PBEND

Bulk Data Entry Defines the property of curved beam or pipe elements defined via the CBEND entry.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
PBEND PID MID FSI RM T P RB THETAB
NSM

Example

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
PBEND 1 2 1 0.85 0.025 50 6.0

Definitions

Field Contents SI Unit Example
PID Unique bend property identification.
Integer
Specifies an identification number for this property.
<String>
Specifies a user-defined string label for this property.

Default = EID (Integer > 0 or <String>)

MID Material identification. 1
Integer
Specifies a material identification number.
<String>
Specifies a user-defined material identification string. 2
FSI Flexibility and stress intensification factors flag. 3

(1≤ Integer ≤ 4)

RM Mean radius of the pipe cross-section. Figure 1

(Real > 0.0)

T Thickness of the wall of the curved pipe. Figure 1

(Real ≥ 0.0; RM + T/2 < RB)

P Internal pressure.

(Real or Blank)

RB Radius of the arc of the CBEND element.

Required only for GEOM = 3 on CBEND.

(Real)

THETAB Angle of the arc of the CBEND element.

Required only for GEOM = 4 on CBEND.

(Real, in degrees)

NSM Nonstructural mass per unit length.

Default = 0.0 (Real)

Comments

  1. For structural problems, MID may reference only a MAT1 material entry. Only structural problems are currently supported. Heat transfer analysis is not supported for the CBEND/PBEND entries.
  2. String-based labels allow for easier visual identification of properties, including when being referenced by other cards (for example, the PID field of elements). For more details, refer to String Label Based Input File in the Bulk Data Input File topic.
  3. For this Curved Pipe format, the FSI option defines the in-plane flexibility factor (K_z), the out-of-plane flexibility factor (K_y), the in-plane stress intensification factor (S_z), and the out-of-plane stress intensification factor (S_y). K_z and K_y must not be less than 1.0. Accordingly, OptiStruct sets their values to 1.0, when required. The available options are:
    • FSI = 1
      In-plane Flexibility
      K z = 1.0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeqabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGlbWaaSbaaSqaaiaadQhaaeqaaO GaaGPaVlabg2da9iaaykW7caaIXaGaaiOlaiaaicdaaaa@3A04@
      Out-of-plane Flexibility
      K y = 1.0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeqabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGlbWaaSbaaSqaaiaadMhaaeqaaO GaaGPaVlabg2da9iaaykW7caaIXaGaaiOlaiaaicdaaaa@3A03@
      In-plane Stress
      S z = I A R B 1 r o u t + R B Δ N Δ N R B + r o u t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeWabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGtbWaaSbaaSqaaiaadQhaaeqaaO GaaGPaVlabg2da9iaaykW7daWcaaqaaiaadMeaaeaacaWGbbGaeyyX ICTaamOuamaaBaaaleaacaWGcbaabeaaaaGccaaMc8+aaeWaaeaada WcaaqaaiaaigdaaeaacaWGYbWaaSbaaSqaaiaad+gacaWG1bGaamiD aaqabaaaaOGaaGPaVlabgUcaRiaaykW7daWcaaqaaiaadkfadaWgaa WcbaGaamOqaaqabaGccqGHsislcqqHuoarcaWGobaabaGaeyiLdqKa amOtaiabgwSixpaabmaabaGaamOuamaaBaaaleaacaWGcbaabeaaki abgUcaRiaadkhadaWgaaWcbaGaam4BaiaadwhacaWG0baabeaaaOGa ayjkaiaawMcaaaaaaiaawIcacaGLPaaaaaa@5B75@
      Out-of-plane Stress
      S y = 1.0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeqabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGtbWaaSbaaSqaaiaadMhaaeqaaO GaaGPaVlabg2da9iaaykW7caaIXaGaaiOlaiaaicdaaaa@3A0B@

      Where,

      r o u t = R M + T 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeWabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGYbWaaSbaaSqaaiaad+gacaWG1b GaamiDaaqabaGccaaMc8Uaeyypa0JaaGPaVlaadkfadaWgaaWcbaGa amytaaqabaGccaaMc8Uaey4kaSIaaGPaVpaalaaabaGaamivaaqaai aaikdaaaaaaa@416A@

      r i n = R M T 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeWabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGYbWaaSbaaSqaaiaadMgacaWGUb aabeaakiaaykW7cqGH9aqpcaaMc8UaamOuamaaBaaaleaacaWGnbaa beaakiaaykW7cqGHsislcaaMc8+aaSaaaeaacaWGubaabaGaaGOmaa aaaaa@406F@

