PLASTIC

Bulk Data Entry Can be used to describe elasto-plastic material behavior (currently supported for MAT1).

Note: This option is available for solid and shell elements in Explicit Analysis and only solid elements in Implicit Analysis.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
PLASTIC MID
CRIT CRITERIA OPT1 OPT2
C C C C C C C7
etc etc etc etc etc etc etc
HARD HARDENING
H H H H H H H7
etc etc etc etc etc etc etc
SRATE RATE_DEP VPLAS FCUT
S1 S2 S3 S4 S5 S6 S7
etc etc etc etc etc etc etc
Optional continuation line when CRITERIA= HILL (Comment 2)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
CRIT HILL
R11_1 R22_1 R33_1 R12_1 R31_1 R23_1 TEMP_1
R11_2 R22_2 R33_2 R12_2 R31_2 R23_2 TEMP_2
etc etc etc etc etc etc etc
Optional continuation line when CRITERIA= HILL and OPT1 =CLAS (input HILL coefficients directly instead of stress ratios) - See Comment 2
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
CRIT HILL CLAS
F_1 G_1 H_1 L_1 M_1 N_1 TEMP_1
F_2 G_2 H_2 L_2 M_2 N_2 TEMP_2
etc etc etc etc etc etc etc
Optional continuation line when CRITERIA=HILL, OPT1 = LANK and OPT2 = DIR1 or 2 (Comment 2)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
CRIT HILL LANK (DIR1/ DIR2)
r00_1 r45_1 r90_1 TEMP_1
r00_2 r45_2 r90_2 TEMP_2
etc etc etc etc
Optional continuation line when field 2 = HARD and HARDENING = ISOT. See Comment 3
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
HARD ISOT
YIELD_1_1 PLAS_1_1 TEMP_1
YIELD_1_2 PLAS_1_2
YIELD_1_3 PLAS_1_3
YIELD_2_2 PLAS_2_2 TEMP_2
etc etc etc
Optional continuation line when field 2 = HARD and HARDENING =JCOOK. See Comment 3
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
HARD JCOOK
A B n
Optional continuation line when field 2 = HARD and HARDENING =VOCE. See Comment 3
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
HARD VOCE
R0 Q1 b1 Q2 b2 Q3 b3
Optional continuation line when field 2 = HARD and HARDENING =LINVOCE. See Comment 3
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
HARD LINVOCE
R0 H Q B
Optional continuation line when field 2 = SRATE and RATE_DEP =JCOOK. See Comment 4
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
SRATE JCOOK VPLAS FCUT
C EPS0
Optional continuation line when field 2 = SRATE and RATE_DEP =COWPER. See Comment 4
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
SRATE COWPER VPLAS FCUT
p c
Optional continuation line when field 2 = SRATE and RATE_DEP =NLINEAR. See Comment 4
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
SRATE NLINEAR VPLAS FCUT
c EPS0

Example (PLASTIC)

Example of PLASTIC model assembly (See Comment 5).
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
MAT1 1 192400.0 0.3 7.85E-9
PLASTIC 1
CRIT HILL CLAS
0.200 0.300 0.400 0.350 0.450 0.550 0.0
HARD ISOT
282.5 0.0 20
294.2 0.0025
305.3 0.005
423.1 0.05
482.3 0.3
SRATE NLINEAR VPLAS
0.05 0.01

Definitions

Field Contents SI Unit Example
MID Elastic material identification number (MAT1).

No default (Integer > 0)

CRIT Flag indicating that the yield criterion input data are to follow.
CRITERIA Character String representing the chosen yield criterion.
HILL
Hill (1948) orthotropic/quadratic criterion.
OPT1 HILL criterion options:
LANK
Input based on Lankford coefficient.
CLAS
Classical input based on Hill coefficient.
OPT2 HILL criterion options with LANK input:
DIR1
Direction 1 is the reference for the yield stress.
DIR2
Direction 2 is the reference for the yield stress.

No default (Integer = 1 or 2)

Ci Yield criterion input data. (described below for each yield criterion) Comment 2

No default (Real > 0.0)

Rij_n Stress ratio used to compute the Hill coefficients for shear planes. Comment 2

No default (Real > 0.0)

Rii_n Stress ratio used to compute the Hill coefficients for normal direction. Comment 2

No default (Real > 0.0)

TEMP_n Temperature of the material. “n” number of temperatures can be defined.

