Advanced Rattle

Use the Squeak and Rattle Director Advanced Rattle module to perform different studies regarding the dimensions variation.

The dimensions variation follows a normal distribution where the nominal gap is the mean value and the tolerance is the standard deviation. By default, three Sigma distribution is applied. A gap will vary from a minimum to a maximum value, which:

  • Gap min = Nominal Gap ( µ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG1caaaa@3751@ ) – Tolerance ( 3 σ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaaIZaGaeq4Wdmhaaa@3897@ )
  • Gap max = Nominal Gap ( µ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG1caaaa@3751@ ) + Tolerance ( 3 σ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaaIZaGaeq4Wdmhaaa@3897@ )
Figure 1.


Sigma Tolerance Plot

The Sigma Tolerance Plot option generates three dynamic tolerance plots, considering tolerance as 1 Sigma, 2 Sigma, and 3 Sigma to highlight the dynamic tolerance risk.

Percentage of Failure

The percentage of failure evaluates the percentage of products to fail in a given production batch. In other words, it represents in how many products in the production the relative displacement exceeds the allowable gap, causing rattle. The relative displacement in gap direction of each E-Line is compared to the gap size distribution curve considering three Sigma distribution. The percentage of failure is calculated as Equation 1.

P f = P r o b a b i l i t y   f o r   Z d i s p >   G a p i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGqbWdamaaBaaaleaapeGaamOzaaWdaeqaaOWdbiabg2da9iaa dcfacaWGYbGaam4BaiaadkgacaWGHbGaamOyaiaadMgacaWGSbGaam yAaiaadshacaWG5bGaaeiiaiaadAgacaWGVbGaamOCaiaabccacaWG AbWdamaaBaaaleaapeGaamizaiaadMgacaWGZbGaamiCaaWdaeqaaO Wdbiabg6da+iaabccacaWGhbGaamyyaiaadchapaWaaSbaaSqaa8qa caWGPbaapaqabaaaaa@5256@

Given the gap, tolerance, and the calculated relative displacement from the FE model, the calculated percentage of failure can be used as an extra filtering index to speed up focusing on the most critical rattle issues. E-Lines with higher percentage of failure have the higher risk of rattling.

The following scenario can be used as an example:

Table 1.
Parameters
Gap 1.00
Tol 0.50
#SD 3.00
σ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWHdpaaaa@3766@ 0.167
Max Rel Disp Z 0.8
Where,
Gap
Nominal gap value
Tol
Tolerance value
#SD
Standard deviation value
Sigma ( σ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWHdpaaaa@3766@ )
Tol ÷ #SD
Max Rel Disp Z
Maximum relative displacement in Z direction for a specific E-Line extracted from simulation

Using the gap size curve for this calculation, the probability for G a p i   >   Z d i s p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGhbGaamyyaiaadchapaWaaSbaaSqaa8qacaWGPbGaaiiOaaWd aeqaaOWdbiabg6da+8aadaWgaaWcbaWdbiaacckaa8aabeaak8qaca WGAbWdamaaBaaaleaapeGaamizaiaadMgacaWGZbGaamiCaaWdaeqa aaaa@42E1@ is represented by the blue area in Figure 2 and the percentage of failure by the orange area. Therefore:

P f = Probability for  Z disp > Ga p i  MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGqbWdamaaBaaaleaapeGaamOzaaWdaeqaaOWdbiabg2da9iaa cckacaWGqbGaamOCaiaad+gacaWGIbGaamyyaiaadkgacaWGPbGaam iBaiaadMgacaWG0bGaamyEaiaabccacaWGMbGaam4BaiaadkhacaqG GaGaamOwa8aadaWgaaWcbaWdbiaadsgacaWGPbGaam4Caiaadchaa8 aabeaak8qacqGH+aGpcaqGGaGaam4raiaadggacaWGWbWdamaaBaaa leaapeGaamyAaiaacckaa8aabeaaaaa@549E@
Figure 2.