      I= 1 4 π r out 4 r in 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeWabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGjbGaaGPaVlabg2da9iaaykW7da WcaaqaaiaaigdaaeaacaaI0aaaaiabec8aWnaabmaabaGaamOCamaa DaaaleaacaWGVbGaamyDaiaadshaaeaacaaI0aaaaOGaaGPaVlabgk HiTiaaykW7caWGYbWaa0baaSqaaiaadMgacaWGUbaabaGaaGinaaaa aOGaayjkaiaawMcaaaaa@481A@

      A = 2 π R M T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeWabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGbbGaaGPaVlabg2da9iaaykW7ca aIYaGaeqiWdaNaaGPaVlabgwSixlaaykW7caWGsbWaaSbaaSqaaiaa d2eaaeqaaOGaaGPaVlabgwSixlaaykW7caWGubaaaa@4691@

      A m = 2 π R B 2 r i n 2 R B 2 r o u t 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeWabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGbbWaaSbaaSqaaiaad2gaaeqaaO GaaGPaVlabg2da9iaaykW7caaIYaGaeqiWda3aaeWaaeaadaGcaaqa aiaadkfadaqhaaWcbaGaamOqaaqaaiaaikdaaaGccaaMc8UaeyOeI0 IaaGPaVlaadkhadaqhaaWcbaGaamyAaiaad6gaaeaacaaIYaaaaaqa baGccaaMc8UaeyOeI0IaaGPaVpaakaaabaGaamOuamaaDaaaleaaca WGcbaabaGaaGOmaaaakiaaykW7cqGHsislcaaMc8UaamOCamaaDaaa leaacaWGVbGaamyDaiaadshaaeaacaaIYaaaaaqabaaakiaawIcaca GLPaaaaaa@55B1@

      Δ N = R B A A m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeWabaqaciGa caGaaeqabaqaaeaadaaakeaacqGHuoarcaWGobGaaGPaVlabg2da9i aaykW7caWGsbWaaSbaaSqaaiaadkeaaeqaaOGaaGPaVlabgkHiTiaa ykW7daWcaaqaaiaadgeaaeaacaWGbbWaaSbaaSqaaiaad2gaaeqaaa aaaaa@40A5@