No default (Real > 0.0)

F_n,G_n, H_n, L_n, M_n, N_n Hill orthotropy coefficients for “n” temperatures. Comment 2

No default (Real > 0.0)

r00_n Lankford coefficient at 0 degrees orientation angle for “n” temperatures.

No default (Real > 0.0)

r45_n Lankford coefficient at 45 degrees orientation angle for “n” temperatures.

No default (Real > 0.0)

r90_n Lankford coefficient at 90 degrees orientation angle for “n” temperatures.

No default (Real > 0.0)

HARD Flag indicating that the hardening rule input data are to follow.
HARDENING Character string represents the chosen isotropic hardening rule.
ISOT
Isotropic tabulated hardening
JCOOK
Johnson-Cook hardening
VOCE
Voce 3 terms hardening
LINVOC
Linear/Voce combination hardening
Hi Isotropic work hardening rule input data (described below for each hardening keyword).
YIELD_n_i Yield stress values defined for the yield versus plasticity curve. It can be defined for “n” temperatures.

No default (Real > 0.0)

PLASTIC_n_i Plasticity values defined for the yield versus plasticity curve. It can be defined for “n” temperatures.

No default (Real > 0.0)

A Initial yield stress.

No default (Real > 0.0)

B Hardening modulus.

No default (Real > 0.0)

n Hardening exponent.

No default (Real > 0.0)

R0 Initial yield stress.

No default (Real > 0.0)

Qi Saturation moduli.

No default (Real > 0.0)

bi Hardening saturation rates.

No default (Real > 0.0)

H Linear modulus.

No default (Real > 0.0)

SRATE SRATE flag indicating that the strain rate dependency input data are to follow.
RATE_DEP Character string represents the chosen strain rate dependency rule.
JCOOK
Johnson-Cook strain rate dependency
COWPER
Cowper-Symonds strain rate dependency
NLINEAR
Nonlinear strain rate dependency
Si Strain rate dependency rule input data (described below for each strain rate dependency rule).
VPLAS Optional keyword to activate the full visco-plastic formulation.
FCUT Cutoff frequency in case if total strain rate is used (when VPLAS is not activated).

No default (Integer > 0)

C Johnson-Cook parameter.

No default (Real > 0.0)

EPS0 Reference strain rate delimiting the transition between the inviscid domain and the strain rate dependent domain.

No default (Real > 0.0)

c Strain rate dependency parameter.

No default (Real > 0.0)

p Strain rate exponent parameter.

No default (Real > 0.0)

CS Strain rate dependency exponent.

No default (Real > 0.0)

Comments

  1. General elasto-plastic behavior

    PLASTIC option is a modular approach that can be used to add plasticity to an existing elastic material defined through MAT1. The yield function is a basic to define an elasto-plastic constitutive model through the equation:

    f = σ e q σ Y MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzaiabg2da9iabeo8aZ9aadaWgaaWcbaWdbiaadwgacaWGXbaa paqabaGcpeGaeyOeI0Iaeq4Wdm3damaaBaaaleaapeGaamywaaWdae qaaaaa@3FFD@

    This function defines a criterion to reach, triggering the plastic behavior. Thus:
    f < 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzaiaabYdacaqGGcGaaeimaaaa@398D@
    the behavior remains elastic,
    f =  0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzaiabg2da9iaabckacaqGWaaaaa@39D4@
    the criterion is fulfilled, and plasticity occurs.

    From a numerical point of view, a trial value of the yield function is used to determine if the plastic return mapping is necessary. This return mapping procedure takes place when f t r i a l 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaadshacaWGYbGaamyAaiaadggacaWG SbaapaqabaGcpeGaeyyzImRaaGimaaaa@3EA1@ , and finish after several iterations until the yield function is brought back to a zero value. The default algorithm is the cutting plane method.

    The yield function is composed of two major components:
    • The equivalent stress denoted σ e q MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaBaaaleaapeGaamyzaiaadghaa8aabeaaaaa@3A0A@ defines the shape of the yield surface in the stress state reference system. In other words, it corresponds to the yield criterion. Its computation depends on the stress tensor.
    • The yield stress denoted σ Y MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaBaaaleaapeGaamywaaWdaeqaaaaa@3908@ defines the evolution of the yield surface size (increase/decrease) considering a combination of nonlinear phenomena: work hardening, visco-plasticity, etc. Thus, its computation may depend on several internal variables: plastic strain, plastic strain rate and even temperature.

