string.

Syntax

FORMATFRACTION(value [, tolerance] [, whole_number])

Argument Type Description

value numeric The numeric value to convert to fraction text.

tolerance double An optional double value that specifies the precision of the fraction.
The default value is 0.0001. The resulting fractional representation
is the original value + or - the tolerance. The smaller the
tolerance, the more precise the fraction is. For example, 399/800
vs. 1/2.

FORMATFRACTION 1122

Argument Type Description

whole_
number

boolean An optional boolean value that specifies whether to include whole
numbers in the result. For example, if true, the result would be
formatted like 1 2/3 instead of 5/3.

Returns

Type Description

string The fraction string.

FORMATNUMBER

This function casts a numeric value to a string in the specified format.

Syntax

TEXT(value, format)

Argument Type Description

value numeric The numeric value to convert to a string.

format string A text string that specifies the format to follow when converting the
value to a string. Anzo supports Java Decimal Format.

Returns

Type Description

string The numeric value as a string.

INT

This function casts a literal value to an int data type.

FORMATNUMBER 1123

https://docs.oracle.com/javase/7/docs/api/java/text/DecimalFormat.html

Syntax

INT(value)

Argument Type Description

value literal The literal value to convert to an int type.

Returns

Type Description

int The literal value cast to an int type.

INTEGER

This function casts a literal value to an integer data type.

Syntax

INTEGER(value)

Argument Type Description

value literal The literal value to convert to an integer type.

Returns

Type Description

integer The literal value cast to an integer type.

LONG

This function casts a literal value to a long data type.

Syntax

LONG(value)

INTEGER 1124

Argument Type Description

value literal The literal value to convert to a long type.

Returns

Type Description

long The literal value cast to a long type.

PARSEDATETIME

This function attempts to convert the given string or plain literal to a date, time, or dateTime value.

For values that do not include a timezone, Anzo stores them in GMT. Values that include a timezone

are stored as the appropriate value in GMT for that timezone.

Syntax

PARSEDATETIME(value [, output_type] [, format])

Argument Type Description

value string,
literal

The string or plain literal value to convert to a date, time, or dateTime.

output_type URI An optional URI (xsd:date, xsd:time, or xsd:dateTime) that
specifies the type of value to return. If output_type is not specified,
dateTime is returned.

format string An optional string that species the format to use for the resulting date,
time, or dateTime value. Anzo supports Pattern Tokens for defining
the format:

l y for year digits

l M for months

PARSEDATETIME 1125

Argument Type Description

l d for days

l H for hours

l m for minutes

l s for seconds

l S for milliseconds

l 'text' for arbitrary text content

For example, "yyyy.MM.dd HH:mm" or "dd/MM/yyyy

HH:mm:ss".

Returns

Type Description

date, time, or dateTime The conversion of the string to the desired type.

RAD

This function converts to radians an angle value that is in degrees.

Syntax

RAD(angle)

Argument Type Description

angle double The angle value to convert to radians.

Returns

Type Description

double The angle in radians.

RAD 1126

SERIALIZE

This function creates a literal value from the string representation of the specified RDF term type

value.

Syntax

SERIALIZE(value)

Argument Type Description

value RDF
term

The literal, URI, or blank node value for which to generate a plain
literal.

Returns

Type Description

string The string representation of the input term.

SHORT

This function casts a literal value to a short data type.

Syntax

SHORT(value)

Argument Type Description

value literal The literal value to convert to a short type.

Returns

Type Description

short The literal value cast to a short type.

SERIALIZE 1127

STR

This function casts the specified RDF term type value to a string.

Syntax

STR(value)

Argument Type Description

value RDF term The literal, URI, or blank node value to convert to a string.

Returns

Type Description

string The term cast to a string type.

TEXT

This function casts a numeric or dateTime value to a string in the specified format.

Syntax

TEXT(value, format)

Argument Type Description

value numeric,
dateTime

The numeric or datetime value to convert to a string.

format string A text string that specifies the format to follow when converting the
value to a string. For numeric values, Anzo supports Java
Decimal Format. For dateTime values, Simple Date Format is
supported.

STR 1128

https://docs.oracle.com/javase/7/docs/api/java/text/DecimalFormat.html
https://docs.oracle.com/javase/7/docs/api/java/text/DecimalFormat.html
https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html

Returns

Type Description

string The string in the specified format.

TIMEVALUE

This function converts the specified RDF term type value to an xsd:time value.

Syntax

TIMEVALUE(value)

Argument Type Description

value RDF term The literal, URI, or blank node value to convert to a time value.

Returns

Type Description

time The conversion of the term to a time value.

TOURI

This function casts a string literal value to a URI.

Syntax

TOURI(text)

Argument Type Description

text string The string literal to cast to a URI.

TIMEVALUE 1129

Returns

Type Description

URI The literal value as a URI.

UUID

This function generates a Universally Unique Identifier (UUID).

Syntax

UUID()

Returns

Type Description

URI The UUID.

xsd:date

This function converts the specified string, date, or dateTime value to an xsd:date.

Syntax

xsd:date(value)

Argument Type Description

value string, date,
dateTime

The string, date, or dateTime value to convert to an
xsd:date.

Returns

Type Description

date The input values converted to dates.

UUID 1130

Logical Functions

This topic describes the logical functions in Anzo.

Typographical Conventions

This documentation uses the following conventions in function syntax:

l CAPS: Although SPARQL is case-insensitive, function names and other keywords are written

in uppercase for readability.

l [argument]: Brackets are used to indicate optional arguments. Arguments without

brackets are required.

Functions

l AND: Evaluates two logical expressions and returns true if both expressions are true.

l BOUND: Evaluates whether an RDF term type is bound.

l CASE: Evaluates a series of conditions for the specified value and returns the matching

result.

l COALESCE: Evaluates a number of expressions and returns the results for the first

expression that is bound and does not raise an error.

l EQUAL: Evaluates whether two values are equal.

l IF: Evaluates a condition and returns the specified result depending on the outcome of the

test.

l IFERROR: Synonym for COALESCE.

l IN: Evaluates whether the specified RDF term is found in any of the given test values.

l NOT: Evaluates whether the specified logical expression is not true.

l NOT_EQUAL: Evaluates whether two values are not equal.

l NOT_IN: Evaluates whether the specified RDF term is not found in any of the given test

values.

Logical Functions 1131

l OR: Evaluates two logical expressions and returns true if at least one of the expressions is

true.

l PARTITIONINDEX: Returns the zero-based index of the bucket in which the specified value

falls.

l SAMETERM: Evaluates whether two RDF term type values are the same.

l UNBOUND: Extends the SPARQL UNDEF functionality to enable users to include an

undefined value as a function argument.

AND

This function evaluates two logical expressions. If both expressions are true, the function returns

true. If one or both arguments are false, the function returns false.

Syntax

AND(logical_expression1, logical_expression2)

Argument Type Description

logical_expression1 evaluates to boolean The first logical expression to evaluate.

logical_expression2 evaluates to boolean The second logical expression to evaluate.

Returns

Type Description

boolean True if both conditions are true and false if either condition is false.

BOUND

This function evaluates whether the specified RDF term has a value bound to it.

Syntax

BOUND(term)

AND 1132

Argument Type Description

term RDF term The literal, URI, or blank node value to evaluate.

Returns

Type Description

boolean True if the term is bound and false if it is not.

CASE

This function evaluates a series of conditions for the specified value and returns the matching result.

CASE acts like an IF-THEN-ELSE statement.

Syntax

CASE(test_value, condition1, [condition2] [, conditionN]

result1 [, result2] [, resultN] [, default])

Argument Type Description

test_value RDF
term

The literal, URI, or blank node value to compare to the list of
conditions (condition1-N).

condition1–N RDF
term

The conditions to be evaluated in the order that they are specified.
Once a condition evaluates to true, the corresponding result is
returned and the remaining conditions are not evaluated.

result1–N RDF
term

The results to return for the specified conditions.

default RDF
term

An optional value to be returned if none of the specified conditions
pass.

CASE 1133

Returns

Type Description

RDF term The specified result according to the evaluation of the conditions.

COALESCE

This function evaluates a number of expressions and returns the results for the first expression that

is bound and does not raise an error.

Syntax

COALESCE(expression1 [, expression2] [, expressionN])

Argument Type Description

expression1–N RDF term The literal, URI, or blank node expressions to evaluate.

Returns

Type Description

RDF term The result of the first expression that is bound and does not error.

EQUAL

This function evaluates whether value1 is equal to value2.

Syntax

EQUAL(value1, value2)

Argument Type Description

value1 numeric, boolean,
dateTime, RDF term

The number, boolean, datetime, literal, URI, or blank
node value to compare to value2.

COALESCE 1134

Argument Type Description

value2 numeric, boolean,
dateTime, RDF term

The number, boolean, datetime, literal, URI, or blank
node value to compare to value1.

Returns

Type Description

boolean True if the values are equal and false if they are not.

IF

This function evaluates a condition and returns the specified result depending on the outcome of the

test. If the condition evaluates to true, the first result is returned. If the condition evaluates to false,

the second result is returned. And if the condition results in an error, the third result is returned.

Syntax

IF(logical_expression, true_result, false_result [, error_result])

Argument Type Description

logical_
expression

evaluates to
boolean

The condition that evaluates to true or false.

true_result RDF term The value that defines the result to return if the condition
evaluates to true.

false_result RDF term The value that defines the result to return if the condition
evaluates to false.

error_result RDF term An optional value that defines the result to return if the condition
evaluates to an error. If the condition results in an error and
error_result is not specified, logical_expression
(error) is returned.

IF 1135

Returns

Type Description

RDF term The result based on the evaluation of the condition.

IFERROR

This function is a synonym for COALESCE.

IN

This function evaluates whether the specified RDF term type value is found in any of the given test

values.

Syntax

IN(term, test_value1 [, test_value2] [, test_valueN])

Argument Type Description

term RDF
term

The literal, URI, or blank node value to look for in the test values.

test_value1–
N

RDF
term

The literal, URI, or blank node values to look for the specified term
in.

Returns

Type Description

boolean True if the given term is found in the test values and false if it is not.

NOT

This function evaluates whether the specified logical expression is not true.

IFERROR 1136

Syntax

NOT(logical_expression)

Argument Type Description

logical_expression evaluates to boolean The condition to evaluate.

Returns

Type Description

boolean True if the condition is false and false if it is true.

NOT_EQUAL

This function evaluates whether value1 is not equal to value2.

Syntax

NOT_EQUAL(value1, value2)

Argument Type Description

value1 numeric, boolean,
dateTime, RDF term

The number, boolean, datetime, literal, URI, or blank
node value to compare to value2.

value2 numeric, boolean,
dateTime, RDF term

The number, boolean, datetime, literal, URI, or blank
node value to compare to value1.

Returns

Type Description

boolean True if value1 is not equal to value2. False if they are equal.

NOT_EQUAL 1137

NOT_IN

This function evaluates whether the specified RDF term type value is not found in any of the given

test values.

Syntax

IN(term, test_value1 [, test_value2] [, test_valueN])

Argument Type Description

term RDF
term

The literal, URI, or blank node value to look for in the test values.

test_value1–
N

RDF
term

The literal, URI, or blank node values in which to look for the specified
term.

Returns

Type Description

boolean True if the given term is not in the test values and false if it is found in the test
values.

OR

This function evaluates two logical expressions. If at least one expression is true, the function

returns true. If both expressions are false, the function returns false.

Syntax

OR(logical_expression1, logical_expression2)

Argument Type Description

logical_expression1 evaluates to boolean The first logical expression to evaluate.

NOT_IN 1138

Argument Type Description

logical_expression2 evaluates to boolean The second logical expression to evaluate.

Returns

Type Description

boolean True if one or both conditions are true and false if both conditions are false.

PARTITIONINDEX

This function returns the zero-based index of the bucket in which the specified value falls. Buckets

start at the specified start value and are sized according to the specified interval. The first

bucket is [start, start+interval). That means it is closed on the low end and open on the

high end. PARTITIONINDEX returns less than 0 if the value does not fall into any bucket, such as

when the given value is less than start or if the comparison is indeterminate for date and time

data types.

Syntax

PARTITIONINDEX(value, start, interval)

Argument Type Description

value literal The literal value for which to determine the zero-based index.

start literal The literal value that indicates the start of the first bucket.

interval literal The literal value that specifies the size of the bucket.

Returns

Type Description

long The zero-based index of the bucket in which the specified value exists.

PARTITIONINDEX 1139

SAMETERM

This function evaluates whether two RDF term type values are the same.

Syntax

SAMETERM(term1, term2)

Argument Type Description

term1 RDF term The first literal, URI, or blank node value to compare.

term2 RDF term The literal, URI, or blank node value to compare to term1.

Returns

Type Description

boolean True if the terms are the same and false if they are not.

UNBOUND

This function is like the SPARQL UNDEF keyword but extends that functionality to enable users to

include an undefined value as a function argument, as UNDEF is only supported in VALUES

clauses.

Syntax

UNBOUND()

Example

The following example statement incorporates UNBOUND to return null if the specified condition

(?x > 5) fails:

BIND(IF(?x > 5 , "Win", UNBOUND()) as ?testResult)

In this case, ?testResult is bound if ?x is greater than 5. If ?x is not greater than 5, ?testResult is not

bound.

SAMETERM 1140

Returns

Type Description

RDF term The specified result according to the evaluation of the condition.

UNBOUND 1141

Informational or Testing Functions

This topic describes the functions in Anzo that retrieve information from your values and let you ask

questions about them or test whether the values match expectations.

Typographical Conventions

This documentation uses the following conventions in function syntax:

l CAPS: Although SPARQL is case-insensitive, function names and other keywords are written

in uppercase for readability.

l [argument]: Brackets are used to indicate optional arguments. Arguments without

brackets are required.

