OS-V: 1225 Explicit Analysis on a Dog Bone Model

A tensile test coupon (dog-bone) model is subjected to a dynamic tensile loading and the results of solid and shell elements using different formulations are evaluated.

The goal is to verify the plastic strain results by comparing them with experimental data and Radioss results.

Model Files

Before you begin, copy the file(s) used in this problem to your working directory.

Benchmark Model

The model represents a tensile test coupon (dog-bone model) as shown in Figure 1. The coupon is extended from one side in the X-direction, while the other side is fixed in all six degrees of freedom using boundary conditions (SPC). The nodes on the right-hand side of the coupon are constrained within a rigid body definition (RBE2). A prescribed velocity of 1m/s in the direction of extension is applied to the main node of the rigid body (SPCD).
Figure 1. Loads and Constraints


The material test data and the engineering stress-strain curves were referred from 1. Since experimental stress-strain curves are available, the tabulated material property curve (MATS1) is selected. The formulae in Equation 1 and Equation 2 can be used to determine the true stress versus true strain curve. The plastic part of the curve can then be isolated. This true stress vs plastic true strain curve is used as an input of MATS1.

ε t r = ln 1 + ε e MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdu2damaaBaaaleaapeGaamiDaiaadkhaa8aabeaak8qacqGH 9aqpciGGSbGaaiOBamaabmaapaqaa8qacaaIXaGaey4kaSIaeqyTdu 2damaaBaaaleaapeGaamyzaaWdaeqaaaGcpeGaayjkaiaawMcaaaaa @434C@
σ t r = σ e e x p ε t r MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaBaaaleaapeGaamiDaiaadkhaa8aabeaak8qacqGH 9aqpcqaHdpWCpaWaaSbaaSqaa8qacaWGLbaapaqabaGcpeGaamyzai aadIhacaWGWbWaaeWaa8aabaWdbiabew7aL9aadaWgaaWcbaWdbiaa dshacaWGYbaapaqabaaak8qacaGLOaGaayzkaaaaaa@46EA@

Where,
ε tr MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdu2damaaBaaaleaapeGaamiDaiaadkhaa8aabeaaaaa@39FE@
True strain
ε e MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdu2damaaBaaaleaapeGaamyzaaWdaeqaaaaa@38F8@
Engineering strain
σ tr MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaBaaaleaapeGaamiDaiaadkhaa8aabeaaaaa@3A1A@
True stress
σ e MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaBaaaleaapeGaamyzaaWdaeqaaaaa@3914@
True strain

The engineering stress can be calculated using σe = F/A0. The force is derived from the rigid body force and the original cross-sectional area is 20.4 mm2

The engineering strain is calculated with εe = Δl/l0. The elongation Δl is measured from two instrumented nodes. The original distance l0 is 80 mm.

Two different element formulations are used in this model and each element formulation has been tested with two different integration types. The following tests were conducted:

CQUAD4 Shell Elements
  • FULL and BWC integration types are studied
  • Flanagan-Belytschko Stiffness Form hourglass control is used for BWC
CHEXA Solid Elements
  • FULL and URI integration types are studied
  • Puso hourglass control is used for Uniform Reduced Integration (URI)

Material

The specimen is modeled with sheet material using MAT1, which defines the elastic part of the stress strain curve, and MATS1, which defines the plastic part of the curve.

Elastic-plastic Material Properties
Young's modulus
221.0
Poisson's ratio
0.3
Density
7.85E-06
Yield Stress
0.389674
Plastic Properties
Initial yield point
0.389674
TABLES1 entries for stress strain curve
Strain Stress
0 389.6743
0.003269061 400.2301
0.006930112 409.5893
0.010444667 418.2536
0.011846377 422.4619
0.012926577 426.8274
0.013648366 433.6494
0.015225465 443.84
0.018589302 452.2541
0.02187438 469.641
0.025339483 483.1056
0.028791504 494.6843
0.032231428 505.9577
0.035658606 515.5831
0.039073858 524.8865
0.042476834 533.055
0.045868261 541.2669
0.049247692 548.5451
0.052615533 555.4787
0.055971597 561.5721
0.059316615 568.0228
0.062650303 574.1739
0.065972157 578.9182
0.069283274 584.1797
0.072583139 588.8521
0.075872187 593.5983
0.079150038 597.5798
0.082417502 602.192
0.085673728 605.6392
0.088919523 609.3784
0.092154789 613.0725
0.095379505 616.5503
0.098593692 619.6955
0.101797797 623.3059
0.104991363 626.2954
0.10817488 629.5215
0.111348321 632.8131
0.114511357 635.3597
0.117664394 637.8515
0.120807432 640.1715
0.123940737 642.7274
0.127064396 645.5801
0.130178021 647.7906
0.133282182 650.4157
0.136376459 652.4523
0.139461486 655.1424
0.142536808 657.36
0.145602624 659.3996
0.148658992 661.2593
0.151706339 663.7797
0.154744129 665.6395
0.15777259 667.1959
0.160792519 670.1453
0.163802712 671.6394
0.166804116 673.6798
0.169796749 676.2103
0.172779798 677.2082
0.175754158 678.6314
0.17871969 680.051
0.181676645 681.9008
0.184624849 683.6876
0.187564155 684.9119
0.190494822 686.0692
0.193600271 686.6066
0.196220092 687.8017
0.19941797 689.0229

Results

The analysis demonstrates the behavior of the tabulated MATS1 material’s stress-strain curve under tensile loading conditions. The simulation results of the engineering stress-strain curves align perfectly with the experimental data and the results from Radioss for all element formulations and integration types. The true stress versus true strain curve is directly extracted from an element at the center of the coupon for all the analyses and the results are as follows:

Model with hexahedron elements CHEXA solved using Uniform Reduced Integration (URI) with Puso hourglass control (HGTYP = 2)
Figure 2. Plastic Strain Contour for Solid Element with URI Formulation and Puso HG Control


Figure 3. Comparison of Results using MATS1 for Solid Element with URI Formulation and Puso HG Control


Model with CHEXA elements solved using full integration
Figure 4. Plastic Strain Contour for Solid Element with Full Integration


Figure 5. Comparison of Results using MATS1 for Solid Element with Full Integration


Model with CQUAD4 elements solved using Belytschko-Wong-Chiang (BWC) with Flanagan-Belytschko stiffness form hourglass control (HGTYP = 3)
Figure 6. Plastic Strain Contour for BWC Shell Formulation with Stiffness Hourglass Control


Figure 7. Comparison of Results using MATS1 for Shell BWC Formulation with Stiffness Hourglass Control


Model with CQUAD4 elements solved using FULL integration
Figure 8. Plastic Strain Contour for Full Integration Shell Formulation


Figure 9. Comparison of Results using MATS1 for Full Integration Shell Formulation


Note: The necking begins at 0.2, so to visualize all elements with plastic strain above this threshold, the second level of the legend is set to 0.2.

Reference

1 Li, Wenchao & Liao, Fangfang & Zhou, Tianhua & Askes, Harm. (2016). Ductile fracture of Q460 steel: Effects of stress triaxiality and Lode angle. Journal of Constructional Steel Research. 123. 1-17. 10.1016/j.jcsr.2016.04.018.