    PLASTIC then offers the possibility to create a specific assembly of constitutive equations choosing a custom-made combination of yield criterion, hardening rule, and/or strain rate dependency, among an existing library.

  2. Yield criterion

    The CRIT continuation line is used to define the yield criterion. Currently, only HILL criterion is supported. This criterion defines a surface in the stress state reference system that triggers the beginning of plastic behavior. Its shape is defined through the equation of the equivalent stress denoted as σ e q MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaBaaaleaapeGaamyzaiaadghaa8aabeaaaaa@3A0A@ .

    Hill 1948 (HILL):

    The Hill yield criterion (1948) is an orthotropic version of the quadratic yield criterion which is described as:

    σ e q = 1 2 σ x x σ y y 2 + σ y y σ z z 2 + σ z z σ x x 2 + 3 σ x y 2 + σ y z 2 + σ z x 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaBaaaleaapeGaamyzaiaadghaa8aabeaak8qacqGH 9aqpdaGcaaWdaeaapeWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaik daaaWaaeWaa8aabaWdbmaabmaapaqaa8qacqaHdpWCpaWaaSbaaSqa a8qacaWG4bGaamiEaaWdaeqaaOWdbiabgkHiTiabeo8aZ9aadaWgaa WcbaWdbiaadMhacaWG5baapaqabaaak8qacaGLOaGaayzkaaWdamaa CaaaleqabaWdbiaaikdaaaGccqGHRaWkdaqadaWdaeaapeGaeq4Wdm 3damaaBaaaleaapeGaamyEaiaadMhaa8aabeaak8qacqGHsislcqaH dpWCpaWaaSbaaSqaa8qacaWG6bGaamOEaaWdaeqaaaGcpeGaayjkai aawMcaa8aadaahaaWcbeqaa8qacaaIYaaaaOGaey4kaSYaaeWaa8aa baWdbiabeo8aZ9aadaWgaaWcbaWdbiaadQhacaWG6baapaqabaGcpe GaeyOeI0Iaeq4Wdm3damaaBaaaleaapeGaamiEaiaadIhaa8aabeaa aOWdbiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGOmaaaaaOGaay jkaiaawMcaaiabgUcaRiaaiodadaqadaWdaeaapeGaeq4Wdm3damaa DaaaleaapeGaamiEaiaadMhaa8aabaWdbiaaikdaaaGccqGHRaWkcq aHdpWCpaWaa0baaSqaa8qacaWG5bGaamOEaaWdaeaapeGaaGOmaaaa kiabgUcaRiabeo8aZ9aadaqhaaWcbaWdbiaadQhacaWG4baapaqaa8 qacaaIYaaaaaGccaGLOaGaayzkaaaaleqaaaaa@7897@

    The equivalent stress for Hill yield criterion is obtained with:

    σ e q = F σ y y σ z z 2 + G σ z z σ x x 2 + H σ x x σ y y 2 + 2 L σ y z 2 + 2 M σ z x 2 + 2 N σ x y 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaBaaaleaapeGaamyzaiaadghaa8aabeaak8qacqGH 9aqpdaGcaaWdaeaapeGaamOramaabmaapaqaa8qacqaHdpWCpaWaaS baaSqaa8qacaWG5bGaamyEaaWdaeqaaOWdbiabgkHiTiabeo8aZ9aa daWgaaWcbaWdbiaadQhacaWG6baapaqabaaak8qacaGLOaGaayzkaa WdamaaCaaaleqabaWdbiaaikdaaaGccqGHRaWkcaWGhbWaaeWaa8aa baWdbiabeo8aZ9aadaWgaaWcbaWdbiaadQhacaWG6baapaqabaGcpe GaeyOeI0Iaeq4Wdm3damaaBaaaleaapeGaamiEaiaadIhaa8aabeaa aOWdbiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGOmaaaakiabgU caRiaadIeadaqadaWdaeaapeGaeq4Wdm3damaaBaaaleaapeGaamiE aiaadIhaa8aabeaak8qacqGHsislcqaHdpWCpaWaaSbaaSqaa8qaca WG5bGaamyEaaWdaeqaaaGcpeGaayjkaiaawMcaa8aadaahaaWcbeqa a8qacaaIYaaaaOGaey4kaSIaaGOmaiaadYeacqaHdpWCpaWaa0baaS qaa8qacaWG5bGaamOEaaWdaeaapeGaaGOmaaaakiabgUcaRiaaikda caWGnbGaeq4Wdm3damaaDaaaleaapeGaamOEaiaadIhaa8aabaWdbi aaikdaaaGccqGHRaWkcaaIYaGaamOtaiabeo8aZ9aadaqhaaWcbaWd biaadIhacaWG5baapaqaa8qacaaIYaaaaaqabaaaaa@79BE@