Functions

l CONTAINS: Evaluates whether the specified string contains the given pattern.

l GE: Evaluates whether one value is greater than or equal to (>=) another value.

l GT: Evaluates whether one value is greater than (>) another value.

l ISBLANK: Evaluates whether the given RDF term is a blank node.

l ISDATATYPE: Evaluates whether the given literal value is typed as the specified data type.

l ISERROR: Tests whether the given RDF term evaluates to an error. Only valid in queries
against the Anzo System Datasource or other volume.

l ISIRI: Evaluates whether the given RDF term is an IRI.

l ISLITERAL: Evaluates whether the given RDF term is a literal value.

l ISNUMERIC: Evaluates whether the given RDF term is a numeric literal value.

l ISURI: Evaluates whether the given RDF term is a URI.

l LANG: Returns any language tags that are included with strings.

l LANGMATCHES: Evaluates whether a string includes a language tag that matches the

specified language range.

Informational or Testing Functions 1142

l LE: Evaluates whether one value is less than or equal to (<=) another value.

l LOCALNAME: Retrieves the local name from the given URI.

l LT: Evaluates whether one value is less than (<) another value.

l METADATAGRAPHURI: Returns the metadata graph URI for the given URI.

l NAMESPACE: Retrieves the namespace for the specified URI.

l SAMETERM: Evaluates whether two RDF term type values are the same.

CONTAINS

This function evaluates whether the specified strings contain the given pattern. Results are grouped

under "true" or "false."

Syntax

CONTAINS(text, pattern)

Argument Type Description

text string The string value that you want to check against the specified pattern.

pattern string The string pattern that you want to look for in the supplied text.

Returns

Type Description

boolean True if the strings contain the pattern and false if they do not.

GE

This function evaluates whether value1 is greater than or equal to (>=) value2.

Syntax

GE(value1, value2)

CONTAINS 1143

Argument Type Description

value1 numeric,
boolean,
dateTime,
RDF term

The number, boolean, datetime, literal, URI, or blank node value
to compare to value2. This is the value that will be checked to
see if it is greater than or equal to value2.

value2 numeric,
boolean,
dateTime,
RDF term

The number, boolean, datetime, literal, URI, or blank node value
to compare to value1.

Returns

Type Description

boolean True if value1 >= value2. False if not.

GT

This function evaluates whether value1 is greater than (>) value2.

Syntax

GE(value1, value2)

Argument Type Description

value1 numeric,
boolean,
dateTime,
RDF term

The number, boolean, datetime, literal, URI, or blank node value
to compare to value2. This is the value that will be checked to
see if it is greater than value2.

value2 numeric,
boolean,
dateTime,

The number, boolean, datetime, literal, URI, or blank node value
to compare to value1.

GT 1144

Argument Type Description

RDF term

Returns

Type Description

boolean True if value1 > value2. False if not.

ISBLANK

This function evaluates whether the given RDF term value is a blank node. It returns true if it is a

blank node or false if it is not.

Syntax

ISBLANK(value)

Argument Type Description

value RDF
term

The literal, URI, or blank node value to test and determine if it is a
blank node.

Returns

Type Description

boolean True if the term is a blank node and false if it is not.

ISDATATYPE

This function evaluates whether the given literal value is typed as the specified data type. It returns

true if the value is typed as the provided type or false if it is not.

Syntax

ISDATATYPE(value, datatype_uri)

ISBLANK 1145

Argument Type Description

value literal The literal value that you want to test against the datatype_uri.

datatype_uri URI The URI for the data type that you want to test the value against.

Returns

Type Description

boolean True if the literal is typed as specified data type and false if it is not.

ISERROR

This function tests whether the given RDF term evaluates to an error. It returns true if it does

evaluate to an error or false if it does not.

Note
The ISERROR function is only for use in queries that are run against the Anzo System

Datasource or other volume. It is invalid for graphmart queries.

Syntax

ISERROR(term)

Argument Type Description

term RDF term The literal, URI, or blank node value to evaluate for an error.

Returns

Type Description

boolean True if the term evaluates to an error and false if it does not.

ISERROR 1146

ISIRI

This function evaluates whether the given RDF term type value is an IRI. It returns true if the value

is an IRI or false if it is not.

Syntax

ISIRI(term)

Argument Type Description

term RDF term The literal, URI, or blank node value to evaluate whether it is an IRI.

Returns

Type Description

boolean True if the term is an IRI and false if it is not.

ISLITERAL

This function evaluates whether the given RDF term type value is a literal value. It returns true if

the value is a literal or false if it is not.

Syntax

ISLITERAL(term)

Argument Type Description

term RDF term The literal, URI, or blank node value to evaluate whether it is a literal.

Returns

Type Description

boolean True if the term is a literal value and false if it is not.

ISIRI 1147

ISNUMERIC

This function evaluates whether the given RDF term type value is a numeric literal. It returns true if

the value is a numeric literal or false if it is not.

Syntax

ISNUMERIC(term)

Argument Type Description

term RDF
term

The literal, URI, or blank node value to evaluate whether it is a
numeric literal.

Returns

Type Description

boolean True if the term is a numeric literal and false if it is not.

ISURI

This function evaluates whether the given RDF term type value is a URI. It returns true if the value

is a URI or false if it is not.

Syntax

ISURI(term)

Argument Type Description

term RDF term The literal, URI, or blank node value to evaluate whether it is a URI.

Returns

Type Description

boolean True if the term is a URI and false if it is not.

ISNUMERIC 1148

LANG

This function returns any language tags that are included in the string. The results are grouped by

each language tag or by "blank" if a value does not have a language tag.

Syntax

LANG(text)

Argument Type Description

text string The string to search for language tags.

Returns

Type Description

string The found language tags.

LANGMATCHES

This function tests whether a string includes a language tag that matches the specified language

range.

Syntax

LANGMATCHES(text, language_range)

Argument Type Description

text string The string to evaluate.

language_range string The language tag to match in the text.

Example

LANGMATCHES(LANG(?prop),"en")

LANG 1149

Returns

Type Description

boolean True if strings include a language tag that matches the range and false if they do
not.

LE

This function evaluates whether value1 is less than or equal to (<=) value2.

Syntax

LE(value1, value2)

Argument Type Description

value1 numeric,
boolean,
dateTime,
RDF term

The number, boolean, datetime, literal, URI, or blank node value
to compare to value2. This is the value that will be evaluated to
see if it is less than or equal to value2.

value2 numeric,
boolean,
dateTime,
RDF term

The number, boolean, datetime, literal, URI, or blank node value
to compare to value1.

Returns

Type Description

boolean True if value1 <= value2. False if not.

LOCALNAME

This function retrieves the local name from the given URI.

LE 1150

Syntax

LOCALNAME(uri)

Argument Type Description

uri URI The URI from which to retrieve the local name.

Returns

Type Description

string The local name.

LT

This function evaluates whether value1 is less than (<) value2.

Syntax

LT(value1, value2)

Argument Type Description

value1 numeric,
boolean,
dateTime, RDF
term

The number, boolean, datetime, or RDF term type value to
compare to value2. This is the value that will be evaluated to
see if it is less than value2.

value2 numeric,
boolean,
dateTime, RDF
term

The number, boolean, datetime, or RDF term type value to
compare to value1.

LT 1151

Returns

Type Description

boolean True if value1 < value2. False if not.

METADATAGRAPHURI

This function returns the metadata graph URI for the specified URI.

Syntax

METADATAGRAPHURI(uri)

Argument Type Description

uri URI The URI for which you want to return the corresponding metadata
graph URI.

Returns

Type Description

URI The metadata graph URI.

NAMESPACE

This function retrieves the namespace for the given URI.

Syntax

NAMESPACE(uri)

Argument Type Description

uri URI The URI from which to retrieve the namespace.

METADATAGRAPHURI 1152

Returns

Type Description

string The namespace.

SAMETERM

This function evaluates whether two RDF term type values are the same.

Syntax

SAMETERM(term1, term2)

Argument Type Description

term1 RDF term The first literal, URI, or blank node value to compare.

term2 RDF term The literal, URI, or blank node value to compare to term1.

Returns

Type Description

boolean True if the terms are the same and false if they are not.

SAMETERM 1153

Hash Functions

This topic describes the hash functions in Anzo.

Typographical Conventions

This documentation uses the following conventions in function syntax:

l CAPS: Although SPARQL is case-insensitive, function names and other keywords are written

in uppercase for readability.

l [argument]: Brackets are used to indicate optional arguments. Arguments without

brackets are required.

Functions

l MD5: Returns the MD5 checksum of a string as a hexadecimal string.

l SHA1: Calculates the SHA-1 digest of a string value.

l SHA224: Calculates the SHA-224 digest of a string value.

l SHA256: Calculates the SHA-256 digest of a string value.

l SHA384: Calculates the SHA-384 digest of a string value.

l SHA512: Calculates the SHA-512 digest of a string value.

MD5

This function returns the MD5 checksum of a string as a hexadecimal string.

Syntax

MD5(text)

Argument Type Description

text string The string for which to return the MD5 checksum.

Hash Functions 1154

Returns

Type Description

string The hexadecimal string.

SHA1

This function calculates the SHA-1 digest of a string.

Syntax

SHA1(text)

Argument Type Description

text string The string for which to calculate the SHA-1 digest.

Returns

Type Description

string The SHA-1 digest.

SHA224

This function calculates the SHA-224 digest of a string.

Syntax

SHA224(text)

Argument Type Description

text string The string for which to calculate the SHA-224 digest.

SHA1 1155

Returns

Type Description

string The SHA-224 digest.

SHA256

This function calculates the SHA-256 digest of a string.

Syntax

SHA256(text)

Argument Type Description

text string The string for which to calculate the SHA-256 digest.

Returns

Type Description

string The SHA-256 digest.

SHA384

This function calculates the SHA-384 digest of a string.

Syntax

SHA384(text)

Argument Type Description

text string The string for which to calculate the SHA-384 digest.

SHA256 1156

Returns

Type Description

string The SHA-384 digest.

SHA512

This function calculates the SHA-512 digest of a string.

Syntax

SHA512(text)

Argument Type Description

text string The string for which to calculate the SHA-512 digest.

Returns

Type Description

string The SHA-512 digest.

SHA512 1157

Window Aggregate and Ranking Functions

Window aggregates operate on a particular partition or window of the result set. Unlike grouped

aggregate functions that group the result set and return a single row, window aggregates retain the

resulting rows and return a value for each row. For example, using the grouped aggregate SUM

function to add the total number of tickets sold in a year returns one value: the total number of

tickets sold for the year. By using WINDOW_SUM, the results could be partitioned by month so that

the query returns 12 values: the sum of the number of tickets sold in each month of the year. This

topic describes the window aggregate functions in Anzo.

Typographical Conventions

This documentation uses the following conventions in function syntax:

l CAPS: Although SPARQL is case-insensitive, function names and other keywords are written

in uppercase for readability.

l [argument]: Brackets are used to indicate optional arguments. Arguments without

brackets are required.

Functions

l WINDOW_AVG: Calculates the average value of each group of values.

l WINDOW_COUNT: Counts the number of values in each group of values.

l WINDOW_MAX: Calculates the maximum value of each group of values.

l WINDOW_MIN: Calculates the minimum value of each group of values.

l WINDOW_NTILE: Divides the rows in the partition into the specified number of ranked groups

and returns the group that each value belongs to.

l WINDOW_PERCENTILE: Divides the rows in the partition into 100 ranked groups and returns

the group that each value belongs to.

l WINDOW_PERCENTILE_CONT: Calculates a percentile based on the continuous

distribution of the specified groups of values.

Window Aggregate and Ranking Functions 1158

l WINDOW_PERCENTILE_DISC: Calculates a percentile based on the discrete distribution of

the specified groups of values.

l WINDOW_PRODUCT: Calculates the product of each group of values.

l WINDOW_QUARTILE: Divides the rows in the partition into four ranked groups and returns

the group that each value belongs to.

l WINDOW_SUM: Calculates the sum of each group of values.

WINDOW_AVG

This function calculates the average value of each group of values.

Syntax

WINDOW_AVG(value [, partition_over] [, order_by] [, order]

[, start_frame_type] [, start_frame_value]

[, end_frame_type] [, end_frame_value])

Argument Type Description

value numeric Required argument that defines the groups of values to operate on.

partition_
over

variable Optional argument that partitions the results into groups of rows. If
you do not include partition_over, the partition becomes the
entire set identified by value.

order_by variable Optional argument that defines the order or sequence of rows
within each partition.

order boolean Optional argument that controls whether the order is ascending or
descending. When true, the order is ascending. When false, the
order is descending.

start_frame_
type

string When order_by is specified, the optional start_frame_type,
start_frame_value, end_frame_type, and end_frame_

WINDOW_AVG 1159

Argument Type Description

value arguments can be included to refine the set of rows to
include in the partitions or groups.

The start_frame_type argument defines the starting row of

the partition and can be one of the following values:

l CURRENT ROW

l UNBOUNDED PRECEDING

l PRECEDING start_frame_value

l FOLLOWING start_frame_value

start_frame_
value

int Optional argument that specifies the starting row based on the
start_frame_type value.

end_frame_
type

string This argument defines the ending row of the partition and can be
one of the following values:

l CURRENT ROW

l UNBOUNDED FOLLOWING

l PRECEDING end_frame_value

l FOLLOWING end_frame_value

end_frame_
value

int Optional argument that specifies the ending row based on the end_
frame_type value.

Returns

Type Description

int The average values.

WINDOW_AVG 1160

WINDOW_COUNT

This function counts the number of values in each group of values.

Syntax

WINDOW_COUNT(value [, partition_over] [, order_by] [, order]

[, start_frame_type] [, start_frame_value]

[, end_frame_type] [, end_frame_value])

Argument Type Description

value numeric Required argument that defines the groups of values to operate on.

partition_
over

variable Optional argument that partitions the results into groups of rows. If
you do not include partition_over, the partition becomes the
entire set identified by value.

order_by variable Optional argument that defines the order or sequence of rows
within each partition.

order boolean Optional argument that controls whether the order is ascending or
descending. When true, the order is ascending. When false, the
order is descending.

start_frame_
type

string When order_by is specified, the optional start_frame_type,
start_frame_value, end_frame_type, and end_frame_
value arguments can be included to refine the set of rows to
include in the partitions or groups.

