MONVOL

Bulk Data Entry Defines a one-chamber gas filled structure with hybrid input of inflated gas in explicit dynamic analysis or a cavity filled with fluid in implicit large displacement analysis.

Attention: Valid for Explicit Analysis only

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
MONVOL MID UNIT
SURF SID
AMBIENT PATM TATM
Optional continuation line to define properties of the initial gas inside the structure (for explicit analysis only. Implicit analysis ignores this line of data).
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
IAIR PAIR TAIR
XMAIR Cpa_air Cpb_air Cpc_air Cpd_air Cpe_air
Optional continuation line to define a vent hole. It can be repeated as required (for explicit analysis only. Implicit analysis ignores this line of data).
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
+ VENT SIDV C23 LCTC23 LCPC23 PDEF
Optional continuation line to define properties of the injected gas. It can be repeated as required (for explicit analysis only. Implicit analysis ignores this line of data).
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
+ MATGAS LCM LCT
XM C p a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaadc hacaWGHbaaaa@3896@ C p b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaadc hacaWGIbaaaa@3897@ C p c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaadc hacaWGJbaaaa@3898@ C p d MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaadc hacaWGKbaaaa@3899@ C p e MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaadc hacaWGLbaaaa@389A@
Optional continuation line to define properties of the incompressible/compressible fluid (for implicit large displacement analysis only. Explicit analysis ignores this line of data).
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
+ HYDRA BULK
Optional continuation line to define properties of the ideal gas. (for implicit large displacement analysis only. Explicit analysis ignores this line of data).
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
+ IAIR PAIR

Example

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
MONVOL 1
SURF 10
AMBIENT 1.013E5 293.0
MATGAS 3 4
0.004 40.0 0.0 0.0
IAIR 1.013E5 293.0
0.028 28.0 0.0 0.0

Description

Field Contents SI Unit Example
MID Monitor volume identification number.

No default (Integer > 0)

UNIT Unit system.
0 (Default)
kg-mm-ms-K
1
kg-m-s-K (SI units)
2
ton-mm-s-K
SURF Flag to indicate the external surface of enclosed volume.
SID External surface identification defined by a set of elements.

No default (Integer > 0)

ATM Flag to indicate that the two following fields define atmospheric pressure and temperature.
TATM Ambient temperature.

Default=293 K (Real ≥ 0.0)

PATM Ambient pressure.

Default=1 atm (Real ≥ 0.0)

VENT Flag to indicate that the following five fields indicate the vent hole properties.
SIDV Vent hole area surface identification number.

No default (Integer > 0)

C23 Scale factor on vent hole area.

Default=1.0 (Real > 0.0)

LCTC23 Curve defining vent hole coefficient as a function of time.

No default (Integer > 0)

LCPC23 Curve defining vent hole coefficient as a function of pressure.

No default (Integer > 0)

PDEF Pressure difference between interior and ambient pressure to open vent hole.

Default=0.0

MATGAS Flag to indicate that the following four fields define the inflated gas properties.
LCM Table that defines mass flow rate curve for the gas component.
LCT Table that defines temperature curve for the gas component.
XM Molar mass of the gas component.
Cpa, Cpb, Cpc, Cpd, Cpe Molar heat capacity coefficients of the inflow gas at constant pressure. 4
IAIR Flag to indicate that the following four fields define properties of the initial gas inside the structure.
PAIR Initial pressure inside structure.

Default=PATM (Real ≥ 0.0)

TAIR Initial temperature inside structure.

Default=TATM (Real ≥ 0.0)

XMAIR Molar mass of air initially inside structure.

No default (Real ≥ 0.0)

Cpa_air, Cpb_air, Cpc_air, Cpd_air, Cpe_air Molar heat capacity coefficients of the initial air at constant pressure. 4

No default (Real ≥ 0.0)

HYDRA Flag to indicate that the following fields define properties of incompressible/compressible fluid (implicit large displacement analysis only. Otherwise, the definition is ignored in analysis). 5, 6
BULK Bulk modulus of compressible fluid inside structure If this is BLANK, the fluid inside the structure is incompressible.

Default = BLANK (Real ≥ 0.0)

Comments

  1. The volume must be a completely enclosed volume and the norm must be oriented outwards. If the structure contains a vent hole, the vent hole must be meshed with a shell element.
  2. The value of the total vent hole coefficient must be between 0.0 and 1.0:

    Total vent hole coefficient = min(max(C23 × LCTC23 × LCPC23, 0.0), 1.0).

  3. There is no limit on the number of gas components.
  4. Heat capacity at constant pressure:
    C p = C p a + C p b T + C p c T 2 + C p d T 3 + C p e T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaadc hacqGH9aqpcaWGdbGaamiCaiaadggacqGHRaWkcaWGdbGaamiCaiaa dkgacaWGubGaey4kaSIaam4qaiaadchacaWGJbGaamivamaaCaaale qabaGaaGOmaaaakiabgUcaRiaadoeacaWGWbGaamizaiaadsfadaah aaWcbeqaaiaaiodaaaGccqGHRaWkdaWcaaqaaiaadoeacaWGWbGaam yzaaqaaiaadsfaaaaaaa@4ED2@

    Where, T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@ is temperature.

  5. MONVOL with HYDRA continuation line can be used in an implicit large displacement analysis to model a cavity filled with ideal gas/hydraulic fluid. An element set must be used to define a cavity filled with the fluid. In this case, a result item called “fluid cavity (s)” with 4 sub results namely volume, cavity pressure, applied pressure and energy is available in HyperView. These results are available in the regular or the on-the-fly .h3d file. MONVOL for implicit large displacement analysis is supported for first and second order solid, shell, plane strain (CQPSTN, CTPSTN) and axisymmetric (CQAXI, CTAXI, CTRIAX6) elements.
  6. In implicit large displacement analysis, Boyle’s law is used in ideal gas, which is:

    P*V = P0*V0

    In a compressible fluid case, the constitutive relation of the fluid is written as:

    p = B*(V-V0)/V0

    Where,
    B
    Bulk modulus
    V
    Current volume of the cavity
    V0
    Initial volume of the cavity
    p
    Applied pressure
  7. Support information for MONVOL:
    Supported Analysis Types
    Explicit Dynamic Analysis
    Implicit Large Displacement Analysis