      Δ N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeWabaqaciGa caGaaeqabaqaaeaadaaakeaacqGHuoarcaWGobaaaa@33F8@ is the radial offset of the neutral axis due to bending of the curved beam (Boresi, Arthur P., and Richard J. Schmidt. Advanced mechanics of materials. John Wiley & Sons, 2002.)
      Figure 1. CBEND Element Coordinate System for Pipe Bend Format
    • FSI = 2 (ASME code Section III, NB-3687.2, NB-3685.2., 1977)
      In-plane Flexibility
      K z = 1.65 R M 2 R B T 1 1 + 6 P R M E T R M T 4 3 R B R M 1 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadQhaa8aabeaak8qacqGH9aqpdaWc aaWdaeaapeGaaGymaiaac6cacaaI2aGaaGynaiaadkfapaWaa0baaS qaa8qacaWGnbaapaqaa8qacaaIYaaaaaGcpaqaa8qacaWGsbWdamaa BaaaleaapeGaamOqaaWdaeqaaOWdbiaadsfaaaWaaeWaa8aabaWdbm aalaaapaqaa8qacaaIXaaapaqaa8qacaaIXaGaey4kaSIaaGOnamaa laaapaqaa8qacaWGqbGaeyyXICTaamOua8aadaWgaaWcbaWdbiaad2 eaa8aabeaaaOqaa8qacaWGfbGaeyyXICTaamivaaaadaqadaWdaeaa peWaaSaaa8aabaWdbiaadkfapaWaaSbaaSqaa8qacaWGnbaapaqaba aakeaapeGaamivaaaaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeWa aSaaa8aabaWdbiaaisdaa8aabaWdbiaaiodaaaaaaOWaaeWaa8aaba Wdbmaalaaapaqaa8qacaWGsbWdamaaBaaaleaapeGaamOqaaWdaeqa aaGcbaWdbiaadkfapaWaaSbaaSqaa8qacaWGnbaapaqabaaaaaGcpe GaayjkaiaawMcaa8aadaahaaWcbeqaa8qadaWcaaWdaeaapeGaaGym aaWdaeaapeGaaG4maaaaaaaaaaGccaGLOaGaayzkaaaaaa@5FC9@
      Out-of-plane Flexibility
      K y = K z = 1.65 R M 2 R B T 1 1 + 6 P R M E T R M T 4 3 R B R M 1 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadMhaa8aabeaak8qacqGH9aqpcaWG lbWdamaaBaaaleaapeGaamOEaaWdaeqaaOWdbiabg2da9maalaaapa qaa8qacaaIXaGaaiOlaiaaiAdacaaI1aGaamOua8aadaqhaaWcbaWd biaad2eaa8aabaWdbiaaikdaaaaak8aabaWdbiaadkfapaWaaSbaaS qaa8qacaWGcbaapaqabaGccqGHflY1peGaamivaaaadaqadaWdaeaa peWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaigdacqGHRaWkcaaI2a WaaSaaa8aabaWdbiaadcfacqGHflY1caWGsbWdamaaBaaaleaapeGa amytaaWdaeqaaaGcbaWdbiaadweacqGHflY1caWGubaaamaabmaapa qaa8qadaWcaaWdaeaapeGaamOua8aadaWgaaWcbaWdbiaad2eaa8aa beaaaOqaa8qacaWGubaaaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8 qadaWcaaWdaeaapeGaaGinaaWdaeaapeGaaG4maaaaaaGcdaqadaWd aeaapeWaaSaaa8aabaWdbiaadkfapaWaaSbaaSqaa8qacaWGcbaapa qabaaakeaapeGaamOua8aadaWgaaWcbaWdbiaad2eaa8aabeaaaaaa k8qacaGLOaGaayzkaaWdamaaCaaaleqabaWdbmaalaaapaqaa8qaca aIXaaapaqaa8qacaaIZaaaaaaaaaaakiaawIcacaGLPaaaaaa@655B@
      In-plane Stress
      S z = sin φ + 1.5 X 2 18.75 sin 3 φ + 11.25 sin 5 φ X 4 + ν λ 9 X 2 cos 2 φ + 225 cos 4 φ X 4 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaWgaaWcbaWdbiaadQhaa8aabeaak8qacqGH9aqpciGG ZbGaaiyAaiaac6gacqaHgpGAcqGHRaWkdaWcaaWdaeaapeWaaeWaa8 aabaWdbiaaigdacaGGUaGaaGynaiaadIfapaWaaSbaaSqaa8qacaaI YaaapaqabaGcpeGaeyOeI0IaaGymaiaaiIdacaGGUaGaaG4naiaaiw daaiaawIcacaGLPaaaciGGZbGaaiyAaiaac6gacaaIZaGaeqOXdOMa ey4kaSIaaGymaiaaigdacaGGUaGaaGOmaiaaiwdaciGGZbGaaiyAai aac6gacaaI1aGaeqOXdOgapaqaa8qacaWGybWdamaaBaaaleaapeGa aGinaaWdaeqaaaaak8qacqGHRaWkdaWcaaWdaeaapeGaeqyVd4Maeq 4UdW2aaeWaa8aabaWdbiaaiMdacaWGybWdamaaBaaaleaapeGaaGOm aaWdaeqaaOWdbiGacogacaGGVbGaai4CaiaaikdacqaHgpGAcqGHRa WkcaaIYaGaaGOmaiaaiwdaciGGJbGaai4BaiaacohacaaI0aGaeqOX dOgacaGLOaGaayzkaaaapaqaa8qacaWGybWdamaaBaaaleaapeGaaG inaaWdaeqaaaaaaaa@7396@
      Out-of-plane Stress
      S y = cos φ + 1.5 X 2 18.75 cos 3 φ + 11.25 cos 5 φ X 4 ν λ 9 X 2 sin 2 φ + 225 sin 4 φ X 4 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaWgaaWcbaWdbiaadMhaa8aabeaak8qacqGH9aqpciGG JbGaai4BaiaacohacqaHgpGAcqGHRaWkdaWcaaWdaeaapeWaaeWaa8 aabaWdbiaaigdacaGGUaGaaGynaiaadIfapaWaaSbaaSqaa8qacaaI YaaapaqabaGcpeGaeyOeI0IaaGymaiaaiIdacaGGUaGaaG4naiaaiw daaiaawIcacaGLPaaaciGGJbGaai4BaiaacohacaaIZaGaeqOXdOMa ey4kaSIaaGymaiaaigdacaGGUaGaaGOmaiaaiwdaciGGJbGaai4Bai aacohacaaI1aGaeqOXdOgapaqaa8qacaWGybWdamaaBaaaleaapeGa aGinaaWdaeqaaaaak8qacqGHsisldaWcaaWdaeaapeGaeqyVd4Maeq 4UdW2aaeWaa8aabaWdbiaaiMdacaWGybWdamaaBaaaleaapeGaaGOm aaWdaeqaaOWdbiGacohacaGGPbGaaiOBaiaaikdacqaHgpGAcqGHRa WkcaaIYaGaaGOmaiaaiwdaciGGZbGaaiyAaiaac6gacaaI0aGaeqOX dOgacaGLOaGaayzkaaaapaqaa8qacaWGybWdamaaBaaaleaapeGaaG inaaWdaeqaaaaaaaa@739B@
      Where,