The start_frame_type argument defines the starting row of

the partition and can be one of the following values:

l CURRENT ROW

l UNBOUNDED PRECEDING

l PRECEDING start_frame_value

WINDOW_COUNT 1161

Argument Type Description

l FOLLOWING start_frame_value

start_frame_
value

int Optional argument that specifies the starting row based on the
start_frame_type value.

end_frame_
type

string This argument defines the ending row of the partition and can be
one of the following values:

l CURRENT ROW

l UNBOUNDED FOLLOWING

l PRECEDING end_frame_value

l FOLLOWING end_frame_value

end_frame_
value

int Optional argument that specifies the ending row based on the end_
frame_type value.

Returns

Type Description

int The counts of values.

WINDOW_MAX

This function calculates the maximum value of each group of values.

Syntax

WINDOW_MAX(value [, partition_over] [, order_by] [, order]

[, start_frame] [, start_frame_type] [, start_frame_value]

[, end_frame_type] [, end_frame_value])

WINDOW_MAX 1162

Argument Type Description

value numeric Required argument that defines the groups of values to operate on.

partition_
over

variable Optional argument that partitions the results into groups of rows. If
you do not include partition_over, the partition becomes the
entire set identified by value.

order_by variable Optional argument that defines the order or sequence of rows
within each partition.

order boolean Optional argument that controls whether the order is ascending or
descending. When true, the order is ascending. When false, the
order is descending.

start_frame_
type

string When order_by is specified, the optional start_frame_type,
start_frame_value, end_frame_type, and end_frame_
value arguments can be included to refine the set of rows to
include in the partitions or groups.

The start_frame_type argument defines the starting row of

the partition and can be one of the following values:

l CURRENT ROW

l UNBOUNDED PRECEDING

l PRECEDING start_frame_value

l FOLLOWING start_frame_value

start_frame_
value

int Optional argument that specifies the starting row based on the
start_frame_type value.

end_frame_
type

string This argument defines the ending row of the partition and can be
one of the following values:

WINDOW_MAX 1163

Argument Type Description

l CURRENT ROW

l UNBOUNDED FOLLOWING

l PRECEDING end_frame_value

l FOLLOWING end_frame_value

end_frame_
value

int Optional argument that specifies the ending row based on the end_
frame_type value.

Returns

Type Description

int The maximum values.

WINDOW_MIN

This function calculates the minimum value of each group of values.

Syntax

WINDOW_MIN(value [, partition_over] [, order_by] [, order]

[, start_frame_type] [, start_frame_value]

[, end_frame_type] [, end_frame_value])

Argument Type Description

value numeric Required argument that defines the groups of values to operate on.

partition_
over

variable Optional argument that partitions the results into groups of rows. If
you do not include partition_over, the partition becomes the
entire set identified by value.

order_by variable Optional argument that defines the order or sequence of rows

WINDOW_MIN 1164

Argument Type Description

within each partition.

order boolean Optional argument that controls whether the order is ascending or
descending. When true, the order is ascending. When false, the
order is descending.

start_frame_
type

string When order_by is specified, the optional start_frame_type,
start_frame_value, end_frame_type, and end_frame_
value arguments can be included to refine the set of rows to
include in the partitions or groups.

The start_frame_type argument defines the starting row of

the partition and can be one of the following values:

l CURRENT ROW

l UNBOUNDED PRECEDING

l PRECEDING start_frame_value

l FOLLOWING start_frame_value

start_frame_
value

int Optional argument that specifies the starting row based on the
start_frame_type value.

end_frame_
type

string This argument defines the ending row of the partition and can be
one of the following values:

l CURRENT ROW

l UNBOUNDED FOLLOWING

l PRECEDING end_frame_value

l FOLLOWING end_frame_value

WINDOW_MIN 1165

Argument Type Description

end_frame_
value

int Optional argument that specifies the ending row based on the end_
frame_type value.

Returns

Type Description

int The minimum values.

WINDOW_NTILE

This function divides the rows in the partition into the specified number of ranked groups and returns

the group that each value belongs to.

Syntax

WINDOW_NTILE(ntile, value, order_by [, partition_over])

Argument Type Description

ntile int Required argument that specifies the number of ranking groups.

value numeric Required argument that defines the groups of values to operate on.

order_by variable Required argument that defines the order or sequence of rows
within each partition.

partition_
over

variable Optional argument that partitions the results into groups of rows. If
you do not include partition_over, the partition becomes the
entire set identified by value.

WINDOW_NTILE 1166

Returns

Type Description

int The group that the values belong to.

WINDOW_PERCENTILE

This function divides the rows in the partition into 100 ranked groups and returns the group that

each value belongs to.

Syntax

WINDOW_PERCENTILE(value, order_by [, partition_over])

Argument Type Description

value numeric Required argument that defines the groups of values to operate on.

order_by variable Required argument that defines the order or sequence of rows
within each partition.

partition_
over

variable Optional argument that partitions the results into groups of rows. If
you do not include partition_over, the partition becomes the
entire set identified by value.

Returns

Type Description

int The group that the values belong to.

WINDOW_PERCENTILE_CONT

This function calculates a percentile based on the continuous distribution of the specified groups of

values. The returned value is interpolated and may not be equal to any of the values in the group.

WINDOW_PERCENTILE 1167

Syntax

WINDOW_PERCENTILE_CONT(percentile, value, order_by [, partition_over])

Argument Type Description

percentile int Required argument that specifies the percentile for the calculation.

value numeric Required argument that defines the groups of values to operate on.

order_by variable Required argument that defines the order or sequence of rows
within each partition.

partition_
over

variable Optional argument that partitions the results into groups of rows. If
you do not include partition_over, the partition becomes the
entire set identified by value.

Returns

Type Description

int The interpolated percentiles.

WINDOW_PERCENTILE_DISC

This function calculates a percentile based on the discrete distribution of the specified groups of

values.

Syntax

WINDOW_PERCENTILE_DISC(percentile, value, order_by [, partition_over])

Argument Type Description

percentile int Required argument that specifies the percentile for the calculation.

WINDOW_PERCENTILE_DISC 1168

Argument Type Description

value numeric Required argument that defines the groups of values to operate on.

order_by variable Required argument that defines the order or sequence of rows
within each partition.

partition_
over

variable Optional argument that partitions the results into groups of rows. If
you do not include partition_over, the partition becomes the
entire set identified by value.

Returns

Type Description

int The percentiles based on the discrete distribution of the groups.

WINDOW_PRODUCT

This function calculates the product of each group of values.

Syntax

WINDOW_PRODUCT(value [, partition_over] [, order_by] [, order]

[, start_frame_type] [, start_frame_value]

[, end_frame_type] [, end_frame_value])

Argument Type Description

value numeric Required argument that defines the groups of values to operate on.

partition_
over

variable Optional argument that partitions the results into groups of rows. If
you do not include partition_over, the partition becomes the
entire set identified by value.

order_by variable Optional argument that defines the order or sequence of rows

WINDOW_PRODUCT 1169

Argument Type Description

within each partition.

order boolean Optional argument that controls whether the order is ascending or
descending. When true, the order is ascending. When false, the
order is descending.

start_frame_
type

string When order_by is specified, the optional start_frame_type,
start_frame_value, end_frame_type, and end_frame_
value arguments can be included to refine the set of rows to
include in the partitions or groups.

The start_frame_type argument defines the starting row of

the partition and can be one of the following values:

l CURRENT ROW

l UNBOUNDED PRECEDING

l PRECEDING start_frame_value

l FOLLOWING start_frame_value

start_frame_
value

int Optional argument that specifies the starting row based on the
start_frame_type value.

end_frame_
type

string This argument defines the ending row of the partition and can be
one of the following values:

l CURRENT ROW

l UNBOUNDED FOLLOWING

l PRECEDING end_frame_value

l FOLLOWING end_frame_value

WINDOW_PRODUCT 1170

Argument Type Description

end_frame_
value

int Optional argument that specifies the ending row based on the end_
frame_type value.

Returns

Type Description

int The products of the groups.

WINDOW_QUARTILE

This function divides the rows in the partition into four ranked groups and returns the group that

each value belongs to.

Syntax

WINDOW_QUARTILE(value, order_by [, partition_over])

Argument Type Description

value numeric Required argument that defines the groups of values to operate on.

order_by variable Required argument that defines the order or sequence of rows
within each partition.

partition_
over

variable Optional argument that partitions the results into groups of rows. If
you do not include partition_over, the partition becomes the
entire set identified by value.

Returns

Type Description

int The group that the values belong to.

WINDOW_QUARTILE 1171

WINDOW_SUM

This function calculates the sum of each group of values.

Syntax

WINDOW_SUM(value [, partition_over] [, order_by] [, order]

[, start_frame_type] [, start_frame_value]

[, end_frame_type] [, end_frame_value])

Argument Type Description

value numeric Required argument that defines the groups of values to operate on.

partition_
over

variable Optional argument that partitions the results into groups of rows. If
you do not include partition_over, the partition becomes the
entire set identified by value.

order_by variable Optional argument that defines the order or sequence of rows
within each partition.

order boolean Optional argument that controls whether the order is ascending or
descending. When true, the order is ascending. When false, the
order is descending.

start_frame_
type

string When order_by is specified, the optional start_frame_type,
start_frame_value, end_frame_type, and end_frame_
value arguments can be included to refine the set of rows to
include in the partitions or groups.

The start_frame_type argument defines the starting row of

the partition and can be one of the following values:

l CURRENT ROW

l UNBOUNDED PRECEDING

l PRECEDING start_frame_value

WINDOW_SUM 1172

Argument Type Description

l FOLLOWING start_frame_value

start_frame_
value

int Optional argument that specifies the starting row based on the
start_frame_type value.

end_frame_
type

string This argument defines the ending row of the partition and can be
one of the following values:

l CURRENT ROW

l UNBOUNDED FOLLOWING

l PRECEDING end_frame_value

l FOLLOWING end_frame_value

end_frame_
value

int Optional argument that specifies the ending row based on the end_
frame_type value.

Returns

Type Description

int The sum of each group.

Example

The example below first creates data by running the following INSERT DATA query in a graphmart

Query Step:

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX ex: <http://example.com/csi#>

INSERT DATA {

GRAPH ${targetGraph} {

ex:sale1 ex:date "2014-05-23T10:20:13"^^xsd:dateTime ; ex:volume 15 .

ex:sale2 ex:date "2014-06-23T10:20:13"^^xsd:dateTime ; ex:volume 3 .

ex:sale3 ex:date "2014-06-23T10:22:13"^^xsd:dateTime ; ex:volume 35 .

WINDOW_SUM 1173

ex:sale4 ex:date "2014-07-23T10:20:13"^^xsd:dateTime ; ex:volume 66 .

ex:sale5 ex:date "2014-09-23T10:20:13"^^xsd:dateTime ; ex:volume 19 .

ex:sale6 ex:date "2014-11-23T10:20:13"^^xsd:dateTime ; ex:volume 33 .

ex:sale7 ex:date "2014-12-23T10:20:13"^^xsd:dateTime ; ex:volume 12 .

}

}

The following query against the new data uses the WINDOW_SUM function to return the total

volume of sales for each month:

PREFIX ex: <http://example.com/csi#>

SELECT DISTINCT ?Month ?Total_Volume

WHERE {

{

SELECT

?Month (WINDOW_SUM(?o, ?Month) AS ?Total_Volume)

WHERE {

?s ex:volume ?o .

?s ex:date ?date .

BIND (MONTH(?date) AS ?Month)

}

}

}

The query returns the following results:

Month | Total_Volume

------+-------------

5 | 15

6 | 38

7 | 66

9 | 19

11 | 33

12 | 12

WINDOW_SUM 1174

Develop

The topics in this section provide information for developers.

In this section:
Anzo Rest API 1176

Anzo Java SDK 1233

Develop 1175

Anzo Rest API

Anzo includes a REST API that you can use when developing applications or automation tasks. The

API supports create, read, update, and delete operations on datasets, graphmarts, data layers, and

steps. The interface also supports read and update operations for artifact access control lists,

upload, download, and delete operations for models, run and cancel operations for unstructured

pipelines, import and export operations for migration packages, and read operations for dynamic

launch configurations and static AnzoGraph instances.

The topics in this section give an overview of the API, list the options for viewing the detailed

documentation, provide instructions for enabling CORS, and describe the schemas for the data

layer step types.

In this section:
Introduction to the API 1177

Viewing the API Documentation 1180

Enabling Cross-Origin Resource Sharing 1181

Step Type Schemas 1183

Anzo Rest API 1176

Introduction to the API

The API supports create, read, update, and delete operations on datasets, graphmarts, data layers,

and steps. The interface also supports read and update operations for artifact access control lists,

upload, download, and delete operations for models, run and cancel operations for unstructured

pipelines, import and export operations for migration packages, and read operations for dynamic

launch configurations and static AnzoGraph instances.

This topic gives a summary of the API request URL, endpoints and methods, URI encoding

requirements, and error handling.

l Request URL

l Endpoints and Methods

l URI Encoding Requirements

l Error Handling

Request URL

The path in the URL that you use to access the REST API endpoints (as well as the documentation

on your Anzo server) differs depending on the version of Anzo that is installed:

l In 5.4.1 releases, the URL is https://<hostname>/api/v1/<endpoint>.

l In 5.4.2+ releases, the URL is https://<hostname>/api/<endpoint>.

The v1 in the path was removed in 5.4.2. The URL to access the documentation on your Anzo

server was also changed from https://<hostname>/api/v1/docs/index.html in 5.4.1 to

https://<hostname>/api/docs/index.html in 5.4.2.