    For shell elements, the plane stress assumption implies the following equivalent stress:

    σ e q = F σ y y 2 + G σ x x 2 + H σ x x σ y y 2 + 2 N σ x y 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaBaaaleaapeGaamyzaiaadghaa8aabeaak8qacqGH 9aqpdaGcaaWdaeaapeGaamOraiabeo8aZ9aadaqhaaWcbaWdbiaadM hacaWG5baapaqaa8qacaaIYaaaaOGaey4kaSIaam4raiabeo8aZ9aa daqhaaWcbaWdbiaadIhacaWG4baapaqaa8qacaaIYaaaaOGaey4kaS Iaamisamaabmaapaqaa8qacqaHdpWCpaWaaSbaaSqaa8qacaWG4bGa amiEaaWdaeqaaOWdbiabgkHiTiabeo8aZ9aadaWgaaWcbaWdbiaadM hacaWG5baapaqabaaak8qacaGLOaGaayzkaaWdamaaCaaaleqabaWd biaaikdaaaGccqGHRaWkcaaIYaGaamOtaiabeo8aZ9aadaqhaaWcba WdbiaadIhacaWG5baapaqaa8qacaaIYaaaaaqabaaaaa@5CC0@

    Where, F , G , H , L , M , and N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaacY cacaWGhbGaaiilaiaadIeacaGGSaGaamitaiaacYcacaWGnbGaaiil aiaaysW7caqGHbGaaeOBaiaabsgacaaMe8UaamOtaaaa@4417@ are the Hill orthotropy coefficients.

    Some examples of the presented criterion shapes are given in Figure 1.
    Figure 1. Examples of Hill criterion shapes