      λ = R B T R M 2 1 ν 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWMaeyypa0ZaaSaaa8aabaWdbiaadkfapaWaaSbaaSqaa8qa caWGcbaapaqabaGccqGHflY1peGaamivaaWdaeaapeGaamOua8aada qhaaWcbaWdbiaad2eaa8aabaWdbiaaikdaaaGcdaGcaaWdaeaapeGa aGymaiabgkHiTiabe27aU9aadaahaaWcbeqaa8qacaaIYaaaaaqaba aaaaaa@45BB@

      Ψ = P R B 2 E R M T MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuiQdKLaeyypa0ZaaSaaa8aabaWdbiaadcfacqGHflY1caWGsbWd amaaDaaaleaapeGaamOqaaWdaeaapeGaaGOmaaaaaOWdaeaapeGaam yraiabgwSixlaadkfapaWaaSbaaSqaa8qacaWGnbaapaqabaGccqGH flY1peGaamivaaaaaaa@4732@

      X 1 = 5 + 6 λ 2 + 24 Ψ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH9aqpcaaI 1aGaey4kaSIaaGOnaiabeU7aS9aadaahaaWcbeqaa8qacaaIYaaaaO Gaey4kaSIaaGOmaiaaisdacqqHOoqwaaa@4231@

      X 2 = 17 + 600 λ 2 + 480 Ψ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGH9aqpcaaI XaGaaG4naiabgUcaRiaaiAdacaaIWaGaaGimaiabeU7aS9aadaahaa Wcbeqaa8qacaaIYaaaaOGaey4kaSIaaGinaiaaiIdacaaIWaGaeuiQ dKfaaa@4523@

      X 3 = X 1 X 2 6.25 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwa8aadaWgaaWcbaWdbiaaiodaa8aabeaak8qacqGH9aqpcaWG ybWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaadIfapaWaaSbaaS qaa8qacaaIYaaapaqabaGcpeGaeyOeI0IaaGOnaiaac6cacaaIYaGa aGynaaaa@4114@

      X 4 = 1 ν 2 X 3 4.5 X 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwa8aadaWgaaWcbaWdbiaaisdaa8aabeaak8qacqGH9aqpdaqa daWdaeaapeGaaGymaiabgkHiTiabe27aU9aadaahaaWcbeqaa8qaca aIYaaaaaGccaGLOaGaayzkaaWaaeWaa8aabaWdbiaadIfapaWaaSba aSqaa8qacaaIZaaapaqabaGcpeGaeyOeI0IaaGinaiaac6cacaaI1a Gaamiwa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaOWdbiaawIcacaGL Paaaaaa@481B@