Endpoints and Methods

There is an endpoint for each type of Anzo artifact or object (dataset, edition, model, graphmart,

layer, step, etc.). Each endpoint supports a subset or all of the following methods:

Introduction to the API 1177

l POST or PUT for create

l GET for reads

l PATCH for updates

l DELETE for delete

URI Encoding Requirements

When including a URI (e.g., a graphmart, layer, or step URI) in a request URL, the URI must be

URL-encoded. The following example shows a layer URI,

http://cambridgesemantics.com/Layer/858c521bc7d84364a5a2112e38dc0b52, that

has been URL-encoded:

http%3A%2F%2Fcambridgesemantics.com%2FLayer%2F858c521bc7d84364a5a2112e38dc0b52

The encoded value should be used in the request URL. For example, the following request retrieves

the status of the layer:

http://10.100.0.10:8080/api/layers/http%3A%2F%2Fcambridgesemantics.com%2FLayer%2F858c52

1bc7d84364a5a2112e38dc0b52/status

Note
URIs that appear in the body of a request do not need to be URL-encoded.

An error message such as the one below indicates that a request URL included a URI that was not

URL-encoded:

{

"summary": "Rest API Error: No handler found for GET

/api/graphmarts/http://cambridgesemantics.com/Graphmart/811ece67d61e436cb128a929797b68d

f",

"detail": "No handler found for GET

/api/graphmarts/http://cambridgesemantics.com/Graphmart/811ece67d61e436cb128a929797b68d

f"

}

To resolve the error, encode the URI as a URL and then resend the request.

Introduction to the API 1178

Error Handling

Errors returned from the API contain a summary and detailed message. Stack traces from the

server are not included in API responses. Stack traces can be obtained via the server logs. The

documentation describes the error codes and response details.

Introduction to the API 1179

Viewing the API Documentation

An Open API definition is used to generate the API documentation. There are two ways to view the

document:

l Access the document on your Anzo server at the following URL:

https://<hostname>/api/docs/index.html

Note
In releases prior to 5.4.2, the URL to view the documentation on your server is

https://<hostname>/api/v1/docs/index.html.

Where <hostname> is the Anzo server DNS name or IP address. When you access the API

documentation on your server, a Try It Out button is available for each request. Clicking Try It
Out opens a request body that you can edit and execute against the server.

l Access the document on the Cambridge Semantics documentation website at the following

URL:

https://docs.cambridgesemantics.com/anzo/v5.4/api/

This version of the documentation is static and the Try It Out functionality is disabled.

However, it remains available if you are unable to access the Anzo server.

Viewing the API Documentation 1180

https://docs.cambridgesemantics.com/anzo/v5.4/api/

Enabling Cross-Origin Resource Sharing

By default, cross-origin resource sharing (CORS) is disabled for the Anzo REST API service. If you

plan to access the API from a web client and need to enable cross-origin requests, follow the steps

below.

1. In the Administration application, expand the Servers menu and click Advanced
Configuration. Click I understand and accept the risk.

2. Search for the Anzo REST API bundle and view its details.

3. Click the Services tab and expand Anzo REST API.

4. Locate the org.openanzo.servlet.allowCrossOriginAccess property (shown in the image
below).

Enabling Cross-Origin Resource Sharing 1181

5. Click the property to make it editable, and then change false to true.

6. Click the checkmark icon () for that property to save the change.

7. Restart Anzo to apply the configuration change.

The Anzo API service is now configured to allow cross-origin requests. As an example of a CORS

request, the following snippet from a React application reloads a graphmart via an API call. The

request retrieves an authorization token and configures an Axios request object with the token and

CORS-related headers:

export default async function reloadAnzo() {

const authorization = getAnzoAuth(); //basicAuth

console.log('Authorization', authorization);

const config: AxiosRequestConfig = {

headers: {

Authorization: authorization,

'Access-Control-Allow-Origin': '*',

'Access-Control-Allow-Credentials': true,

'Access-Control-Allow-Methods': 'POST, OPTIONS',

},

};

const url =

'https://{{AnzoURL}}/api/v1/graphmarts/{{GraphmartIRI}}/reload';

try {

const success = await axios.post(url, config);

console.log('return', success);

return success;

} catch (error) {

console.log(error);

return {error};

}

}

Enabling Cross-Origin Resource Sharing 1182

Step Type Schemas

This section provides reference information for each type of step that can be created or updated via

the Anzo REST API. For each step type in the list below, there is a JSON request that includes all of

the step's body parameters, excluding the read-only options. Below the request is a description of

the step's schema, including the read-only parameters.

In this section:
Direct Load Step 1183

Elasticsearch Indexing Step 1187

Elasticsearch Snapshot Step 1191

Export Step 1195

Load Dataset Step 1202

Pre-Compile Query Step 1207

Query-Driven Templated Step 1211

Query Step 1215

RDFS+ Inference Step 1219

Templated Step 1222

Validation Step 1227

Direct Load Step

This type of step loads data directly from an external source.

JSON Request

The following template shows the body of a JSON request that could be used in a Direct Load Step

PUT or PATCH request. It lists all of the step's required and optional body parameters but excludes

the read-only options. The default values for each parameter are shown. Below the request (in

Schema Details) is a table that describes the complete schema, including the read-only parameters.

Clicking a link in the template takes you to the schema details for that parameter.

Step Type Schemas 1183

{

"title" : "string",

"transformQuery" : "string",

"incrementalData" : ["string"],

"type" : "DirectLoadStep",

"enabled" : true,

"contextProvider" : ["string"],

"description" : "string",

"ontology" : ["string"],

"source" : ["string"],

"ignoreLoadErrors" : true,

"disableLoadCounts" : true,

"preGenerateStatistics" : true,

"tags" : [{

"description" : "string",

"title" : "string"

}],

"tagTitle" : ["string"]

}

Schema Details

The table below describes the Direct Load Step schema.

Tip
You can also see the Direct Load Step schema by expanding Schemas at the bottom of the

Anzo REST API document and viewing DirectLoadStep.

Property Format
Require-
d?

Description

uri (read-only) "uri" Auto-
generat
ed

The URI of the step.

creator (read-
only)

"uri" Auto-
generat
ed

The creator of the step.

Direct Load Step 1184

Property Format
Require-
d?

Description

created (read-
only)

"dateTi
me"

Auto-
generat
ed

The timestamp when the step was created.

modifier (read-
only)

"uri" Auto-
generat
ed

The user who modified the step.

alltypes (read-
only)

Array of
strings

Optional A list of the types related to the step, such as
DirectLoadStep, Step, LayerChild, etc.

contextAttribut
e (read-only)

Array of
strings

Optional A list of any context attributes that are used.

title "string" Require
d

The name of the step.

transformQuer
y

"string" Require
d

The SPARQL query to run.

incrementalDat
a

"string" Optional Incremental load data associated with the step.

type "string" Require
d

The type of step: "DirectLoadStep".

enabled boolean Optional Controls whether the step is enabled or disabled.

contextProvide
r

["uri", "..
."]

Optional A list of any referenced context providers (the data
source URI). You can retrieve data for the parent layer
to get a list of providers for that layer.

Direct Load Step 1185

Property Format
Require-
d?

Description

description "string" Optional A brief description of the step.

ontology ["uri", "..
."]

Optional This type of step automatically generates a managed
model that is owned and managed by the data layer
that contains the Direct Load Step. If you would like to
associate additional models with this step, you can
include the URIs for those models. For more
information about managed models, see Managed
Model Concepts.

source ["uri", "..
."]

Require
d

The source data for the step. Options are any
combination of the following values:

l "http://cambridgesemantics.com/ontologies/Gr

aphmarts#Self": The source is the data that is

in this step's layer.

l "http://cambridgesemantics.com/ontologies/Gr

aphmarts#AllPrevious": The source is the data

from all of the successful layers that precede

this step's layer. Failed layers are ignored.

l "http://cambridgesemantics.com/ontologies/Gr

aphmarts#Previous": The source is the data

that is in the one layer that precedes this step's

layer.

l "layer_uri": The source is a specific layer in the

graphmart.

ignoreLoadErr
ors

boolean Optional Controls whether to ignore errors and proceed with the
load or fail the step if there is an error.

Direct Load Step 1186

Property Format
Require-
d?

Description

disableLoadCo
unts

boolean Optional Controls whether Anzo periodically queries
AnzoGraph to count the total number of statements
that are processed. Disabling the load count
decreases the number of queries that run during
activation.

preGenerateSt
atistics

boolean Optional Controls whether AnzoGraph generates statistics on
the data before the step is run.

tags Array of
objects

Optional Any tags on the step.

tagTitle ["string"] Optional A virtual property that is available for all objects. It lists
the tags associated with the step or can be used to add
a tag to the step without including a description.

Elasticsearch Indexing Step

This type of step creates an Elasticsearch index to associate with a layer.

JSON Request

The following template shows the body of a JSON request that could be used in an Elasticsearch

Indexing Step PUT or PATCH request. It lists all of the step's required and optional body parameters

but excludes the read-only options. The default values for each parameter are shown. Below the

request (in Schema Details) is a table that describes the complete schema, including the read-only

parameters. Clicking a link in the template takes you to the schema details for that parameter.

{

"elasticsearchIndexingQuery" : "string",

"title" : "string",

"incrementalData" : ["string"],

"type" : "ElasticsearchIndexingStep",

Elasticsearch Indexing Step 1187

"enabled" : true,

"contextProvider" : ["string"],

"description" : "string",

"ontology" : ["string"],

"source" : ["string"],

"ignoreLoadErrors" : true,

"disableLoadCounts" : true,

"preGenerateStatistics" : true,

"tags" : [{

"description" : "string",

"title" : "string"

}],

"tagTitle" : ["string"]

}

Schema Details

The table below describes the Elasticsearch Indexing Step schema.

Tip
You can also see the Elasticsearch Indexing Step schema by expanding Schemas at the
bottom of the Anzo REST API document and viewing ElasticsearchIndexingStep.

Property Format
Requir-
ed?

Description

uri (read-only) "uri" Auto-
generat
ed

The URI of the step.

creator (read-only) "uri" Auto-
generat
ed

The creator of the step.

created (read-only) "dateTi
me"

Auto-
generat
ed

The timestamp when the step was created.

Elasticsearch Indexing Step 1188

Property Format
Requir-
ed?

Description

modifier (read-only) "uri" Auto-
generat
ed

The user who modified the step.

alltypes (read-only) Array of
strings

Optiona
l

A list of the types related to the step, such as
ElasticsearchIndexingStep, Step, LayerChild, etc.

contextAttribute
(read-only)

Array of
strings

Optiona
l

A list of any context attributes that are used.

elasticsearchIndex
ingQuery

"string" Require
d

The SPARQL query to run for creating the
Elasticsearch index.

title "string" Require
d

The name of the step.

incrementalData "string" Optiona
l

Incremental load data associated with the step.

type "string" Require
d

The type of step: "ElasticsearchIndexingStep".

enabled boolean Optiona
l

Controls whether the step is enabled or disabled.

contextProvider ["uri", ".
.."]

Optiona
l

A list of any referenced context providers (the data
source URI). You can retrieve data for the parent
layer to get a list of providers for that layer.

description "string" Optiona
l

A brief description of the step.

Elasticsearch Indexing Step 1189

Property Format
Requir-
ed?

Description

ontology ["uri", ".
.."]

Optiona
l

A list of any models to associate with this step.

source ["uri", ".
.."]

Require
d

The source data for the step. Options are any
combination of the following values:

l "http://cambridgesemantics.com/ontologies/

Graphmarts#Self": The source is the data

that is in this step's layer.

l "http://cambridgesemantics.com/ontologies/

Graphmarts#AllPrevious": The source is the

data from all of the successful layers that

precede this step's layer. Failed layers are

ignored.

l "http://cambridgesemantics.com/ontologies/

Graphmarts#Previous": The source is the

data that is in the one layer that precedes

this step's layer.

l "layer_uri": The source is a specific layer in

the graphmart.

ignoreLoadErrors boolean Optiona
l

Controls whether to ignore errors and proceed with
the load or fail the step if there is an error.

disableLoadCount
s

boolean Optiona
l

Controls whether Anzo periodically queries
AnzoGraph to count the total number of statements
that are processed. Disabling the load count
decreases the number of queries that run during
activation.

Elasticsearch Indexing Step 1190

Property Format
Requir-
ed?

Description

preGenerateStatist
ics

boolean Optiona
l

Controls whether AnzoGraph generates statistics on
the data before the step is run.

tags Array of
objects

Optiona
l

Any tags on the step.

tagTitle ["strin
g"]

Optiona
l

A virtual property that is available for all objects. It
lists the tags associated with the step or can be used
to add a tag to the step without including a
description.

Elasticsearch Snapshot Step

This type of step creates an Elasticsearch snapshot of the index associated with a layer.

JSON Request

The following template shows the body of a JSON request that could be used in an Elasticsearch

Snapshot Step PUT or PATCH request. It lists all of the step's required and optional body

parameters but excludes the read-only options. The default values for each parameter are shown.

Below the request (in Schema Details) is a table that describes the complete schema, including the

read-only parameters. Clicking a link in the template takes you to the schema details for that

parameter.

{

"gmLinkedDataset" : "string",

"title" : "string",

"incrementalData" : ["string"],

"type" : "ElasticsearchSnapshotStep",

"enabled" : true,

"contextProvider" : ["string"],

"description" : "string",

"ontology" : ["string"],

"source" : ["string"],

Elasticsearch Snapshot Step 1191

"ignoreLoadErrors" : true,

"disableLoadCounts" : true,

"preGenerateStatistics" : true,

"tags" : [{

"description" : "string",

"title" : "string"

}],

"tagTitle" : ["string"]

}

Schema Details

The table below describes the Elasticsearch Snapshot Step schema.

Tip
You can also see the Elasticsearch Snapshot Step schema by expanding Schemas at the
bottom of the Anzo REST API document and viewing ElasticsearchSnapshotStep.

Property Format
Require-
d?