    • The default input format of Hill criterion parameters describes a list of stress ratios which allows to compute the Hill coefficients as:
      F = 1 2 1 R 22 2 + 1 R 33 2 1 R 11 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOraiabg2da9maalaaapaqaa8qacaaIXaaapaqaa8qacaaIYaaa amaabmaapaqaa8qadaWcaaWdaeaapeGaaGymaaWdaeaapeGaamOua8 aadaqhaaWcbaWdbiaaikdacaaIYaaapaqaa8qacaaIYaaaaaaakiab gUcaRmaalaaapaqaa8qacaaIXaaapaqaa8qacaWGsbWdamaaDaaale aapeGaaG4maiaaiodaa8aabaWdbiaaikdaaaaaaOGaeyOeI0YaaSaa a8aabaWdbiaaigdaa8aabaWdbiaadkfapaWaa0baaSqaa8qacaaIXa GaaGymaaWdaeaapeGaaGOmaaaaaaaakiaawIcacaGLPaaaaaa@4AB5@ L = 3 2 R 23 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamitaiabg2da9maalaaapaqaa8qacaaIZaaapaqaa8qacaaIYaGa amOua8aadaqhaaWcbaWdbiaaikdacaaIZaaapaqaa8qacaaIYaaaaa aaaaa@3D22@
      G = 1 2 1 R 33 2 + 1 R 11 2 1 R 22 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4raiabg2da9maalaaapaqaa8qacaaIXaaapaqaa8qacaaIYaaa amaabmaapaqaa8qadaWcaaWdaeaapeGaaGymaaWdaeaapeGaamOua8 aadaqhaaWcbaWdbiaaiodacaaIZaaapaqaa8qacaaIYaaaaaaakiab gUcaRmaalaaapaqaa8qacaaIXaaapaqaa8qacaWGsbWdamaaDaaale aapeGaaGymaiaaigdaa8aabaWdbiaaikdaaaaaaOGaeyOeI0YaaSaa a8aabaWdbiaaigdaa8aabaWdbiaadkfapaWaa0baaSqaa8qacaaIYa GaaGOmaaWdaeaapeGaaGOmaaaaaaaakiaawIcacaGLPaaaaaa@4AB6@ M = 3 2 R 31 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamytaiabg2da9maalaaapaqaa8qacaaIZaaapaqaa8qacaaIYaGa amOua8aadaqhaaWcbaWdbiaaiodacaaIXaaapaqaa8qacaaIYaaaaa aaaaa@3D22@
      H = 1 2 1 R 22 2 + 1 R 11 2 1 R 33 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamisaiabg2da9maalaaapaqaa8qacaaIXaaapaqaa8qacaaIYaaa amaabmaapaqaa8qadaWcaaWdaeaapeGaaGymaaWdaeaapeGaamOua8 aadaqhaaWcbaWdbiaaikdacaaIYaaapaqaa8qacaaIYaaaaaaakiab gUcaRmaalaaapaqaa8qacaaIXaaapaqaa8qacaWGsbWdamaaDaaale aapeGaaGymaiaaigdaa8aabaWdbiaaikdaaaaaaOGaeyOeI0YaaSaa a8aabaWdbiaaigdaa8aabaWdbiaadkfapaWaa0baaSqaa8qacaaIZa GaaG4maaWdaeaapeGaaGOmaaaaaaaakiaawIcacaGLPaaaaaa@4AB7@ N = 3 2 R 12 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOtaiabg2da9maalaaapaqaa8qacaaIZaaapaqaa8qacaaIYaGa amOua8aadaqhaaWcbaWdbiaaigdacaaIYaaapaqaa8qacaaIYaaaaa aaaaa@3D22@
      Where,
      R i i = σ Y i i σ Y MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaadMgacaWGPbaapaqabaGcpeGaeyyp a0ZaaSaaa8aabaWdbiabeo8aZ9aadaqhaaWcbaWdbiaadMfaa8aaba WdbiaadMgacaWGPbaaaaGcpaqaa8qacqaHdpWCpaWaaSbaaSqaa8qa caWGzbaapaqabaaaaaaa@4275@
      is for normal directions
      R i j = 3 σ Y i j σ Y MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaadMgacaWGQbaapaqabaGcpeGaeyyp a0ZaaSaaa8aabaWdbmaakaaapaqaa8qacaaIZaaaleqaaOGaeq4Wdm 3damaaDaaaleaapeGaamywaaWdaeaapeGaamyAaiaadQgaaaaak8aa baWdbiabeo8aZ9aadaWgaaWcbaWdbiaadMfaa8aabeaaaaaaaa@4378@
      is for shear planes
      Note: σ Y i i   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaDaaaleaapeGaamywaaWdaeaapeGaamyAaiaadMga aaGccaGGGcaaaa@3C23@ is the initial elastic limit stress measured for the direction i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36E5@ .
      These stress ratios can be input as:
      (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
      CRIT HILL
      R11_1 R22_1 R33_1 R12_1 R31_1 R23_1 TEMP_1
      R11_2 R22_2 R33_2 R12_2 R31_2 R23_2 TEMP_2
      etc etc etc etc etc etc etc

      A series of several lines of stress ratios can be defined for “n” specific temperature values (TEMP_n). If several lines are defined, the stress ratios are interpolated according to the current element temperature value.

    • Another input format is available by using the keyword CLAS, for the classical Hill shape input. This allows to directly input the Hill coefficients instead of the stress ratios:
      (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
      CRIT HILL CLAS
      F_1 G_1 H_1 L_1 M_1 N_1 TEMP_1
      F_2 G_2 H_2 L_2 M_2 N_2 TEMP_2
      etc etc etc etc etc etc etc
    • The last input format is particularly useful when orthotropic sheets of material are considered (and thus, plane stress conditions). It allows the user to define the Lankford coefficient, considering the corresponding Hill criterion formula:
      σ e q = H 1 + 1 r 00 σ x x 2 + H 1 + 1 r 90 σ y y 2 2 H σ x x σ y y + 2 H r 45 + 0.5 1 r 00 + 1 r 90 σ x y 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaBaaaleaapeGaamyzaiaadghaa8aabeaak8qacqGH 9aqpdaGcaaWdaeaapeGaamisamaabmaapaqaa8qacaaIXaGaey4kaS YaaSaaa8aabaWdbiaaigdaa8aabaWdbiaadkhapaWaaSbaaSqaa8qa caaIWaGaaGimaaWdaeqaaaaaaOWdbiaawIcacaGLPaaacqaHdpWCpa Waa0baaSqaa8qacaWG4bGaamiEaaWdaeaapeGaaGOmaaaakiabgUca RiaadIeadaqadaWdaeaapeGaaGymaiabgUcaRmaalaaapaqaa8qaca aIXaaapaqaa8qacaWGYbWdamaaBaaaleaapeGaaGyoaiaaicdaa8aa beaaaaaak8qacaGLOaGaayzkaaGaeq4Wdm3damaaDaaaleaapeGaam yEaiaadMhaa8aabaWdbiaaikdaaaGccqGHsislcaaIYaGaamisaiab eo8aZ9aadaWgaaWcbaWdbiaadIhacaWG4baapaqabaGcpeGaeq4Wdm 3damaaBaaaleaapeGaamyEaiaadMhaa8aabeaak8qacqGHRaWkcaaI YaGaamisamaabmaapaqaa8qacaWGYbWdamaaBaaaleaapeGaaGinai aaiwdaa8aabeaak8qacqGHRaWkcaaIWaGaaiOlaiaaiwdaaiaawIca caGLPaaadaqadaWdaeaapeWaaSaaa8aabaWdbiaaigdaa8aabaWdbi aadkhapaWaaSbaaSqaa8qacaaIWaGaaGimaaWdaeqaaaaak8qacqGH RaWkdaWcaaWdaeaapeGaaGymaaWdaeaapeGaamOCa8aadaWgaaWcba WdbiaaiMdacaaIWaaapaqabaaaaaGcpeGaayjkaiaawMcaaiabeo8a Z9aadaqhaaWcbaWdbiaadIhacaWG5baapaqaa8qacaaIYaaaaaqaba aaaa@7A40@