      With φ = 0 o ,     90 o ,   180 o ,   270 o MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOXdOMaeyypa0JaaGima8aadaahaaWcbeqaa8qacaWGVbaaaOGa aiilaiaacckacaGGGcGaaGyoaiaaicdapaWaaWbaaSqabeaapeGaam 4BaaaakiaacYcacaGGGcGaaGymaiaaiIdacaaIWaWdamaaCaaaleqa baWdbiaad+gaaaGccaGGSaGaaiiOaiaaikdacaaI3aGaaGima8aada ahaaWcbeqaa8qacaWGVbaaaaaa@4B33@ corresponding to the default stress recovery points, Di, Ci, Fi, Ei, respectively (Figure 1).
      Note: The above equations are only valid for λ 0.2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWMaeyyzImRaaGimaiaac6cacaaIYaaaaa@3BAF@ , as per NB-3685.1. For , λ < 0.2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWMaeyipaWJaaGimaiaac6cacaaIYaaaaa@3AED@ , a warning is issued but the solution sequence is not interrupted.
    • FSI = 3 (Research Council Bulletin 179, Dodge and Moore)
      In-plane Flexibility
      K z = 1.73 λ 1 1 + 1.75 λ 4 3 exp 1.15 Ψ 1 4 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadQhaa8aabeaak8qacqGH9aqpdaWc aaWdaeaapeGaaGymaiaac6cacaaI3aGaaG4maaWdaeaapeGaeq4UdW gaamaabmaapaqaa8qadaWcaaWdaeaapeGaaGymaaWdaeaapeGaaGym aiabgUcaRiaaigdacaGGUaGaaG4naiaaiwdacqaH7oaBpaWaaWbaaS qabeaapeGaeyOeI0YaaSaaa8aabaWdbiaaisdaa8aabaWdbiaaioda aaaaaOGaciyzaiaacIhacaGGWbWaaeWaa8aabaWdbiabgkHiTiaaig dacaGGUaGaaGymaiaaiwdacqqHOoqwpaWaaWbaaSqabeaapeGaeyOe I0YaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaisdaaaaaaaGccaGLOa GaayzkaaaaaaGaayjkaiaawMcaaaaa@572E@
      Out-of-plane Flexibility
      K y = K z = 1.73 λ 1 1 + 1.75 λ 4 3 exp 1.15 Ψ 1 4 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadMhaa8aabeaak8qacqGH9aqpcaWG lbWdamaaBaaaleaapeGaamOEaaWdaeqaaOWdbiabg2da9maalaaapa qaa8qacaaIXaGaaiOlaiaaiEdacaaIZaaapaqaa8qacqaH7oaBaaWa aeWaa8aabaWdbmaalaaapaqaa8qacaaIXaaapaqaa8qacaaIXaGaey 4kaSIaaGymaiaac6cacaaI3aGaaGynaiabeU7aS9aadaahaaWcbeqa a8qacqGHsisldaWcaaWdaeaapeGaaGinaaWdaeaapeGaaG4maaaaaa GcciGGLbGaaiiEaiaacchadaqadaWdaeaapeGaeyOeI0IaaGymaiaa c6cacaaIXaGaaGynaiabfI6az9aadaahaaWcbeqaa8qacqGHsislda WcaaWdaeaapeGaaGymaaWdaeaapeGaaGinaaaaaaaakiaawIcacaGL PaaaaaaacaGLOaGaayzkaaaaaa@5A76@
      In-plane Stress
      S z = 2 λ 2 3 1 + 0.25 R B R M 1 1 + λ 4 3 exp Ψ 1 4 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaWgaaWcbaWdbiaadQhaa8aabeaak8qacqGH9aqpdaWc aaWdaeaapeGaaGOmaiabeU7aS9aadaahaaWcbeqaa8qacqGHsislda WcaaWdaeaapeGaaGOmaaWdaeaapeGaaG4maaaaaaGcdaqadaWdaeaa peGaaGymaiabgUcaRiaaicdacaGGUaGaaGOmaiaaiwdadaqadaWdae aapeWaaSaaa8aabaWdbiaadkfapaWaaSbaaSqaa8qacaWGcbaapaqa baaakeaapeGaamOua8aadaWgaaWcbaWdbiaad2eaa8aabeaaaaaak8 qacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiabgkHiTiaaigdaaaaa kiaawIcacaGLPaaaa8aabaWdbiaaigdacqGHRaWkcqaH7oaBpaWaaW baaSqabeaapeGaeyOeI0YaaSaaa8aabaWdbiaaisdaa8aabaWdbiaa iodaaaaaaOGaciyzaiaacIhacaGGWbWaaeWaa8aabaWdbiabgkHiTi abfI6az9aadaahaaWcbeqaa8qacqGHsisldaWcaaWdaeaapeGaaGym aaWdaeaapeGaaGinaaaaaaaakiaawIcacaGLPaaaaaaaaa@5DBC@
      Out-of-plane Stress
      S y = S z = 2 λ 2 3 1 + 0.25 R B R M 1 1 + λ 4 3 exp Ψ 1 4 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaWgaaWcbaWdbiaadMhaa8aabeaak8qacqGH9aqpcaWG tbWdamaaBaaaleaapeGaamOEaaWdaeqaaOWdbiabg2da9maalaaapa qaa8qacaaIYaGaeq4UdW2damaaCaaaleqabaWdbiabgkHiTmaalaaa paqaa8qacaaIYaaapaqaa8qacaaIZaaaaaaakmaabmaapaqaa8qaca aIXaGaey4kaSIaaGimaiaac6cacaaIYaGaaGynamaabmaapaqaa8qa daWcaaWdaeaapeGaamOua8aadaWgaaWcbaWdbiaadkeaa8aabeaaaO qaa8qacaWGsbWdamaaBaaaleaapeGaamytaaWdaeqaaaaaaOWdbiaa wIcacaGLPaaapaWaaWbaaSqabeaapeGaeyOeI0IaaGymaaaaaOGaay jkaiaawMcaaaWdaeaapeGaaGymaiabgUcaRiabeU7aS9aadaahaaWc beqaa8qacqGHsisldaWcaaWdaeaapeGaaGinaaWdaeaapeGaaG4maa aaaaGcciGGLbGaaiiEaiaacchadaqadaWdaeaapeGaeyOeI0IaeuiQ dK1damaaCaaaleqabaWdbiabgkHiTmaalaaapaqaa8qacaaIXaaapa qaa8qacaaI0aaaaaaaaOGaayjkaiaawMcaaaaaaaa@610C@