Description

uri (read-only) "uri" Auto-
generat
ed

The URI of the step.

creator (read-
only)

"uri" Auto-
generat
ed

The creator of the step.

created (read-
only)

"dateTi
me"

Auto-
generat
ed

The timestamp when the step was created.

modifier (read-
only)

"uri" Auto-
generat
ed

The user who modified the step.

Elasticsearch Snapshot Step 1192

Property Format
Require-
d?

Description

alltypes (read-
only)

Array of
strings

Optional A list of the types related to the step, such as
ElasticsearchSnapshotStep, Step, LayerChild, etc.

contextAttribut
e (read-only)

Array of
strings

Optional A list of any context attributes that are used.

gmLinkedData
set

"uri" Require
d

The URI of the Linked Dataset Catalog entry that
represents the target FLDS for the export. To get the
catalog entry, you can retrieve data about the dataset
and use the catalogEntry value.

title "string" Require
d

The name of the step.

incrementalDat
a

"string" Optional Incremental load data associated with the step.

type "string" Require
d

The type of step: "ElasticsearchSnapshotStep".

enabled boolean Optional Controls whether the step is enabled or disabled.

contextProvide
r

["uri", "..
."]

Optional A list of any referenced context providers (the data
source URI). You can retrieve data for the parent layer
to get a list of providers for that layer.

description "string" Optional A brief description of the step.

ontology ["uri", "..
."]

Optional A list of any models to associate with this step.

Elasticsearch Snapshot Step 1193

Property Format
Require-
d?

Description

source ["uri", "..
."]

Require
d

The source data for the step. Options are any
combination of the following values:

l "http://cambridgesemantics.com/ontologies/Gr

aphmarts#Self": The source is the data that is

in this step's layer.

l "http://cambridgesemantics.com/ontologies/Gr

aphmarts#AllPrevious": The source is the data

from all of the successful layers that precede

this step's layer. Failed layers are ignored.

l "http://cambridgesemantics.com/ontologies/Gr

aphmarts#Previous": The source is the data

that is in the one layer that precedes this step's

layer.

l "layer_uri": The source is a specific layer in the

graphmart.

ignoreLoadErr
ors

boolean Optional Controls whether to ignore errors and proceed with the
load or fail the step if there is an error.

disableLoadCo
unts

boolean Optional Controls whether Anzo periodically queries
AnzoGraph to count the total number of statements
that are processed. Disabling the load count
decreases the number of queries that run during
activation.

preGenerateSt
atistics

boolean Optional Controls whether AnzoGraph generates statistics on
the data before the step is run.

Elasticsearch Snapshot Step 1194

Property Format
Require-
d?

Description

tags Array of
objects

Optional Any tags on the step.

tagTitle ["string"] Optional A virtual property that is available for all objects. It lists
the tags associated with the step or can be used to add
a tag to the step without including a description.

Export Step

This type of step exports the contents of a graphmart to an FLDS on disk.

JSON Request

The following template shows the body of a JSON request that could be used in an Export Step PUT

or PATCH request. It lists all of the step's required and optional body parameters but excludes the

read-only options. The default values for each parameter are shown. Below the request (in Schema

Details) is a table that describes the complete schema, including the read-only parameters. Clicking

a link in the template takes you to the schema details for that parameter.

{

"doNotCreateEditionsOnExport" : true,

"generateMetrics" : true,

"exportBinaryStoreContents" : true,

"overwriteFlds" : true,

"alwaysMoveBinaryStore" : true,

"gmLinkedDataset" : "string",

"edition" : "string",

"elasticsearchBulkSize" : 0,

"elasticsearchBulkActions" : 0,

"elasticsearchBulkMaxThreadsPerFlds" : 0,

"elasticsearchBulkConcurrentRequests" : 0,

"keepEsIndexOnline" : true,

"elasticsearchBulkMaxFldsThreads" : 0,

"maxComponentsInEdition" : 0,

"elasticsearchIndexSettings" : "string",

"exportElasticSearchContents" : true,

Export Step 1195

"title" : "string",

"incrementalData" : ["string"],

"type" : "ExportStep",

"enabled" : true,

"contextProvider" : ["string"],

"description" : "string",

"ontology" : ["string"],

"source" : ["string"],

"ignoreLoadErrors" : true,

"disableLoadCounts" : true,

"preGenerateStatistics" : true,

"tags" : [{

"description" : "string",

"title" : "string"

}],

"tagTitle" : ["string"]

}

Schema Details

The table below describes the Export Step schema.

Tip
You can also see the Export Step schema by expanding Schemas at the bottom of the Anzo

REST API document and viewing ExportStep.

Property
Forma-
t

Requir-
ed?

Description

uri (read-only) "uri" Auto-
genera
ted

The URI of the step.

creator (read-only) "uri" Auto-
genera
ted

The creator of the step.

created (read-only) "dateTi Auto- The timestamp when the step was created.

Export Step 1196

Property
Forma-
t

Requir-
ed?

Description

me" genera
ted

modifier (read-only) "uri" Auto-
genera
ted

The user who modified the step.

alltypes (read-only) Array
of
strings

Option
al

A list of the types related to the step, such as
ExportStep, Step, LayerChild, etc.

contextAttribute (read-
only)

Array
of
strings

Option
al

A list of any context attributes that are used.

doNotCreateEditionsOn
Export

boolea
n

Option
al

Controls whether a new edition is created for the
dataset each time the step is run.

generateMetrics boolea
n

Option
al

Controls whether a data profile is generated
before the data is exported. If you load the
exported files in the future, the data profile is
also loaded.

exportBinaryStoreCont
ents

boolea
n

Option
al

Applies to exports of unstructured graphmarts
and controls whether the binary store is
exported along with the data.

overwriteFlds boolea
n

Option
al

Controls whether the existing FLDS is replaced
with the exported files whenever the step is run
or whether the exported files are added to the
existing FLDS.

Export Step 1197

Property
Forma-
t

Requir-
ed?

Description

When overwriteFlds is true, Anzo

archives the existing files in a new

timestamped export subdirectory under the

FLDS directory each time the step runs. If you

add the exported dataset to a graphmart, only

the latest version of the data will be loaded.

When overwriteFlds is false, Anzo adds

all of the exported datasets to a cumulative

export directory under the FLDS directory. The

dataset will contain the original files as well as

all cumulative working editions. If you add this

dataset to a graphmart, all of the data from all

of the subdirectories will be loaded.

alwaysMoveBinaryStor
e

boolea
n

Option
al

This option also applies to exports of
unstructured graphmarts and controls whether
the binary store is moved or copied during the
export. Since the binary store can be large and
have a nested structure, copying the data can
take a very long time. Since moving the binary
store is almost instantaneous, however, leaving
this option set to true can reduce the time it
takes to complete the export.

gmLinkedDataset "uri" Requir
ed

The URI of the Linked Dataset Catalog entry that
represents the target FLDS for the export. To get
the catalog entry, you can retrieve data about
the dataset and use the catalogEntry value.

Export Step 1198

Property
Forma-
t

Requir-
ed?

Description

edition "uri" Option
al

The URI of the edition that will be created on
export.

elasticsearchBulkSize long Option
al

The maximum batch size in MB.

elasticsearchBulkActio
ns

int Option
al

The maximum number of documents to include
in each batch.

elasticsearchBulkMaxT
hreadsPerFlds

int Option
al

The maximum number of threads to use for
indexing per FLDS.

elasticsearchBulkConc
urrentRequests

int Option
al

The maximum number of bulk requests that can
run concurrently.

keepEsIndexOnline boolea
n

Option
al

Controls whether the Elasticsearch index
remains stored in Elasticsearch or is removed
from Elasticsearch once it is exported.

elasticsearchBulkMaxFl
dsThreads

int Option
al

The maximum number of FLDSes to index
concurrently.

maxComponentsInEditi
on

int Option
al

Controls the maximum number of components
to retain in an edition. The default value is 0,
which means unlimited. If you specify a number
in this field and the limit is reached, Anzo ages
off the oldest components as new ones are
created.

elasticsearchIndexSetti
ngs

"string" Option
al

A JSON-formatted list of any Elasticsearch-
specific index settings to apply.

Export Step 1199

Property
Forma-
t

Requir-
ed?

Description

exportElasticSearchCo
ntents

boolea
n

Option
al

Indicates whether to export any Elasticsearch
contents that are included in the graphmart.

title "string" Requir
ed

The name of the step.

incrementalData "string" Option
al

Incremental load data associated with the step.

type "string" Requir
ed

The type of step: "ExportStep".

enabled boolea
n

Option
al

Controls whether the step is enabled or
disabled.

contextProvider ["uri", "
..."]

Option
al

A list of any referenced context providers (the
data source URI). You can retrieve data for the
parent layer to get a list of providers for that
layer.

description "string" Option
al

A brief description of the step.

ontology ["uri", "
..."]

Option
al

A list of any models to associate with this step.

source ["uri", "
..."]

Requir
ed

The source data for the step. Options are any
combination of the following values:

l "http://cambridgesemantics.com/ontolog

ies/Graphmarts#Self": The source is the

Export Step 1200

Property
Forma-
t

Requir-
ed?

Description

data that is in this step's layer.

l "http://cambridgesemantics.com/ontolog

ies/Graphmarts#AllPrevious": The

source is the data from all of the

successful layers that precede this step's

layer. Failed layers are ignored.

l "http://cambridgesemantics.com/ontolog

ies/Graphmarts#Previous": The source

is the data that is in the one layer that

precedes this step's layer.

l "layer_uri": The source is a specific layer

in the graphmart.

ignoreLoadErrors boolea
n

Option
al

Controls whether to ignore errors and proceed
with the load or fail the step if there is an error.

disableLoadCounts boolea
n

Option
al

Controls whether Anzo periodically queries
AnzoGraph to count the total number of
statements that are processed. Disabling the
load count decreases the number of queries that
run during activation.

preGenerateStatistics boolea
n

Option
al

Controls whether AnzoGraph generates
statistics on the data before the step is run.

tags Array
of
objects

Option
al

Any tags on the step.

Export Step 1201

Property
Forma-
t

Requir-
ed?

Description

tagTitle ["strin
g"]

Option
al

A virtual property that is available for all objects.
It lists the tags associated with the step or can
be used to add a tag to the step without including
a description.

Load Dataset Step

This type of step loads a system dataset or a dataset that is in the Datasets catalog.

JSON Request

The following template shows the body of a JSON request that could be used in a Load Dataset

Step PUT or PATCH request. It lists all of the step's required and optional body parameters but

excludes the read-only options. The default values for each parameter are shown. Below the

request (in Schema Details) is a table that describes the complete schema, including the read-only

parameters. Clicking a link in the template takes you to the schema details for that parameter.

{

"skipEsLoadIfIndexExists" : true,

"edition" : "string",

"gmLinkedDataset" : "string",

"watchFldsDirectory" : true,

"maskedPredicate" : ["string"],

"fldsComponent" : ["string"],

"transformQuery" : "string",

"title" : "string",

"type" : "LoadDatasetStep",

"incrementalData" : ["string"],

"enabled" : true,

"contextProvider" : ["string"],

"description" : "string",

"ontology" : ["string"],

"ignoreLoadErrors" : true,

"disableLoadCounts" : true,

"preGenerateStatistics" : true,

"tags" : [{

"description" : "string",

Load Dataset Step 1202

"title" : "string"

}],

"tagTitle" : ["string"]

}

Schema Details

The table below describes the Load Dataset Step schema.

Tip
You can also see the Load Dataset Step schema by expanding Schemas at the bottom of the

Anzo REST API document and viewing LoadDatasetStep.

Property Format Required? Description

uri (read-only) "uri" Auto-
generated

The URI of the step.

creator (read-only) "uri" Auto-
generated

The creator of the step.

created (read-only) "dateTime" Auto-
generated

The timestamp when the step
was created.

modifier (read-only) "uri" Auto-
generated

The user who modified the
step.

alltypes (read-only) Array of
strings

Optional A list of the types related to
the step, such as
LoadDatasetStep, Step,
LayerChild, etc.

contextAttribute (read-only) Array of
strings

Optional A list of any context attributes
that are used.

Load Dataset Step 1203

Property Format Required? Description

skipEsLoadIfIndexExists boolean Optional This option applies to
graphmarts with Elasticsearch
indexes. It controls whether or
not Anzo first checks to see if
an index with the alias for the
dataset already exists in
Elasticsearch. If this setting is
true and the index does
exist, Anzo will not reload the
index snaphsot into
Elasticsearch.

edition "uri" Optional If you want to load a certain
edition in the dataset, you can
include this property to specify
the URI of the edition.

gmLinkedDataset "uri" Optional The URI of the Linked Dataset
Catalog entry that represents
the target FLDS for the load.
To get the catalog entry, you
can retrieve data about the
dataset and use the
catalogEntry value.

watchFldsDirectory boolean Optional Controls whether the FLDS
directory is monitored for
changes. If true and files
change, Anzo marks the step
(and layer) as needing a
refresh.

Load Dataset Step 1204

Property Format Required? Description

maskedPredicate ["uri", "..."] Optional To exclude certain triples from
the load, you can specify a list
of predicate URIs to filter out.

fldsComponent ["uri", "..."] Optional If you want to load specific
components in the dataset,
you can include this property
to list the component URIs.

transformQuery "string" Optional If you want to hand-pick the
data to load, you can include
this property to run a SPARQL
query that inserts specific
values or filters out certain
values.

title "string" Required The name of the step.

type "string" Required The type of step:
"LoadDatasetStep".

incrementalData "string" Optional Incremental load data
associated with the step.

enabled boolean Optional Controls whether the step is
enabled or disabled.

contextProvider ["uri", "..."] Optional A list of any referenced
context providers (the data
source URI). You can retrieve
data for the parent layer to get
a list of providers for that

Load Dataset Step 1205

Property Format Required? Description

layer.

description "string" Optional A brief description of the step.

ontology ["uri", "..."] Optional A list of any models to
associate with this step.

ignoreLoadErrors boolean Optional Controls whether to ignore
errors and proceed with the
load or fail the step if there is
an error.

disableLoadCounts boolean Optional Controls whether Anzo
periodically queries
AnzoGraph to count the total
number of statements that are
processed. Disabling the load
count decreases the number
of queries that run during
activation.

preGenerateStatistics boolean Optional Controls whether AnzoGraph
generates statistics on the
data before the step is run.

tags Array of
objects

Optional Any tags on the step.

tagTitle ["string"] Optional A virtual property that is
available for all objects. It lists
the tags associated with the
step or can be used to add a

Load Dataset Step 1206

Property Format Required? Description

tag to the step without
including a description.