      Where, H = R 1 + R MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamisaiabg2da9maalaaapaqaa8qacaWGsbaapaqaa8qacaaIXaGa ey4kaSIaamOuaaaaaaa@3B79@ and R = r 00 + 2 r 45 + r 90 4 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuaiabg2da9maalaaapaqaa8qacaWGYbWdamaaBaaaleaapeGa aGimaiaaicdaa8aabeaak8qacqGHRaWkcaaIYaGaamOCa8aadaWgaa WcbaWdbiaaisdacaaI1aaapaqabaGcpeGaey4kaSIaamOCa8aadaWg aaWcbaWdbiaaiMdacaaIWaaapaqabaaakeaapeGaaGinaaaaaaa@4406@ .

    This additional input format can be activated when using the optional keyword LANK.
    (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
    CRIT HILL LANK (DIR1/ DIR2)
    r00_1 r45_1 r90_1 TEMP_1
    r00_2 r45_2 r90_2 TEMP_2
    etc etc etc etc

    Another keyword can be combined with LANK, allowing to select the reference direction for which the yield stress σ Y MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaBaaaleaapeGaamywaaWdaeqaaaaa@3908@ has been measured. Orthotropic directions 1 and 2 can be selected using respectively the keywords DIR1 or DIR2. If a keyword is not used, an average yield stress is considered by default.

  3. Isotropic hardening rule
    When the equivalent stress is chosen representing the yield criterion, the other part of the elasto-plastic model, that is, the yield stress σ Y MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaBaaaleaapeGaamywaaWdaeqaaaaa@3908@ , must be defined accounting for one or several nonlinear phenomena: work hardening, visco-plasticity, etc. The first and most essential nonlinear phenomenon that can be defined is the hardening rule. This defines the increase of the yield stress following the increase of plasticity and is denoted R ε p MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuamaabmaapaqaa8qacqaH1oqzpaWaaSbaaSqaa8qacaWGWbaa paqabaaak8qacaGLOaGaayzkaaaaaa@3B9C@ .
    • Tabulated (ISOT)
      You can choose to directly input a curve to describe the increase of the yield stress with plasticity. The yield stress evolution should be either increasing monotonically or saturating to a constant value. A direct tabulated input format is thus available in the hardening rule definition.
      (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
      HARD ISOT
      YIELD_1_1 PLAS_1_1 TEMP_1
      YIELD_1_2 PLAS_1_2
      YIELD_1_3 PLAS_1_3
      YIELD_2_2 PLAS_2_2 TEMP_2
      etc etc etc
    • Johnson-Cook (JCOOK)

      The classical power law proposed by Johnson-Cook is available in PLASTIC Bulk Data Entry. This allows to describe the following hardening rule.