      Where λ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWgaaa@37C1@ and Ψ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuiQdKfaaa@379C@ are defined as in FSI = 2.

    • FSI = 4 (ASME code N-319-3 (approval date of January 17, 2000))
      In-plane Flexibility

      THETAB = 0°:

      K z = 1.0 1 1 + P R M Χ Κ T E MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadQhaa8aabeaak8qacqGH9aqpcaaI XaGaaiOlaiaaicdadaqadaWdaeaapeWaaSaaa8aabaWdbiaaigdaa8 aabaWdbiaaigdacqGHRaWkdaWcaaWdaeaapeGaamiuaiabgwSixlaa dkfapaWaaSbaaSqaa8qacaWGnbaapaqabaGccqGHflY1peGaeu4Pdm 0damaaBaaaleaapeGaeuOMdSeapaqabaaakeaapeGaamivaiabgwSi xlaadweaaaaaaaGaayjkaiaawMcaaaaa@4ECC@

      THETAB = 45°:

      K z = 1.10 R M 2 T R B 1 1 + P R M Χ Κ T E MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadQhaa8aabeaak8qacqGH9aqpdaWc aaWdaeaapeGaaGymaiaac6cacaaIXaGaaGimaiaadkfapaWaa0baaS qaa8qacaWGnbaapaqaa8qacaaIYaaaaaGcpaqaa8qacaWGubGaeyyX ICTaamOua8aadaWgaaWcbaWdbiaadkeaa8aabeaaaaGcpeWaaeWaa8 aabaWdbmaalaaapaqaa8qacaaIXaaapaqaa8qacaaIXaGaey4kaSYa aSaaa8aabaWdbiaadcfacqGHflY1caWGsbWdamaaBaaaleaapeGaam ytaaWdaeqaaOGaeyyXIC9dbiabfE6ad9aadaWgaaWcbaWdbiabfQ5a lbWdaeqaaaGcbaWdbiaadsfacqGHflY1caWGfbaaaaaaaiaawIcaca GLPaaaaaa@57E4@

      THETAB = 90°:

      K z = 1.30 R M 2 T R B 1 1 + P R M Χ Κ T E MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadQhaa8aabeaak8qacqGH9aqpdaWc aaWdaeaapeGaaGymaiaac6cacaaIZaGaaGimaiaadkfapaWaa0baaS qaa8qacaWGnbaapaqaa8qacaaIYaaaaaGcpaqaa8qacaWGubGaeyyX ICTaamOua8aadaWgaaWcbaWdbiaadkeaa8aabeaaaaGcpeWaaeWaa8 aabaWdbmaalaaapaqaa8qacaaIXaaapaqaa8qacaaIXaGaey4kaSYa aSaaa8aabaWdbiaadcfacqGHflY1caWGsbWdamaaBaaaleaapeGaam ytaaWdaeqaaOGaeyyXIC9dbiabfE6ad9aadaWgaaWcbaWdbiabfQ5a lbWdaeqaaaGcbaWdbiaadsfacqGHflY1caWGfbaaaaaaaiaawIcaca GLPaaaaaa@57E6@

      THETAB ≥ 180°:

      K z = 1.65 R M 2 T R B 1 1 + P R M Χ Κ T E MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadQhaa8aabeaak8qacqGH9aqpdaWc aaWdaeaapeGaaGymaiaac6cacaaI2aGaaGynaiaadkfapaWaa0baaS qaa8qacaWGnbaapaqaa8qacaaIYaaaaaGcpaqaa8qacaWGubGaeyyX ICTaamOua8aadaWgaaWcbaWdbiaadkeaa8aabeaaaaGcpeWaaeWaa8 aabaWdbmaalaaapaqaa8qacaaIXaaapaqaa8qacaaIXaGaey4kaSYa aSaaa8aabaWdbiaadcfacqGHflY1caWGsbWdamaaBaaaleaapeGaam ytaaWdaeqaaOGaeyyXIC9dbiabfE6ad9aadaWgaaWcbaWdbiabfQ5a lbWdaeqaaaGcbaWdbiaadsfacqGHflY1caWGfbaaaaaaaiaawIcaca GLPaaaaaa@57EE@

      Where,

      Χ Κ = 6 R M T 4 3 R B R M 1 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4Pdm0damaaBaaaleaapeGaeuOMdSeapaqabaGcpeGaeyypa0Ja aGOnaiabgwSixpaabmaapaqaa8qadaWcaaWdaeaapeGaamOua8aada WgaaWcbaWdbiaad2eaa8aabeaaaOqaa8qacaWGubaaaaGaayjkaiaa wMcaa8aadaahaaWcbeqaa8qadaWcaaWdaeaapeGaaGinaaWdaeaape GaaG4maaaaaaGcdaqadaWdaeaapeWaaSaaa8aabaWdbiaadkfapaWa aSbaaSqaa8qacaWGcbaapaqabaaakeaapeGaamOua8aadaWgaaWcba Wdbiaad2eaa8aabeaaaaaak8qacaGLOaGaayzkaaWdamaaCaaaleqa baWdbmaalaaapaqaa8qacaaIXaaapaqaa8qacaaIZaaaaaaaaaa@4C80@

      For any values 0° < THETAB < 180°, K z MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadQhaa8aabeaaaaa@3836@ is linearly interpolated with THETAB. The resulting K z MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadQhaa8aabeaaaaa@3836@ must not be less than 1.0.

      Out-of-plane Flexibility
      K y = 1.25 R M 2 T R B 1 1 + P R M T E Χ Κ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadMhaa8aabeaak8qacqGH9aqpdaWc aaWdaeaapeGaaGymaiaac6cacaaIYaGaaGynaiaadkfapaWaa0baaS qaa8qacaWGnbaapaqaa8qacaaIYaaaaaGcpaqaa8qacaWGubGaeyyX ICTaamOua8aadaWgaaWcbaWdbiaadkeaa8aabeaaaaGcpeWaaeWaa8 aabaWdbmaalaaapaqaa8qacaaIXaaapaqaa8qacaaIXaGaey4kaSYa aSaaa8aabaWdbiaadcfacaWGsbWdamaaBaaaleaapeGaamytaaWdae qaaaGcbaWdbiaadsfacqGHflY1caWGfbGaeyyXICTaeu4Pdm0damaa BaaaleaapeGaeuOMdSeapaqabaaaaaaaaOWdbiaawIcacaGLPaaaaa a@559F@
      In-plane Stress