Pre-Compile Query Step

This type of step runs the specified query immediately after the graphmart load so that the query is

pre-compiled by AnzoGraph.

JSON Request

The following template shows the body of a JSON request that could be used in a Pre-Compile

Query Step PUT or PATCH request. It lists all of the step's required and optional body parameters

but excludes the read-only options. The default values for each parameter are shown. Below the

request (in Schema Details) is a table that describes the complete schema, including the read-only

parameters. Clicking a link in the template takes you to the schema details for that parameter.

{

"validationFailsGraphmart" : true,

"validationFailsLayer" : true,

"validationQuery" : "string",

"title" : "string",

"incrementalData" : ["string"],

"type" : "ValidationStep",

"enabled" : true,

"contextProvider" : ["string"],

"description" : "string",

"ontology" : ["string"],

"source" : ["string"],

"ignoreLoadErrors" : true,

"disableLoadCounts" : true,

"preGenerateStatistics" : true,

"tags" : [{

"description" : "string",

"title" : "string"

}],

"tagTitle" : ["string"]

}

Pre-Compile Query Step 1207

Schema Details

The table below describes the Pre-Compile Query Step schema.

Tip
You can also see the Pre-Compile Query Step schema by expanding Schemas at the bottom
of the Anzo REST API document and viewing PreCompileQueryStep.

Property Format
Requir-
ed?

Description

uri (read-only) "uri" Auto-
generat
ed

The URI of the step.

creator (read-
only)

"uri" Auto-
generat
ed

The creator of the step.

created (read-
only)

"dateTi
me"

Auto-
generat
ed

The timestamp when the step was created.

modifier (read-
only)

"uri" Auto-
generat
ed

The user who modified the step.

alltypes (read-
only)

Array of
strings

Optiona
l

A list of the types related to the step, such as
PreCompileQueryStep, Step, LayerChild, etc.

contextAttribute
(read-only)

Array of
strings

Optiona
l

A list of any context attributes that are used.

validationFailsGr boolean Optiona If the query fails, this value controls whether the

Pre-Compile Query Step 1208

Property Format
Requir-
ed?

Description

aphmart l entire graphmart load should fail.

validationFailsLa
yer

boolean Optiona
l

If the query fails, this value controls whether the layer
should fail.

validationQuery "string" Require
d

The SPARQL query that the step should run.

title "string" Require
d

The name of the step.

incrementalData "string" Optiona
l

Incremental load data associated with the step.

type "string" Require
d

The type of step: "PreCompileQueryStep".

enabled boolean Optiona
l

Controls whether the step is enabled or disabled.

contextProvider ["uri", ".
.."]

Optiona
l

A list of any referenced context providers (the data
source URI). You can retrieve data for the parent
layer to get a list of providers for that layer.

description "string" Optiona
l

A brief description of the step.

ontology ["uri", ".
.."]

Optiona
l

A list of any models to associate with this step.

Pre-Compile Query Step 1209

Property Format
Requir-
ed?

Description

source ["uri", ".
.."]

Require
d

The source data for the step. Options are any
combination of the following values:

l "http://cambridgesemantics.com/ontologies/

Graphmarts#Self": The source is the data

that is in this step's layer.

l "http://cambridgesemantics.com/ontologies/

Graphmarts#AllPrevious": The source is the

data from all of the successful layers that

precede this step's layer. Failed layers are

ignored.

l "http://cambridgesemantics.com/ontologies/

Graphmarts#Previous": The source is the

data that is in the one layer that precedes this

step's layer.

l "layer_uri": The source is a specific layer in

the graphmart.

ignoreLoadError
s

boolean Optiona
l

Controls whether to ignore errors and proceed with
the load or fail the step if there is an error.

disableLoadCou
nts

boolean Optiona
l

Controls whether Anzo periodically queries
AnzoGraph to count the total number of statements
that are processed. Disabling the load count
decreases the number of queries that run during
activation.

preGenerateStati
stics

boolean Optiona
l

Controls whether AnzoGraph generates statistics on
the data before the step is run.

Pre-Compile Query Step 1210

Property Format
Requir-
ed?

Description

tags Array of
objects

Optiona
l

Any tags on the step.

tagTitle ["strin
g"]

Optiona
l

A virtual property that is available for all objects. It
lists the tags associated with the step or can be used
to add a tag to the step without including a
description.

Query-Driven Templated Step

This type of step creates a reusable template for creating additional query steps.

JSON Request

The following template shows the body of a JSON request that could be used in a Query-Driven

Templated Step PUT or PATCH request. It lists all of the step's required and optional body

parameters but excludes the read-only options. The default values for each parameter are shown.

Below the request (in Schema Details) is a table that describes the complete schema, including the

read-only parameters. Clicking a link in the template takes you to the schema details for that

parameter.

{

"parametersTemplate" : ["string"],

"template" : "string",

"title" : "string",

"incrementalData" : ["string"],

"type" : "QueryDrivenTemplatedStep",

"enabled" : true,

"contextProvider" : ["string"],

"description" : "string",

"ontology" : ["string"],

"source" : ["string"],

"ignoreLoadErrors" : true,

"disableLoadCounts" : true,

"preGenerateStatistics" : true,

Query-Driven Templated Step 1211

"tags" : [{

"description" : "string",

"title" : "string"

}],

"tagTitle" : ["string"]

}

Schema Details

The table below describes the Query-Driven Templated Step schema.

Tip
You can also see the Query-Driven Templated Step schema by expanding Schemas at the
bottom of the Anzo REST API document and viewing QueryDrivenTemplatedStep.

Property Format
Require-
d?

Description

uri (read-only) "uri" Auto-
generat
ed

The URI of the step.

creator (read-
only)

"uri" Auto-
generat
ed

The creator of the step.

created (read-
only)

"dateTi
me"

Auto-
generat
ed

The timestamp when the step was created.

modifier (read-
only)

"uri" Auto-
generat
ed

The user who modified the step.

alltypes (read-
only)

Array of
strings

Optional A list of the types related to the step, such as
QueryDrivenTemplatedStep, Step, LayerChild, etc.

Query-Driven Templated Step 1212

Property Format
Require-
d?

Description

contextAttribut
e (read-only)

Array of
strings

Optional A list of any context attributes that are used.

parametersTe
mplate

"string" Require
d

The query to run for determining the key-value pairs.

template "string" Require
d

The query template. In the query, include keys as
parameters in the format ${key_name}. The keys are
replaced at runtime with the values defined for the key.

title "string" Require
d

The name of the step.

incrementalDat
a

"string" Optional Incremental load data associated with the step.

type "string" Require
d

The type of step: "QueryDrivenTemplatedStep".

enabled boolean Optional Controls whether the step is enabled or disabled.

contextProvide
r

["uri", "..
."]

Optional A list of any referenced context providers (the data
source URI). You can retrieve data for the parent layer
to get a list of providers for that layer.

description "string" Optional A brief description of the step.

ontology ["uri", "..
."]

Optional A list of any models to associate with this step.

Query-Driven Templated Step 1213

Property Format
Require-
d?

Description

source ["uri", "..
."]

Require
d

The source data for the step. Options are any
combination of the following values:

l "http://cambridgesemantics.com/ontologies/Gr

aphmarts#Self": The source is the data that is

in this step's layer.

l "http://cambridgesemantics.com/ontologies/Gr

aphmarts#AllPrevious": The source is the data

from all of the successful layers that precede

this step's layer. Failed layers are ignored.

l "http://cambridgesemantics.com/ontologies/Gr

aphmarts#Previous": The source is the data

that is in the one layer that precedes this step's

layer.

l "layer_uri": The source is a specific layer in the

graphmart.

ignoreLoadErr
ors

boolean Optional Controls whether to ignore errors and proceed with the
load or fail the step if there is an error.

disableLoadCo
unts

boolean Optional Controls whether Anzo periodically queries
AnzoGraph to count the total number of statements
that are processed. Disabling the load count
decreases the number of queries that run during
activation.

preGenerateSt
atistics

boolean Optional Controls whether AnzoGraph generates statistics on
the data before the step is run.

Query-Driven Templated Step 1214

Property Format
Require-
d?

Description

tags Array of
objects

Optional Any tags on the step.

tagTitle ["string"] Optional A virtual property that is available for all objects. It lists
the tags associated with the step or can be used to add
a tag to the step without including a description.

Query Step

This type of step runs a SPARQL query that creates, cleans, conforms, or transforms data.

JSON Request

The following template shows the body of a JSON request that could be used in a Query Step PUT

or PATCH request. It lists all of the step's required and optional body parameters but excludes the

read-only options. The default values for each parameter are shown. Below the request (in Schema

Details) is a table that describes the complete schema, including the read-only parameters. Clicking

a link in the template takes you to the schema details for that parameter.

{

"transformQuery" : "string",

"title" : "string",

"incrementalData" : ["string"],

"type" : "QueryStep",

"enabled" : true,

"contextProvider" : ["string"],

"description" : "string",

"ontology" : ["string"],

"source" : ["string"],

"ignoreLoadErrors" : true,

"disableLoadCounts" : true,

"preGenerateStatistics" : true,

"tags" : [{

"description" : "string",

"title" : "string"

}],

Query Step 1215

"tagTitle" : ["string"]

}

Schema Details

The table below describes the Query Step schema.

Tip
You can also see the Query Step schema by expanding Schemas at the bottom of the Anzo

REST API document and viewing QueryStep.

Property Format
Require-
d?

Description

uri (read-only) "uri" Auto-
generat
ed

The URI of the step.

creator (read-
only)

"uri" Auto-
generat
ed

The creator of the step.

created (read-
only)

"dateTi
me"

Auto-
generat
ed

The timestamp when the step was created.

modifier (read-
only)

"uri" Auto-
generat
ed

The user who modified the step.

alltypes (read-
only)

Array of
strings

Optional A list of the types related to the step, such as
QueryStep, Step, LayerChild, etc.

contextAttribut
e (read-only)

Array of
strings

Optional A list of any context attributes that are used.

Query Step 1216

Property Format
Require-
d?

Description

transformQuer
y

"string" Require
d

The SPARQL query to run.

title "string" Require
d

The name of the step.

incrementalDat
a

"string" Optional Incremental load data associated with the step.

type "string" Require
d

The type of step: "QueryStep".

enabled boolean Optional Controls whether the step is enabled or disabled.

contextProvide
r

["uri", "..
."]

Optional A list of any referenced context providers (the data
source URI). You can retrieve data for the parent layer
to get a list of providers for that layer.

description "string" Optional A brief description of the step.

ontology ["uri", "..
."]

Optional A list of any models to associate with this step.

source ["uri", "..
."]

Require
d

The source data for the step. Options are any
combination of the following values:

l "http://cambridgesemantics.com/ontologies/Gr

aphmarts#Self": The source is the data that is

in this step's layer.

l "http://cambridgesemantics.com/ontologies/Gr

Query Step 1217

Property Format
Require-
d?

Description

aphmarts#AllPrevious": The source is the data

from all of the successful layers that precede

this step's layer. Failed layers are ignored.

l "http://cambridgesemantics.com/ontologies/Gr

aphmarts#Previous": The source is the data

that is in the one layer that precedes this step's

layer.

l "layer_uri": The source is a specific layer in the

graphmart.

ignoreLoadErr
ors

boolean Optional Controls whether to ignore errors and proceed with the
load or fail the step if there is an error.

disableLoadCo
unts

boolean Optional Controls whether Anzo periodically queries
AnzoGraph to count the total number of statements
that are processed. Disabling the load count
decreases the number of queries that run during
activation.

preGenerateSt
atistics

boolean Optional Controls whether AnzoGraph generates statistics on
the data before the step is run.

tags Array of
objects

Optional Any tags on the step.

tagTitle ["string"] Optional A virtual property that is available for all objects. It lists
the tags associated with the step or can be used to add
a tag to the step without including a description.

Query Step 1218

RDFS+ Inference Step

This type of step uses RDFS and OWL rules to infer new information about your data based on the

vocabularies in the existing data.

JSON Request

The following template shows the body of a JSON request that could be used in an RDFS+

Inference Step PUT or PATCH request. It lists all of the step's required and optional body

parameters but excludes the read-only options. The default values for each parameter are shown.

Below the request (in Schema Details) is a table that describes the complete schema, including the

read-only parameters. Clicking a link in the template takes you to the schema details for that

parameter.

{

"inferenceRules" : "string",

"title" : "string",

"incrementalData" : ["string"],

"type" : "RDFSInferenceStep",

"enabled" : true,

"contextProvider" : ["string"],

"description" : "string",

"ontology" : ["string"],

"source" : ["string"],

"ignoreLoadErrors" : true,

"disableLoadCounts" : true,

"preGenerateStatistics" : true,

"tags" : [{

"description" : "string",

"title" : "string"

}],

"tagTitle" : ["string"]

}

Schema Details

The table below describes the RDFS+ Inference Step schema.

RDFS+ Inference Step 1219

Tip
You can also see the RDFS+ Inference Step schema by expanding Schemas at the bottom of

the Anzo REST API document and viewing RDFSInferenceStep.

Property Format
Require-
d?