      σ Y = R ε p = A + B ε p n MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaBaaaleaapeGaamywaaWdaeqaaOWdbiabg2da9iaa dkfadaqadaWdaeaapeGaeqyTdu2damaaBaaaleaapeGaamiCaaWdae qaaaGcpeGaayjkaiaawMcaaiabg2da9iaadgeacqGHRaWkcaWGcbGa eqyTdu2damaaDaaaleaapeGaamiCaaWdaeaapeGaamOBaaaaaaa@4726@

      Where,
      A MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyqaaaa@36D3@
      Initial yield stress
      B MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyqaaaa@36D3@
      Hardening modulus
      n MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaSqaaabaaaaaaaaape GaamOBaaaa@3701@
      Hardening exponent
      Figure 2. Johnson-Cook hardening rule shape example


    • Voce 3 terms (VOCE)

      Saturation work hardening law can also be used in PLASTIC with Voce formula, restricted to a maximum of 3 exponential terms in OptiStruct. It is described with:

      σ Y = R ε p = R 0 + i = 1 3 Q i 1 exp b i ε p MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaBaaaleaapeGaamywaaWdaeqaaOWdbiabg2da9iaa dkfadaqadaWdaeaapeGaeqyTdu2damaaBaaaleaapeGaamiCaaWdae qaaaGcpeGaayjkaiaawMcaaiabg2da9iaadkfapaWaaSbaaSqaa8qa caaIWaaapaqabaGcpeGaey4kaSYaaubmaeqal8aabaWdbiaadMgacq GH9aqpcaaIXaaapaqaa8qacaaIZaaan8aabaWdbiabggHiLdaakiaa dgfapaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeWaaeWaa8aabaWdbi aaigdacqGHsislciGGLbGaaiiEaiaacchadaqadaWdaeaapeGaeyOe I0IaamOya8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacqaH1oqzpa WaaSbaaSqaa8qacaWGWbaapaqabaaak8qacaGLOaGaayzkaaaacaGL OaGaayzkaaaaaa@59D1@

      Where,
      R 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@37F8@
      Initial yield stress
      Q MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyuaaaa@36E3@
      Saturation moduli
      b MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOyaaaa@36F4@
      Hardening saturation rates
      Note: When ε p MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdu2damaaBaaaleaapeGaamiCaaWdaeqaaOWdbiabgkziUkab g6HiLcaa@3C7B@ , the yield stress reaches a saturation value which equals to:

      R = i = 1 3 Q i MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuaiabg2da9maavadabeWcpaqaa8qacaWGPbGaeyypa0JaaGym aaWdaeaapeGaaG4maaqdpaqaa8qacqGHris5aaGccaWGrbWdamaaBa aaleaapeGaamyAaaWdaeqaaaaa@3FE4@

      Figure 3. Voce 3 terms hardening rule shape example


    • Linear/Voce combination (LINVOC)

      With PLASTIC it is also possible to combine the effect of linear hardening and saturation Voce law allowing to control the slope of the yield stress increase after saturation. This is available with the keyword LINVOC which describes the following hardening rule:

      σ Y = R ε p = R 0 + H ε p + Q 1 exp b ε p MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaBaaaleaapeGaamywaaWdaeqaaOWdbiabg2da9iaa dkfadaqadaWdaeaapeGaeqyTdu2damaaBaaaleaapeGaamiCaaWdae qaaaGcpeGaayjkaiaawMcaaiabg2da9iaadkfapaWaaSbaaSqaa8qa caaIWaaapaqabaGcpeGaey4kaSIaamisaiabew7aL9aadaWgaaWcba Wdbiaadchaa8aabeaak8qacqGHRaWkcaWGrbWaaeWaa8aabaWdbiaa igdacqGHsislciGGLbGaaiiEaiaacchadaqadaWdaeaapeGaeyOeI0 IaamOyaiabew7aL9aadaWgaaWcbaWdbiaadchaa8aabeaaaOWdbiaa wIcacaGLPaaaaiaawIcacaGLPaaaaaa@55F0@

      Where,
      R 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@37F8@
      Initial yield stress
      H MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamisaaaa@36DA@
      Linear modulus
      Q MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyuaaaa@36E3@
      Saturation moduli
      b MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOyaaaa@36F4@
      Hardening rate parameter
    Figure 4. Linear-Voce hardening rule shape example


  4. Strain rate dependency rule

    In addition to work hardening, you may want to introduce a strain rate dependency. This allows to increase or decrease the yield stress depending on either the total strain rate (that may be filtered using the real value parameter FCUT), or the plastic strain rate (which corresponds to a full viscoplastic formulation activated by the keyword VPLAS).