      THETAB = 0°:

      S z = 1.0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaWgaaWcbaWdbiaadQhaa8aabeaak8qacqGH9aqpcaaI XaGaaiOlaiaaicdaaaa@3B85@

      THETAB = 45°:

      S z = 1.75 T R B R M 2 0.56 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaWgaaWcbaWdbiaadQhaa8aabeaak8qacqGH9aqpdaWc aaWdaeaapeGaaGymaiaac6cacaaI3aGaaGynaaWdaeaapeWaaeWaa8 aabaWdbmaalaaapaqaa8qacaWGubGaeyyXICTaamOua8aadaWgaaWc baWdbiaadkeaa8aabeaaaOqaa8qacaWGsbWdamaaDaaaleaapeGaam ytaaWdaeaapeGaaGOmaaaaaaaakiaawIcacaGLPaaapaWaaWbaaSqa beaapeGaaGimaiaac6cacaaI1aGaaGOnaaaaaaaaaa@49B6@

      THETAB ≥ 90°:

      S z = 1.95 T R B R M 2 2 / 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaWgaaWcbaWdbiaadQhaa8aabeaak8qacqGH9aqpdaWc aaWdaeaapeGaaGymaiaac6cacaaI5aGaaGynaaWdaeaapeWaaeWaa8 aabaWdbmaalaaapaqaa8qacaWGubGaeyyXICTaamOua8aadaWgaaWc baWdbiaadkeaa8aabeaaaOqaa8qacaWGsbWdamaaDaaaleaapeGaam ytaaWdaeaapeGaaGOmaaaaaaaakiaawIcacaGLPaaapaWaaWbaaSqa beaapeGaaGOmaiaac+cacaaIZaaaaaaaaaa@48F9@

      For any values 0° < THETAB < 90° , S z MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaWgaaWcbaWdbiaadQhaa8aabeaaaaa@383E@ is linearly interpolated with THETAB. The resulting S z MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaWgaaWcbaWdbiaadQhaa8aabeaaaaa@383E@ must not be less than 1.0 or the interpolated value for THETAB = 30° . OptiStruct modifies the value of accordingly.

      Out-of-plane Stress
      S y = 1.71 T R B R M 2 0.53 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaWgaaWcbaWdbiaadMhaa8aabeaak8qacqGH9aqpdaWc aaWdaeaapeGaaGymaiaac6cacaaI3aGaaGymaaWdaeaapeWaaeWaa8 aabaWdbmaalaaapaqaa8qacaWGubGaeyyXICTaamOua8aadaWgaaWc baWdbiaadkeaa8aabeaaaOqaa8qacaWGsbWdamaaDaaaleaapeGaam ytaaWdaeaapeGaaGOmaaaaaaaakiaawIcacaGLPaaapaWaaWbaaSqa beaapeGaaGimaiaac6cacaaI1aGaaG4maaaaaaaaaa@49AE@

      The resulting S y MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaWgaaWcbaWdbiaadMhaa8aabeaaaaa@383D@ must not be less than 1.0. OptiStruct modifies the value of accordingly.

  4. The stress intensification factors, which determine the stresses at the two endpoints of the CBEND elements, are by default at the stress recovery points Ci, Di, Ei, Fi (i = 1,2 corresponding to grid points A and B) of the cross section (Figure 2).
    Figure 2. Default Stress Recovery Points at Cross Section of CBEND Element


  5. For this curved pipe format of the PBEND card, the shear effects in the stiffness matrix are considered via the following shear correction factor:
    K = 0.75 1 + q 1 + q 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4saiabg2da9maalaaapaqaa8qacaaIWaGaaiOlaiaaiEdacaaI 1aaapaqaa8qacaaIXaGaey4kaSYaaSaaa8aabaWdbiaadghaa8aaba WdbiaaigdacqGHRaWkcaWGXbWdamaaCaaaleqabaWdbiaaikdaaaaa aaaaaaa@4199@

    Where, q = r i n / r o u t MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyCaiabg2da9iaadkhapaWaaSbaaSqaa8qacaWGPbGaamOBaaWd aeqaaOWdbiaac+cacaWGYbWdamaaBaaaleaapeGaam4Baiaadwhaca WG0baapaqabaaaaa@4040@ .