Description

uri (read-only) "uri" Auto-
generat
ed

The URI of the step.

creator (read-
only)

"uri" Auto-
generat
ed

The creator of the step.

created (read-
only)

"dateTi
me"

Auto-
generat
ed

The timestamp when the step was created.

modifier (read-
only)

"uri" Auto-
generat
ed

The user who modified the step.

alltypes (read-
only)

Array of
strings

Optional A list of the types related to the step, such as
RDFSInferenceStep, Step, LayerChild, etc.

contextAttribut
e (read-only)

Array of
strings

Optional A list of any context attributes that are used.

inferenceRules "string" Optional By default all inference rules are run. This property can
be used to list a subset of rules to run or specific rules
to exclude. For more information about the inference
rules, see Infer New Data (RDFS+ Inference Step).

RDFS+ Inference Step 1220

Property Format
Require-
d?

Description

title "string" Require
d

The name of the step.

incrementalDat
a

"string" Optional Incremental load data associated with the step.

type "string" Require
d

The type of step: "RDFSInferenceStep".

enabled boolean Optional Controls whether the step is enabled or disabled.

contextProvide
r

["uri", "..
."]

Optional A list of any referenced context providers (the data
source URI). You can retrieve data for the parent layer
to get a list of providers for that layer.

description "string" Optional A brief description of the step.

ontology ["uri", "..
."]

Optional A list of any models to associate with this step.

source ["uri", "..
."]

Require
d

The source data for the step. Options are any
combination of the following values:

l "http://cambridgesemantics.com/ontologies/Gr

aphmarts#Self": The source is the data that is

in this step's layer.

l "http://cambridgesemantics.com/ontologies/Gr

aphmarts#AllPrevious": The source is the data

from all of the successful layers that precede

this step's layer. Failed layers are ignored.

RDFS+ Inference Step 1221

Property Format
Require-
d?

Description

l "http://cambridgesemantics.com/ontologies/Gr

aphmarts#Previous": The source is the data

that is in the one layer that precedes this step's

layer.

l "layer_uri": The source is a specific layer in the

graphmart.

ignoreLoadErr
ors

boolean Optional Controls whether to ignore errors and proceed with the
load or fail the step if there is an error.

disableLoadCo
unts

boolean Optional Controls whether Anzo periodically queries
AnzoGraph to count the total number of statements
that are processed. Disabling the load count
decreases the number of queries that run during
activation.

preGenerateSt
atistics

boolean Optional Controls whether AnzoGraph generates statistics on
the data before the step is run.

tags Array of
objects

Optional Any tags on the step.

tagTitle ["string"] Optional A virtual property that is available for all objects. It lists
the tags associated with the step or can be used to add
a tag to the step without including a description.

Templated Step

This type of step creates a reusable query template based on key-value pairs.

Templated Step 1222

JSON Request

The following template shows the body of a JSON request that could be used in a Templated Step

PUT or PATCH request. It lists all of the step's required and optional body parameters but excludes

the read-only options. The default values for each parameter are shown. Below the request (in

Schema Details) is a table that describes the complete schema, including the read-only parameters.

Clicking a link in the template takes you to the schema details for that parameter.

{

"template" : "string",

"templateParameters" : [

{

"type": "TemplateParameterSet",

"templateParameter": [

{

"type": "TemplateParameter",

"parameterName": "key",

"parameterValue": ["uri"],

}

]

}

],

"title" : "string",

"incrementalData" : ["string"],

"type" : "TemplatedStep",

"enabled" : true,

"contextProvider" : ["string"],

"description" : "string",

"ontology" : ["string"],

"source" : ["string"],

"ignoreLoadErrors" : true,

"disableLoadCounts" : true,

"preGenerateStatistics" : true,

"tags" : [{

"description" : "string",

"title" : "string"

}],

"tagTitle" : ["string"]

}

Schema Details

The table below describes the Templated Step schema.

Templated Step 1223

Tip
You can also see the Templated Step schema by expanding Schemas at the bottom of the

Anzo REST API document and viewing TemplatedStep.

Property Format
Require-
d?

Description

uri (read-only) "uri" Auto-
generat
ed

The URI of the step.

creator (read-
only)

"uri" Auto-
generat
ed

The creator of the step.

created (read-
only)

"dateTi
me"

Auto-
generat
ed

The timestamp when the step was created.

modifier (read-
only)

"uri" Auto-
generat
ed

The user who modified the step.

alltypes (read-
only)

Array of
strings

Optional A list of the types related to the step, such as
TemplatedStep, Step, LayerChild, etc.

contextAttribut
e (read-only)

Array of
strings

Optional A list of any context attributes that are used.

template "string" Require
d

The query template. In the query, include keys as
parameters in the format ${key_name}. The keys are
replaced at runtime with the values defined for the key.

Templated Step 1224

Property Format
Require-
d?

Description

templateParam
eters

Array of
objects

Require
d

The list of objects that define the key-value pairs.

templateParam
eter

Array of
objects

Require
d

The list of key-value pairs that will be substituted for
the ${key_name} parameters in the query template.
Each templateParametermust include type,
parameterName, and parameterValue. The
following snippet shows the format of template
parameters.

"templateParameter": [

{

"type": "TemplateParameter",

"parameterName": "key",

"parameterValue": ["uri"],

}

],

"templateParameter": [

{

...

}

]

parameterNam
e

"string" Require
d

The name of the key that is used in the query template.

parameterValue ["uri"] Require
d

The value for the corresponding key
(parameterName).

title "string" Require
d

The name of the step.

incrementalDat
a

"string" Optional Incremental load data associated with the step.

Templated Step 1225

Property Format
Require-
d?

Description

type "string" Require
d

The type of step: "TemplatedStep".

enabled boolean Optional Controls whether the step is enabled or disabled.

contextProvide
r

["uri", "..
."]

Optional A list of any referenced context providers (the data
source URI). You can retrieve data for the parent layer
to get a list of providers for that layer.

description "string" Optional A brief description of the step.

ontology ["uri", "..
."]

Optional A list of any models to associate with this step.

source ["uri", "..
."]

Require
d

The source data for the step. Options are any
combination of the following values:

l "http://cambridgesemantics.com/ontologies/Gr

aphmarts#Self": The source is the data that is

in this step's layer.

l "http://cambridgesemantics.com/ontologies/Gr

aphmarts#AllPrevious": The source is the data

from all of the successful layers that precede

this step's layer. Failed layers are ignored.

l "http://cambridgesemantics.com/ontologies/Gr

aphmarts#Previous": The source is the data

that is in the one layer that precedes this step's

layer.

l "layer_uri": The source is a specific layer in the

Templated Step 1226

Property Format
Require-
d?

Description

graphmart.

ignoreLoadErr
ors

boolean Optional Controls whether to ignore errors and proceed with the
load or fail the step if there is an error.

disableLoadCo
unts

boolean Optional Controls whether Anzo periodically queries
AnzoGraph to count the total number of statements
that are processed. Disabling the load count
decreases the number of queries that run during
activation.

preGenerateSt
atistics

boolean Optional Controls whether AnzoGraph generates statistics on
the data before the step is run.

tags Array of
objects

Optional Any tags on the step.

tagTitle ["string"] Optional A virtual property that is available for all objects. It lists
the tags associated with the step or can be used to add
a tag to the step without including a description.

Validation Step

This type of step runs a validation query to ensure that data conforms to expectations.

JSON Request

The following template shows the body of a JSON request that could be used in a Validation Step

PUT or PATCH request. It lists all of the step's required and optional body parameters but excludes

the read-only options. The default values for each parameter are shown. Below the request (in

Schema Details) is a table that describes the complete schema, including the read-only parameters.

Clicking a link in the template takes you to the schema details for that parameter.

Validation Step 1227

{

"validationFailsLayer" : true,

"validationDatasourceUri" : "string",

"validationQuery" : "string",

"validationFailsGraphmart" : true,

"resultVar" : "string",

"validationOrConditional" : "string",

"title" : "string",

"incrementalData" : ["string"],

"type" : "ValidationStep",

"enabled" : true,

"contextProvider" : ["string"],

"description" : "string",

"ontology" : ["string"],

"source" : ["string"],

"ignoreLoadErrors" : true,

"disableLoadCounts" : true,

"preGenerateStatistics" : true,

"tags" : [{

"description" : "string",

"title" : "string"

}],

"tagTitle" : ["string"]

}

Schema Details

The table below describes the Validation Step schema.

Tip
You can also see the Validation Step schema by expanding Schemas at the bottom of the

Anzo REST API document and viewing ValidationStep.

Property Format
Requir-
ed?

Description

uri (read-only) "uri" Auto-
generat
ed

The URI of the step.

Validation Step 1228

Property Format
Requir-
ed?

Description

creator (read-
only)

"uri" Auto-
generat
ed

The creator of the step.

created (read-
only)

"dateTi
me"

Auto-
generat
ed

The timestamp when the step was created.

modifier (read-
only)

"uri" Auto-
generat
ed

The user who modified the step.

alltypes (read-
only)

Array of
strings

Optiona
l

A list of the types related to the step, such as
ValidationStep, Step, LayerChild, etc.

contextAttribute
(read-only)

Array of
strings

Optiona
l

A list of any context attributes that are used.

validationFailsLa
yer

boolean Optiona
l

If validationOrConditional is validation, and the
validation fails, this value controls whether the layer
should fail.

validationDataso
urceUri

"uri" Optiona
l

The source to perform the validation on.

validationQuery "string" Require
d

The SPARQL query that the step should run.

validationFailsGr
aphmart

boolean Optiona
l

If validationOrConditional is validation, and the
validation fails, this value controls whether the entire
graphmart load should fail.

Validation Step 1229

Property Format
Requir-
ed?

Description

resultVar "string" Optiona
l

The variable name to use to store the result from the
query. This variable becomes available when
configuring an execution condition for a layer or step.

validationOrCon
ditional

"string" Optiona
l

The type of check to perform: validation or
condition. A validation check validates the data
according to the defined query and takes the action
configured with validationFailsLayer and
validationFailsGraphmart. A condition check takes
the results of the query and associates it with the
specified resultVar.

title "string" Require
d

The name of the step.

incrementalData "string" Optiona
l

Incremental load data associated with the step.

type "string" Require
d

The type of step: "ValidationStep".

enabled boolean Optiona
l

Controls whether the step is enabled or disabled.

contextProvider ["uri", ".
.."]

Optiona
l

A list of any referenced context providers (the data
source URI). You can retrieve data for the parent
layer to get a list of providers for that layer.

description "string" Optiona
l

A brief description of the step.

Validation Step 1230

Property Format
Requir-
ed?

Description

ontology ["uri", ".
.."]

Optiona
l

A list of any models to associate with this step.

source ["uri", ".
.."]

Require
d

The source data for the step. Options are any
combination of the following values:

l "http://cambridgesemantics.com/ontologies/

Graphmarts#Self": The source is the data

that is in this step's layer.

l "http://cambridgesemantics.com/ontologies/

Graphmarts#AllPrevious": The source is the

data from all of the successful layers that

precede this step's layer. Failed layers are

ignored.

l "http://cambridgesemantics.com/ontologies/

Graphmarts#Previous": The source is the

data that is in the one layer that precedes this

step's layer.

l "layer_uri": The source is a specific layer in

the graphmart.

ignoreLoadError
s

boolean Optiona
l

Controls whether to ignore errors and proceed with
the load or fail the step if there is an error.

disableLoadCou
nts

boolean Optiona
l

Controls whether Anzo periodically queries
AnzoGraph to count the total number of statements
that are processed. Disabling the load count
decreases the number of queries that run during
activation.

Validation Step 1231

Property Format
Requir-
ed?

Description

preGenerateStati
stics

boolean Optiona
l

Controls whether AnzoGraph generates statistics on
the data before the step is run.

tags Array of
objects

Optiona
l

Any tags on the step.

tagTitle ["strin
g"]

Optiona
l

A virtual property that is available for all objects. It
lists the tags associated with the step or can be used
to add a tag to the step without including a
description.

Validation Step 1232

Anzo Java SDK

This topic provides instructions for setting up an Anzo development environment using the Anzo

software development kit (SDK) and Eclipse integrated development environment (IDE). The

sample instructions below deploy the Anzo SDK in a Windows environment with Eclipse IDE for

Java Developers Version 4.12.0. Anzo SDK and Eclipse can also be deployed on Linux and Mac

operating systems.

Requirements

Make sure that the Anzo development server meets the requirements in Anzo Requirements in the

Deployment Guide. In addition, install the following programs for working with the Anzo Java SDK:

l Eclipse for Java Developers Version 4.7.3+: Install the Eclipse IDE for Java Developers or
Eclipse IDE for Enterprise Java Developers.

l Java Runtime Environment Version 8: Eclipse and the Anzo SDK require JDK version 8.

Cambridge Semantics tests with jdk1.8.0_181.

Deploying the Anzo SDK with Eclipse

Follow the instructions below to import the Anzo Java SDK to Eclipse and configure and test the

environment.

1. Download the Anzo SDK .zip file to the host server. Do not unpack the file.

2. In Eclipse, click the File menu and select Import. Eclipse opens the Import dialog box. For
example:

Anzo Java SDK 1233

https://docs.cambridgesemantics.com/anzo/v5.4/userdoc/anzo-reqs.htm

3. In the Import dialog box, expand the General folder and select Existing Projects into
Workspace and click Next. Eclipse opens the Import Projects dialog box. For example:

4. Select the Select archive file radio button and then browse to and select the Anzo SDK .zip

file. Eclipse loads the .zip file and lists the contents in the Projects field. For example:

Anzo Java SDK 1234

The Anzo SDK contains three projects:

l com.cambridgesemantics.anzo.sdk: This core project is required for creating
solutions. It contains the Anzo libraries that provide the Anzo APIs and extension points

as well as the libraries that enable Anzo to run in the development environment.

l com.cambridgesemantics.anzo.sdk.server This core project is required for creating
solutions. It contains configuration files for running Anzo as well as a launcher for

starting the Anzo server.

l com.cambridgesemantics.anzo.sdk.api: This is an example project that contains
sample Java programs that illustrate several aspects of the Anzo client APIs. Each

program is a simple example that demonstrates how to communicate with the Anzo

server to read, write, and query data. See the comments in each example for an

explanation of what each one demonstrates.