    • Johnson-Cook (JCOOK)

      The Johnson-Cook strain rate dependency is a well-known solution to add strain rate dependency to an elasto-plastic behavior. The hardening rule is then multiplied by:

      σ Y = R ε p 1 + C ln 1 + ε ˙ ε ˙ 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaBaaaleaapeGaamywaaWdaeqaaOWdbiabg2da9iaa dkfadaqadaWdaeaapeGaeqyTdu2damaaBaaaleaapeGaamiCaaWdae qaaaGcpeGaayjkaiaawMcaamaabmaapaqaa8qacaaIXaGaey4kaSIa am4qaiGacYgacaGGUbWaaeWaa8aabaWdbiaaigdacqGHRaWkdaWcaa WdaeaapeGafqyTdu2dayaacaaabaWdbiqbew7aL9aagaGaamaaBaaa leaapeGaaGimaaWdaeqaaaaaaOWdbiaawIcacaGLPaaaaiaawIcaca GLPaaaaaa@4DC9@

      Where,
      C MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qaaaa@36D5@
      Johnson-Cook parameter
      ε ˙ 0
      Reference strain rate delimiting the transition between the inviscid domain and the strain rate dependent domain
      The Johnson-Cook model thus describes a linear increase of the material strength with respect to the logarithm of the strain rate. (Figure 5). An example of yield stress increase shape obtained with the presented model is given in Figure 6.
      Figure 5. Johnson-Cook strain rate dependency model


      Figure 6. Johnson-Cook stress rate dependency model


    • Cowper-Symonds (COWPER)

      The Cowper-Symonds rate dependency is another solution commonly found in the literature. It modifies the yield stress equation a:

      σ Y = R ε p 1 + ε ˙ c 1 p MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaBaaaleaapeGaamywaaWdaeqaaOWdbiabg2da9iaa dkfadaqadaWdaeaapeGaeqyTdu2damaaBaaaleaapeGaamiCaaWdae qaaaGcpeGaayjkaiaawMcaamaabmaapaqaa8qacaaIXaGaey4kaSYa aeWaa8aabaWdbmaalaaapaqaa8qacuaH1oqzpaGbaiaaaeaapeGaam 4yaaaaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeWaaSaaa8aabaWd biaaigdaa8aabaWdbiaadchaaaaaaaGccaGLOaGaayzkaaaaaa@49DE@

      Where,
      c MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4yaaaa@36F5@
      Strain rate dependency parameter
      p MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4yaaaa@36F5@
      Strain rate exponent parameter
      The shape of the presented model is given in Figure 7.
      Figure 7. Cowper-Symonds strain rate dependency model


      Figure 8. Cowper-Symonds stress rate dependency model


    • Nonlinear (NLINEAR)

      The nonlinear strain rate dependency is similar to the Johnson-Cook model described above. Nevertheless, it describes a nonlinear evolution of the strain rate dependency in the logarithmic scale (Figure 9). This is introduced in the yield stress formula as:

      σ Y = R ε p 1 + ε ˙ ε ˙ 0 C S MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaBaaaleaapeGaamywaaWdaeqaaOWdbiabg2da9iaa dkfadaqadaWdaeaapeGaeqyTdu2damaaBaaaleaapeGaamiCaaWdae qaaaGcpeGaayjkaiaawMcaamaabmaapaqaa8qacaaIXaGaey4kaSYa aSaaa8aabaWdbiqbew7aL9aagaGaaaqaa8qacuaH1oqzpaGbaiaada WgaaWcbaWdbiaaicdaa8aabeaaaaaak8qacaGLOaGaayzkaaWdamaa CaaaleqabaWdbiaadoeacaWGtbaaaaaa@49C4@

      Where,
      C S MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaSqaaabaaaaaaaaape Gaam4qaiaadofaaaa@37AE@
      Strain rate dependency exponent
      ε ˙ 0
      Reference strain rate delimiting the transition between the inviscid domain and the strain rate dependent domain
      An example of the presented model on the yield stress shape is given in Figure 10.
      Figure 9. Nonlinear strain rate dependency model


      Figure 10. Nonlinear stress rate dependency model


  5. The model obtained with this example has an isotropic elastic behavior, with an orthotropic elasto-plasticity using a HILL yield criterion, and a specific yield stress assembly cumulating:
    • A tabulated work hardening,
    • A nonlinear strain rate dependency with full visco-plastic formulation
    Note: Failure can be added to the model with a MATF card for instance.