5. Click Finish to import the Anzo SDK .jar files. The process may take a few minutes. When the

import is complete, Eclipse opens the workspace. At this point in the process, expect to see

several errors in the workspace. For example:

Anzo Java SDK 1235

6. Import your Anzo license:

a. Make sure that you have a copy of the Anzo license on the server. If necessary, you can

view and download a copy from the Cambridge Semantics Support Center.

b. Rename the license file so its file extension is .lic. For example, license.lic.

c. In the Eclipse Package Explorer, right-click

com.cambridgesemantics.anzo.sdk.server and select Import.

d. In the Import dialog box, expand the General folder and select File System. Then click

Next. Eclipse opens the File System Import dialog box. For example:

Anzo Java SDK 1236

https://supportcenter.cambridgesemantics.com/support/licensing

e. Click the Browse button next to the From directory field and select the directory that

contains the license file. Eclipse displays the directory and its contents.

f. Select the license file in the right pane, and then click Finish.

Anzo Java SDK 1237

7. Install the Eclipse Plugin Development Tools:

a. Click the Help menu and select Install New Software. Eclipse opens the Install dialog
box.

b. In the Install dialog box, click theWork with drop-down list and select All Available
Sites. In the search field below the Work with field, type "PDE" and wait for Eclipse to

find the plugin tools. Select the checkbox next to Eclipse Plugin Development Tools,
including Eclipse PDE Plug-in Developer Resources. For example:

c. Click Next and accept the license agreement, then click Finish. Eclipse installs the
software and then prompts you to restart the application.

8. After restarting Eclipse, load the Anzo SDK Target Platform:

a. Click theWindow menu and select Preferences.

b. In the Preferences dialog box, expand Plug-in Development and select Target
Platform.

Anzo Java SDK 1238

c. In the Target Platform definitions, select the Anzo SDK Devel Target checkbox. For
example:

d. Click Apply and Close. Eclipse loads the Anzo SDK Target Platform.

9. Test the environment:

a. In the Eclipse workspace, click the Run menu and select Run Configurations. Eclipse
opens the Run Configurations dialog box.

b. On the left side of the dialog box, expand the OSGi Framework folder and select Anzo
(SDK). For example:

Anzo Java SDK 1239

c. Click Run to run the Anzo SDK target platform. A Console tab opens in Eclipse and

shows the status messages. When Anzo starts, the console displays the message "All

Currently Registered Services started." For example:

If Anzo fails to start, one of the common reasons for the failure is that one or more of the

Anzo ports are in use by other software. See Firewall Requirements in the Deployment

Guide for information about the ports that Anzo uses.

Anzo Java SDK 1240

https://docs.cambridgesemantics.com/anzo/v5.4/userdoc/anzo-reqs.htm#fw

To explore the sample Java programs that are included in the Anzo SDK, expand the

com.cambridgesemantics.anzo.sdk.api package in the Package Explorer. In the package,
expand the src directory and then the com.cambridgesemantics.anzo.sdk.api directory to see
the list of sample programs. For example:

To run a program, right-click the .java file and select Run As > Java Application. For more
information about using the Anzo SDK, see the Anzo Java SDK Guide.pdf that is distributed in the
SDK .zip file.

Anzo Java SDK 1241

	About This Doc
	Onboard & Virtualization
	Onboard Structured Data
	Adding Data Sources
	Connecting to a Database
	Defining a Database Schema
	Adding an HTTP or SPARQL Data Source
	Adding a CSV Data Source
	Adding a JSON Data Source
	Adding an XML Data Source
	Adding a SAS Data Source
	Adding a Parquet Data Source
	Configuring a CSV or Parquet Source for Incremental Processing
	Assigning Primary Keys in a Schema
	Adding Foreign Keys

	Onboarding Data with the Automated Workflow
	Creating a Graphmart from a Data Source
	Adding a Data Source to an Existing Graphmart
	Direct Load Advanced Settings Reference

	Onboarding or Virtualizing Data with SPARQL Queries
	Introduction to the GDI
	GDI Concepts and Basic Usage
	Options for Data Types, Data Linking, and Models
	Advanced Usage by Data Source Type
	GDI Property Reference

	Onboard Unstructured Data
	Unstructured Onboarding Process Overview
	Creating an Unstructured Pipeline
	Running an Unstructured Pipeline
	Pipeline Settings Reference
	Annotator Settings Reference
	External Service Annotator
	Keyword and Phrase Annotator
	Knowledgebase Annotator
	Regex Annotator

	Model
	Model Concepts and Vocabulary
	Managed Model Concepts
	Model Requirements
	Uploading a Model
	Creating a Model
	Editing a Custom Model
	Opening Models in the Editor
	Changing Model Components
	Class Editor Reference
	Property Editor Reference

	Editing a Managed Model
	Downloading a Model
	Defining Resource Templates

	Blend
	Working with Datasets
	Adding an Empty Dataset for an Export Step
	Importing an Existing Dataset (FLDS)
	Creating a Dataset from RDF Files
	Managing Dataset Editions
	Introduction to Editions
	Creating an Edition
	Modifying an Edition
	Deleting a Saved Edition
	Limiting the Number of Editions in a Dataset

	Creating a Graphmart from a Dataset
	Adding a Dataset to a Graphmart
	Dataset FAQ

	Working with Graphmarts
	Creating a Graphmart
	Copying a Graphmart
	Graphmart Settings Reference
	Creating an Elasticsearch Index from a Graphmart
	Adding Data Layers to Graphmarts
	Creating a New Layer
	Cloning a Layer
	Using Query Contexts
	Defining Execution Conditions
	Advanced Data Access Settings

	Adding Steps to Layers
	Directly Load a Data Source (Direct Load Step)
	Create an Elasticsearch Index (Elasticsearch Indexing Step)
	Take a Snapshot of an Index (Elasticsearch Snapshot Step)
	Export Data to an FLDS (Export Step)
	Load a Dataset from the Catalog (Load Dataset Step)
	Pre-Compile a Query (Pre-Compile Query Step)
	Create a Reusable Query Template
	Run a Transformation Query (Query Step)
	Infer New Data (RDFS+ Inference Step)
	Validate the Data (Validation Step)
	Construct a View of the Data (View Step)

	Creating Data on Demand Endpoints
	Creating an Auto-Generated Endpoint
	Creating a Custom Endpoint

	Sharing Access to Graphmarts
	Sharing Concepts

	Graphmart FAQ

	Profiling Datasets and Graphmarts
	Generating a Dataset Data Profile
	Generating a Graphmart Data Profile
	Data Profiling Metrics

	Access & Analyze
	Access Data with Hi-Res Analytics Dashboards
	Introduction to Hi-Res Analytics
	Getting Started: Explore and Visualize Your Data
	Create a New Dashboard
	Explore the Data
	Create Visualizations of the Data

	Working with Dashboards
	Creating a Graphmart Dashboard
	Creating a Network Navigator Dashboard
	Configuring a Dashboard to Update in Batch Reporting vs. Interactive Mode
	Capturing User-Defined Values in Dashboards

	Working with Lenses
	Creating a Lens
	Cloning a Lens
	Exporting a Lens
	Deleting a Lens

	Working with Filters
	Adding a Cloud Filter
	Adding a Date Range Filter
	Adding a Hierarchy Filter
	Adding a Limit Filter
	Adding a List Filter
	Adding a Numeric Range Filter
	Adding a Presence Filter
	Adding a Quartile Filter
	Adding a Range Slider Filter
	Adding a Relative Time Filter
	Adding a Search Filter
	Adding a Single Select List Filter
	Adding a Types Filter

	Calculating Values in Lenses and Filters
	Combining Data from Multiple Classes
	Searching for Text in Unstructured Documents
	Supported Search Syntax

	Sharing Access to Dashboards and Lenses
	Configure Dashboard or Lens Permissions

	Access Data with the Query Builder
	Running SPARQL Queries in the Query Builder
	Searching for Quads in the Query Builder

	Access Data on Demand Endpoints
	Accessing an Endpoint Programmatically
	Accessing an Endpoint from an Application
	Accessing Data via the OData API
	Downloading the Anzo ODBC and JDBC Drivers
	JDBC Driver Documentation

	OData Reference
	OData URL Conventions
	Supported Query Operators

	Access the SPARQL Endpoint
	Access the HTTP Client Interface
	Share Access to Artifacts
	Version and Migrate Artifacts
	Creating and Restoring Versions of Artifacts
	Create a Backup Version
	Restore a Backup Version

	Exporting an Artifact
	Making Properties Replaceable on Export
	Importing Exported Versions of Artifacts

	SPARQL Best Practices and Query Templates
	SPARQL Best Practices
	SPARQL Query Templates

	Function and Formula Reference
	String Functions
	BUSINESS_ENTITY_EXCLUDER
	CONCATENATE
	CONCATURL
	CONTAINS
	ENCODE_FOR_URI
	ESCAPEHTML
	FIND
	FINDREVERSE
	GROUP_CONCAT
	GROUPCONCAT
	LANG
	LANGMATCHES
	LCASE
	LEFT
	LEN
	LEVENSHTEIN_DIST
	LOWER
	MD5
	MID
	REGEX
	REGEXP_SUBSTR
	REPLACE
	RIGHT
	SEARCH
	SHA1
	SHA224
	SHA256
	SHA384
	SHA512
	STRAFTER
	STRBEFORE
	STRDT
	STRENDS
	STRLANG
	STRLEN
	STRSTARTS
	STRUUID
	SUBSTITUTE
	SUBSTR
	TOURI
	TRIM
	UCASE
	UPPER

	Math Functions
	ABS
	ADD
	AVERAGEIF
	AVERAGEIFS
	AVG
	CEILING
	COS
	DIVIDE
	EQUAL
	EXP
	FACT
	FLOOR
	GE
	GT
	HAMMING_DIST
	HAVERSINE_DIST
	LE
	LN
	LOG
	LOG2
	LT
	MAXVAL
	MINVAL
	MOD
	MULTIPLY
	NOT_EQUAL
	NPV
	NUMERIC-ADD
	NUMERIC-SUBTRACT
	PI
	POWER
	PRODUCT
	QUOTIENT
	RAD
	RAND
	RANDBETWEEN
	ROUND
	ROUNDDOWN
	ROUNDUP
	SIN
	SQRT
	SUBTRACT
	SUM
	SUMIF
	SUMIFS
	SUMPRODUCT
	SUMSQ
	TAN

	Aggregate Functions
	AVERAGEIF
	AVERAGEIFS
	AVG
	CHOOSE_BY_MAX
	CHOOSE_BY_MIN
	COUNT
	COUNT_DISTINCT
	COUNTIF
	COUNTIFS
	GROUP_CONCAT
	GROUPCONCAT
	MAX
	MEDIAN
	MIN
	MODE
	MODEPERCENT
	PERCENTILE_CONT
	PERCENTILE_DISC
	PRODUCT
	SAMPLE
	STDEV
	STDEVP
	SUM
	SUMIF
	SUMIFS
	SUMPRODUCT
	SUMSQ
	VAR
	VARP
	WEIGHTEDAVERAGE

	Date and Time Functions
	DATE
	DATEPART
	DATETIME (or xsd:dateTime)
	DAY
	DAYSFROMDURATION
	DUR_TO_MILLIS
	DURATION
	DURATIONFORMAT
	DURATIONPERIODFORMAT
	FORMATDATE
	HOUR
	MASKEDDATETIME
	MILLIS
	MINUTE
	MONTH
	NOW
	NOWMILLIS
	PARSEDATETIME
	SECOND
	TIME
	TIMEPART
	TIMEVALUE
	TIMEZONE
	TODAY
	TZ
	WEEKDAY
	WEEKNUM
	xsd:date
	YEAR
	YEARMONTH

	Casting Functions
	BNODE
	BOOLEAN
	BYTE
	CONCATURL
	DATATYPE
	DATETIME (or xsd:dateTime)
	DATEVALUE
	DECIMAL
	DOUBLE
	DURATION
	DURATIONFORMAT
	ENCODE_FOR_URI
	FLOAT
	FORMATDATE
	FORMATFRACTION
	FORMATNUMBER
	INT
	INTEGER
	LONG
	PARSEDATETIME
	RAD
	SERIALIZE
	SHORT
	STR
	TEXT
	TIMEVALUE
	TOURI
	UUID
	xsd:date

	Logical Functions
	AND
	BOUND
	CASE
	COALESCE
	EQUAL
	IF
	IFERROR
	IN
	NOT
	NOT_EQUAL
	NOT_IN
	OR
	PARTITIONINDEX
	SAMETERM
	UNBOUND

	Informational or Testing Functions
	CONTAINS
	GE
	GT
	ISBLANK
	ISDATATYPE
	ISERROR
	ISIRI
	ISLITERAL
	ISNUMERIC
	ISURI
	LANG
	LANGMATCHES
	LE
	LOCALNAME
	LT
	METADATAGRAPHURI
	NAMESPACE
	SAMETERM

	Hash Functions
	MD5
	SHA1
	SHA224
	SHA256
	SHA384
	SHA512

	Window Aggregate and Ranking Functions
	WINDOW_AVG
	WINDOW_COUNT
	WINDOW_MAX
	WINDOW_MIN
	WINDOW_NTILE
	WINDOW_PERCENTILE
	WINDOW_PERCENTILE_CONT
	WINDOW_PERCENTILE_DISC
	WINDOW_PRODUCT
	WINDOW_QUARTILE
	WINDOW_SUM

	Develop
	Anzo Rest API
	Introduction to the API
	Viewing the API Documentation
	Enabling Cross-Origin Resource Sharing
	Step Type Schemas
	Direct Load Step
	Elasticsearch Indexing Step
	Elasticsearch Snapshot Step
	Export Step
	Load Dataset Step
	Pre-Compile Query Step
	Query-Driven Templated Step
	Query Step
	RDFS+ Inference Step
	Templated Step
	Validation Step

	Anzo Java SDK

